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The motion of a mechanical system is related via a set of dynamic equations to the forces and
torques it is subject to. In this work we will be primarily interested in robots consisting of a col-
lection of rigid links connected through joints that constrain the relative motion between the links.
There are two main formalisms for deriving the dynamic equations for such mechanical systems:
(1) Newton-Euler equations that are directly based on Newton’s laws, and (2) Euler-Lagrange
equations that have their root in the classical work of d’Alembert and Lagrange on analytical
mechanics and in the work of Euler and Hamilton on variational calculus. The main difference
between the two approaches is in dealing with constraints. While Newton’s equations treat each
rigid body separately and explicitly model the constraints through the forces required to enforce
them, Lagrange and d’Alembert provided systematic procedures for eliminating the constraints
from the dynamic equations, typically yielding a simpler system of equations. Constraints imposed
by joints and by other mechanical components are one of the defining features of robots so that
it is not surprising that the Lagrange’s formalism is often the method of choice in the robotics
literature.

1 Preliminaries

The approach and the notation in this section are inspired by [21] and we refer the reader to that
text for a additional details. A starting point in describing a physical system is the formalism for
describing its motion. Since we will be concerned with robots consisting of rigid links, we start by
describing rigid body motion. Formally, a rigid body O is a subset of R

3 where each element in O
corresponds to a point on the rigid body. The defining property of a rigid body is that the distance
between arbitrary two points on the rigid body remains unchanged as the rigid body moves. If a
body-fixed coordinate frame B is attached to O, an arbitrary point p ∈ O can be described by a
fixed vector pB. As a result, the position of any point on O is uniquely determined by the location
of the frame B. To describe the location of B in space we choose a global coordinate frame S. The
position and orientation of the frame B in the frame S is called the configuration of O and can be
described by a 4 × 4 homogeneous matrix gSB:

gSB =

[
RSB dSB

0 1

]
, RSB ∈ R

3×3, dSB ∈ R
3, RT

SBRSB = I3,det(RSB) = 1. (1)

Here In denotes the identity matrix in R
n×n. The set of all possible configurations of O is known

as SE(3), the special Euclidean group of rigid body transformations in three dimensions. By the
above argument, SE(3) is equivalent to the set of homogeneous matrices. It can be shown that
it is a matrix group as well as a smooth manifold and, therefore, a Lie group; for more details we
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refer to [11, 21]. It is convenient to denote matrices g ∈ SE(3) by the pair (R, d) for R ∈ SO(3)
and d ∈ R

3.
Given a point p ∈ O described by a vector pB in the frame B, it is natural to ask what is the

corresponding vector in the frame S. From the definition of gSB we have

pS = gSBpB

where for a vector p ∈ R
3, the corresponding homogeneous vector p is defined as:

p =

[
p

1

]
.

The tangent space of SE(3) at g0 ∈ SE(3) is the vector space of matrices of the form ġ(0),
where g(t) is a curve in SE(3) such that g(0) = g0. The tangent space of a Lie group at the group
identity is called the Lie algebra of the Lie group. The Lie algebra of SE(3), denoted by se(3), is

se(3) =

{[
Ω v

0 0

]
| Ω ∈ R

3×3, v ∈ R
3,ΩT = −Ω

}
. (2)

Elements of se(3) are called twists. Recall that a 3 × 3 skew-symmetric matrix Ω can be uniquely
identified with a vector ω ∈ R

3 so that for an arbitrary vector x ∈ R
3, Ωx = ω × x, where × is the

vector cross product operation in R
3. Each element T ∈ se(3) can be thus identified with a 6 × 1

vector

ξ =

[
v

ω

]
,

called the twist coordinates of T . We also write Ω = ω̂ and T = ξ̂ to denote these transitions
between vectors and matrices.

An important relation between the Lie group and its Lie algebra is provided by the exponential
map. It can be shown that for ξ̂ ∈ se(3), exp(ξ̂) ∈ SE(3), where exp : R

n×n → R
n×n is the usual

matrix exponential. Using the properties of SE(3) it can be shown that, for ξT =
[

vT ωT
]
,

exp(ξ̂) =





[
I3 v

0 1

]
, ω = 0,

[
exp(ω̂) 1

‖ω‖2

[
(I3 − exp(ω̂))(ω × v) + ωωT v

]

0 1

]
, ω 6= 0,

(3)

where the relation

exp(ω̂) = I3 +
sin ‖ω‖

‖ω‖
ω̂ +

1 − cos ‖ω‖

‖ω‖2
ω̂2,

is known as Rodrigues’ formula. From the last formula it is easy to see that the exponential map
exp : se(3) → SE(3) is many to one. It can be shown that the map is in fact onto. In other words,

every matrix g ∈ SE(3) can be written as g = exp(ξ̂) for some ξ̂ ∈ se(3). The components of ξ are
also called exponential coordinates of g.

To every twist ξT =
[

vT ωT
]
, ω 6= 0, we can associate a triple (l, h,M) called the screw

associated with ξ̂, where we define l = {p + λω ∈ R
3| p ∈ R

3, λ ∈ R}, h ∈ R, and M ∈ R so that
the following relations hold:

M = ‖ω‖, v = −ω × p + hω.

Note that l is the line in R
3 in the direction of ω passing through the point p ∈ R

3. If ω = 0, the
corresponding screw is (l,∞, ‖v‖), where l = {λv ∈ R

3| λ ∈ R}. In this way, the exponential map

can be given an interesting geometric interpretation: if g = exp(ξ̂) with ω 6= 0, then the rigid body
transformation represented by g can be realized as a rotation around the line l by the angle M

followed by a translation in the direction of this line for the distance hM . If ω = 0 and v 6= 0, the
rigid body transformation is simply a translation in the direction of v

‖v‖ for a distance M . The line

l is the axis, h is the pitch and M is the magnitude of the screw. This geometric interpretation and
the fact that every element g ∈ SE(3) can be written as the exponential of a twist is the essence
of Chasles Theorem.
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1.1 Velocities and forces

We have seen that SE(3) is the configuration space of a rigid body O. By considering a rigid
body moving in space, a more intuitive interpretation can be also given to se(3). At every instant
t, the configuration of O is given by gSB(t) ∈ SE(3). The map t 7→ gSB(t) is therefore a curve
representing the motion of the rigid body. The time derivative ġSB = d

dt
gSB corresponds to the

velocity of the rigid body motion. However, the matrix curve t 7→ ġSB does not allow an easy
geometric interpretation. Instead, it is not difficult to show that the matrices V̂ b

SB
= g−1

SB
ġSB and

V̂ s
SB

= ġSBg−1
SB

take values in se(3). The matrices V̂ b
SB

and V̂ s
SB

are called the body and spatial
velocity, respectively, of the rigid body motion. Their twist coordinates will be denoted by V b

SB
and

V s
SB

. Assume a point p ∈ O has coordinates pS and pB in the spatial frame and in the body frame,
respectively. As the rigid body moves along the trajectory t 7→ gSB(t), a direct computation shows

that the velocity of the point can be computed by ṗS = V̂ s
SB

pS or, alternatively, ṗB = V̂ b
SB

pB.
The body and spatial velocities are related by

V s
SB = AdgSB

V b
SB

where for g = (R, d) ∈ SE(3), the adjoint transformation Adg : R
6 → R

6 is

Adg =

[
R d̂R

0 R

]
.

In general, if ξ̂ ∈ se(3) is a twist with twist coordinates ξ ∈ R
6, then for any g ∈ SE(3) the twist

gξ̂g−1 has twist coordinates Adg ξ ∈ R
6.

Quite often it is necessary to relate the velocity computed in one set of frames to that computed
with respect to a different set of frames. Let X, Y, and Z be three coordinate frames. Let gXY

and gYZ be the homogeneous matrices relating the Y to the X frame and the Z to the Y frame,
respectively. Let V s

XY
= ġXYg−1

XY
and V b

XY
= g−1

XY
ġXY be the spatial velocity and the body velocity of

the frame Y with respect to the frame X, respectively; define V s
XZ

, V s
YZ

, V b
XZ

, and V b
XZ

analogously.
The following relations can be verified by a direct calculation:

V s
XZ = V s

XY + AdgXY
V s

YZ,

V b
XZ = Ad−1

gYZ
V b

XY + V b
YZ.

(4)

In the last equation, Ad−1 is the inverse of the adjoint transformation and can be computed using
the formula Ad−1

g = Adg−1 , for g ∈ SE(3).
The body and spatial velocities are in general time dependent. Take the spatial velocity V s

SB
(t)

at time t and consider the screw (l, h,M) associated with it. We can show that at this time instant
t, the rigid body is moving with the same velocity as if it were rotating around the screw axis l

with a constant rotational velocity of magnitude M , and translating along this axis with a constant
translational velocity of magnitude hM . If h = ∞, then the motion is a pure translation in the
direction of l with velocity M . A similar interpretation can be given to V s

SB
(t).

The above arguments show that elements of the Lie algebra se(3) can be interpreted as gen-
eralized velocities. It tuns out that the elements of its dual se∗(3), known as wrenches, can be
interpreted as generalized forces. The fact that the names twist and wrench which originally de-
rived from the screw calculus [5] are used for elements of the Lie algebra and its dual is not just
a coincidence, the present treatment can be viewed as an alternative interpretation of the screw
calculus.

Using coordinates dual to the twist coordinates, a wrench can be written as a pair F =
[

f τ
]
,

where f is the force component and τ the torque component. Given a twist V T =
[

vT ωT
]
, for

v, ω ∈ R
3×1, and a wrench F =

[
f τ

]
, for f, τ ∈ R

1×3, the natural pairing 〈W ;F 〉 = fv + τω is
a scalar representing the instantaneous work performed by the generalized force F on a rigid body
that is instantaneously moving with the generalized velocity V . In computing the instantaneous
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work, it is important to consider generalized force and velocity with respect to the same coordinate
frame.

As was the case with the twists, we can also associate a screw to a wrench. Given a wrench
F =

[
f τ

]
, f 6= 0, the associated screw (l, h,M) is given by l = {p + λf ∈ R

3| p ∈ R
3, λ ∈ R}

and by:

M = ‖f‖, τ = −f × p + hf.

For f = 0, the screw is (l,∞, ‖τ‖), where l = {λτ ∈ R
3| λ ∈ R}. Geometrically, a wrench with the

associated screw (l, h,M) corresponds to a force with magnitude M applied in the direction of the
screw axis l and a torque with magnitude hM applied about this axis. If f = 0 and τ 6= 0, then
the wrench is a pure torque of magnitude M applied around l. The fact that every wrench can be
interpreted in this way is known as Poinsot Theorem. Note the similarity with Chasles Theorem.

1.2 Kinematics of serial linkages

A serial linkage consists of a sequence of rigid bodies connected through one degree-of-freedom
(DOF) revolute or prismatic joints; a multi-DOF joint can be modeled as a sequence of individual
1-DOF joints. To uniquely describe the position of such a serial linkage it is only necessary to know
the joint variables, i.e., the angle of rotation for a revolute joint or the linear displacement for a
prismatic joint. Typically it is then of interest to know the configuration of the links as a function
of these joint variables. One of the links is typically designated as the end-effector, the link that
carries the tool involved in the robot task. For serial manipulators, the end-effector is the last link
of the mechanism. The map from the joint space to the end-effector configuration space is known
as the forward kinematics map. We will use the term extended forward kinematics map to denote
the map from the joint space to the Cartesian product of the configuration spaces of each of the
links.

The configuration spaces of a revolute and of a prismatic joint are connected subsets of the unit
circle S1 and of the real line R, respectively. For simplicity, we shall assume that these connected
subsets are S1 and R, respectively. If a mechanism with n joints has r revolute and p = n − r

prismatic joints, its configuration space is Q = Sr × R
p, where Sr = S1 × · · · × S1

︸ ︷︷ ︸
r

. Assume the

coordinate frames attached to the individual links are B1, . . . ,Bn. The configuration space of each
of the links is SE(3), so the extended forward kinematics map is:

κ : Q → SEn(3)
q 7→ (gSB1

(q), . . . , gSBn
(q)) .

(5)

We shall call SEn(3) the Cartesian space.
For serial linkages the forward kinematics map has a particularly revealing form. Choose a

reference configuration of the manipulator, i.e. the configuration where all the joint variables are
0, and let ξ1, . . . , ξn, be the joint twists in this configuration expressed in the global coordinate
frame S. If the ith joint is revolute and l = {p + λω ∈ R

3| λ ∈ R, ‖ω‖ = 1} is the axis of rotation,
then the joint twist corresponds to the screw (l, 0, 1) and is:

ξi =

[
−ω × p

ω

]
. (6)

If the ith joint is prismatic and v ∈ R
3, ‖v‖ = 1, is the direction in which it moves, then the joint

twist corresponds to the screw ({λv ∈ R
3| λ ∈ R},∞, 1) and is:

ξi =

[
v

0

]
.

One can show that
gSBi

(q) = exp(ξ1q
1) · · · exp(ξiq

i)gSBi,0 (7)
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where gSBi,0 ∈ SE(3) is the reference configuration of the ith link. This is known as the Product
of Exponentials Formula and was introduced by Brockett [7].

Another important relation is that between the joint rates and the link body and spatial veloc-
ities. A direct computation shows that along a curve t 7→ q(t),

V s
SBi

(t) = Js
SBi

(q(t))q̇(t)

where Js
SBi

is a configuration-dependent 6×n matrix, called the spatial manipulator Jacobian, that
for serial linkages equals

Js
SBi

(q) =
[

ξS,1(q) . . . ξS,i(q) 0 . . . 0
]
.

Here the jth column ξS,j(q) of the spatial manipulator Jacobian is the jth joint twist expressed in
the global reference frame S after the manipulator has moved to the configuration described by q.
It can be computed from the forward kinematics map using the formula:

ξS,j(q) = Ad(exp(ξ1q1)··· exp(ξj−1qj−1)) ξj .

Similar expressions can be obtained for the body velocity

V b
SBi

(t) = Jb
SBi

(q(t))q̇(t), (8)

where Jb
SBi

is a configuration-dependent 6×n body manipulator Jacobian matrix. For serial linkages,

Jb
SBi

(q) =
[

ξBi,1(q) . . . ξBi,i(q) 0 . . . 0
]
, (9)

where the jth column ξBi,j(q), j ≤ i is the jth joint twist expressed in the link frame Bi after the
manipulator has moved to the configuration described by q and is given by:

ξBi,j(q) = Ad−1
(exp(ξjqj)··· exp(ξiqi)gSBi,0)

ξj .

2 Dynamic equations

In this section we continue our study of mechanisms composed of rigid links connected through
prismatic or revolute joints. One way to describe a system of interconnected rigid bodies is to
describe each of the bodies independently and then explicitly model the joints between them
through the constraint forces. Since the configuration space of a rigid body is SE(3), a robot
manipulator with n links would be described with 6n parameters. Newton’s equations can be
then directly used to describe robot dynamics. An alternative is to use generalized coordinates and
describe just the degrees of freedom of the mechanism. As discussed earlier, for a robot manipulator
composed of n links connected through 1-DOF joints the generalized coordinates can be chosen to
be the joint variables. In this case n parameters are therefore sufficient. The Lagrange-d’Alembert
Principle can then be used to derive the Euler-Lagrange equations describing the dynamics of
the mechanism in generalized coordinates. Because of the dramatic reduction in the number of
parameters describing the system this approach is often preferable. We shall describe this approach
in some detail.

The Euler-Lagrange equations are derived directly from the energy expressed in the generalized
coordinates. Let q be the vector of generalized coordinates. We first form the system Lagrangian as
the difference between the kinetic and the potential energies of the system. For typical manipulators
the Lagrangian function is

L(q, q̇) = T (q, q̇) − V (q),

where T (q, q̇) is the kinetic energy and V (q) the potential energy of the system. The Euler-Lagrange
equations describing the dynamics for each of the generalized coordinates are then

d

dt

∂L

∂q̇i
−

∂L

∂qi
= Yi, (10)

where Yi is the generalized force corresponding to the generalized coordinate qi. The subject of
the following discussion is study these equations in the context of a single rigid body and of a rigid
linkage.
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2.1 Inertial properties of a rigid body

In order to apply the Lagrange’s formalism to a rigid body O we need to compute its Lagrangian
function. Assume that the body-fixed frame B is attached to the center of mass of the rigid body.
The kinetic energy of the rigid body is the sum of the kinetic energy of all its particles. Therefore,
it can be computed as

T =

∫

O

1

2
‖ṗ‖2dm =

∫

O

1

2
‖ṗS‖

2ρ(pS)dV

where ρ is the body density and dV is the volume element in R
3. If (RSB, dSB) ∈ SE(3) is the rigid

body configuration, the equality pS = RSBpB + dSB and some manipulations lead to

T =
1

2
m‖ḋSB‖

2 +
1

2
(ωb

SB)T

(
−

∫

O

p̂2
Bρ(pB)dV

)
ωb

SB (11)

where m is the total mass of the rigid body and p̂B is the skew-symmetric matrix corresponding
to the vector pB. The formula shows that the kinetic energy is the sum of two terms referred to as
the translational and the rotational components. The quantity I = −

∫
O

p̂B

2
ρ(pB)dV is the inertia

tensor of the rigid body; one can show that I is a symmetric positive-definite 3 × 3 matrix. By
defining the generalized inertia matrix

M =

[
mI3 0
0 I

]
,

the kinetic energy can be written as

T =
1

2

(
V b

SB

)T
MV b

SB, (12)

where V b
SB

is the body velocity of the rigid body.
Equation (12) can be used to obtain the expression for the generalized inertia matrix when

the body-fixed frame is not at the center of mass. Assume that gAB = (RA, dA) ∈ SE(3) is the
transformation between the frame A attached to the center of mass of the rigid body and the
body-fixed frame B. According to equation (4), V b

SA
= AdgAB

V b
SB

. We thus have

T =
1

2
(V b

SA)TMAV b
SA =

1

2

(
AdgAB

V b
SB

)T
M

(
AdgAB

V b
SB

)
=

(
V b

SB

)T
MBV b

SB,

where MB is the generalized inertia matrix with respect to the body-fixed frame B:

MB = (AdgAB
)
T
MA AdgAB

=

[
mI3 mRT

A
d̂ARA

−mRT
A
d̂ARA RT

A

(
I − md̂2

A

)
RA

]
.

By observing that gBA = g−1
AB

= (RB, dB), where RB = RT
A

and dB = −RT
A
dA, MB can be written

as:

MB =

[
mI3 −md̂B

md̂B RBIRT
B
− d̂2

B

]
.

2.2 Euler-Lagrange equations for rigid linkages

To obtain the expression for the kinetic energy of a linkage composed of n rigid bodies, we need to
add the kinetic energy of each of the links:

T =

n∑

i=1

Ti =
1

2

n∑

i=1

(V b
SBi

)TMBi
V b

SBi
.
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Using the relation (8), this becomes

T =

n∑

i=1

1

2
(Jb

SBi
q̇)TMBi

Jb
SBi

q̇ =
1

2
q̇T M(q)q̇,

where

M(q) =

n∑

i=1

(Jb
SBi

)TMBi
Jb

SBi

is the manipulator inertia matrix. For serial manipulators, the body manipulator Jacobian J b
SBi

is
given by equation (9).

The potential energy of the linkage typically consists of the sum of the gravitational potential
energies of each of the links. Let hi(q) denote the height of the center of mass of the ith link. The
potential energy of the link is then Vi(q) = mighi(q), and the potential energy of the linkage is:

V (q) =

n∑

i=1

mighi(q).

If other conservative forces act on the manipulator, the corresponding potential energy can be
simply added to V .

The Lagrangian for the manipulator is the difference between the kinetic and potential energies,
that is,

L(q, q̇) =
1

2
q̇T M(q)q̇ − V (q) =

1

2

n∑

i,j=1

Mij(q)q̇
iq̇j − V (q)

where Mij(q) is the component (i, j) of the manipulator inertia matrix at q. Substituting these
expressions into the Euler-Lagrange equations (10) we obtain:

n∑

j=1

Mij(q)q̈
j +

n∑

j,k=1

Γijk(q)q̇j q̇k +
∂V

∂qi
(q) = Yi, i ∈ {1, . . . , n},

where the functions Γijk are the Christoffel symbols (of the first kind) of the inertia matrix M and
are defined by

Γijk(q) =
1

2

(
∂Mij(q)

∂qk
+

∂Mik(q)

∂qj
−

∂Mjk(q)

∂qi

)
. (13)

Collecting the equations in a vector format, we obtain

M(q)q̈ + C(q, q̇)q̇ + G(q) = Y, (14)

where C(q, q̇) is the Coriolis matrix for the manipulator with components

Cij(q, q̇) =

n∑

k=1

Γijk(q)q̇k,

and where Gi(q) = ∂V
∂qi (q). Equation (14) suggests that the robot dynamics consists of four

components: the inertial forces M(q)q̈, the Coriolis and centrifugal forces C(q, q̇)q̇, the conservative
forces G(q) and the generalized force Y composed of all the non-conservative external forces acting
on the manipulator. The Coriolis and centrifugal forces depend quadratically on the generalized
velocities q̇i and reflect the inter-link dynamic interactions. Traditionally, terms involving products
q̇iq̇j , i 6= j are called Coriolis forces, while centrifugal forces have terms of the form (q̇i)2.

A direct calculation can be used to show that the robot dynamics has the following two prop-
erties [29]. For all q ∈ Q

(i) the manipulator inertia matrix M(q) is symmetric and positive-definite, and
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(ii) the matrix
(
Ṁ(q) − 2C(q, q̇)

)
∈ R

n×n is skew-symmetric.

The first property is a mathematical statement of the following fact: the kinetic energy of a system
is a quadratic form which is positive unless the system is at rest. The second property is referred to
as the passivity property of rigid linkages; this property implies that the total energy of the system
is conserved in the absence of friction. The property plays an important role in stability analysis
of many robot control schemes.

2.3 Generalized force computation

Given a configuration manifold Q, the tangent bundle is the set TQ = {(q, q̇)| q ∈ Q}. The La-
grangian is formally a real-valued map on the tangent bundle, L : TQ → R. Recall that, given a
scalar function on a vector space, its partial derivative is a map from the dual space to the reals.
Similarly, it is possible to interpret the partial derivatives ∂L

∂q
and ∂L

∂q̇
as functions taking values in

the dual of the tangent bundle, T ∗Q. Accordingly, the Euler-Lagrange equations in vector form

d

dt

∂L

∂q̇
−

∂L

∂q
= Y

can be interpreted as an equality on T ∗Q. The external force Y is thus formally a one-form, i.e.,
a map Y : Q → T ∗Q. We let Yi denote the ith component of Y . Roughly speaking, Yi is the
component of generalized force Y that directly affects the coordinate qi. In what follows we derive
an expression for the generalized force Yi as a function of the wrenches acting on the individual
links.

Let us start by introducing two useful concepts. Recall that given two manifolds Q1 and Q2

and a smooth map φ : Q1 → Q2, the tangent map Tφ : TQ1 → TQ2 is a linear function that
maps tangent vectors from TqQ1 to Tφ(q)Q2. If X ∈ TqQ1 is a tangent vector and γ : R → Q1 is a
smooth curve tangent to X at q, then Tφ(X) is the vector tangent to the curve φ ◦ γ at φ(q). In
coordinates this linear map is the Jacobian matrix of φ. Given a one-form ω on Q2, the pull-back
of ω is the one-form (φ∗ω) on Q1 defined by

〈(φ∗ω)(q);X〉 = 〈ω;Tqφ(X)〉

for all q ∈ Q1 and X ∈ TqQ1.
Now consider a linkage consisting of n rigid bodies with the configuration space Q. Recall that

the extended forward kinematics function κ : Q → SEn(3) from equation (5) maps a configuration
q ∈ Q to the configuration of each of the links, i.e., to a vector (gSB1

(q), . . . , gSBn
(q)) in the

Cartesian space SEn(3). Forces and velocities in the Cartesian space are described as twists and
wrenches; they are thus elements of sen(3) and se∗n(3), respectively. Let Wi be the wrench acting
on the ith link. The total force in the Cartesian space is thus W = (W1, . . . ,Wn). The generalized
force Yi is the component of the total configuration space force Y in the direction of qi. Formally,
Yi = 〈Y ; ∂

∂qi 〉, where ∂
∂qi is the ith coordinate vector field.

It turns out that the total configuration space force Y is the pull-back of the total Cartesian
space force W to T ∗Q through the extended forward kinematics map, i.e.,

Y = κ∗(W ).

Using this relation and the definition of the pull-back we thus have

Yi(q) =
〈
Y (q);

∂

∂qi

〉
=

〈
W (κ(q));Tqκ

( ∂

∂qi

)〉
. (15)

It is well established that in the absence of external forces, the generalized force Yi is the torque
applied at the ith joint it the joint is revolute and the force applied at the ith joint if the joint is
prismatic; let us formally derive this result using equation (15). Consider a serial linkage with the
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forward kinematics map given by (7). Assume that the ith joint connecting (i − 1)th and ith link
is revolute and let τi be the torque applied at the joint. At q ∈ Q, we compute

Tqκ
( ∂

∂qj

)
= (0, . . . , 0︸ ︷︷ ︸

j−1

, ξS,j(q), . . . , ξS,j(q)),

where ξS,j(q) is defined by equation (6) and it is the unit twist corresponding to a rotation about
the jth joint axis. The wrench in the Cartesian space resulting from the torque τi acting along
the ith joint axis is W = τi (0, . . . , 0︸ ︷︷ ︸

i−2

,−σS,i(q), σS,i(q), 0, . . . , 0), where σS,i(q) is the unit wrench

corresponding to a torque about the ith joint axis. It is then easy to check that W results in

Yj =

{
0, j 6= i,

τi, j = i.

2.4 Geometric interpretation

Additional differential geometric insight into the dynamics can be gained by observing that the
kinetic energy provides a Riemannian metric on the configuration manifold Q, i.e., a smoothly
changing rule for computing the inner product between tangent vectors. Recall that, given (q, q̇) ∈
TQ, the kinetic energy of a manipulator is T (q, q̇) = 1

2 q̇T M(q)q̇, where M(q) is a positive-definite
matrix. If we have two vectors v1, v2 ∈ TqQ, we can thus define their inner product by 〈〈v1 , v2〉〉 =
1
2 (v1)T M(q)v2. Physical properties of a manipulator guarantee that M(q) and thus the rule for
computing the inner product changes smoothly over Q. For additional material on this section we
refer to [11].

Given two smooth vector fields X and Y on Q, the covariant derivative of Y with respect to
X is the vector field ∇XY with coordinates

(∇XY )i =
∂Y i

∂qj
Xj + Γ̂i

jkXjY k ,

where Xi and Y j are the ith and jth component of X and Y , respectively. The operator ∇ is
called an affine connection and it is determined by the n3 functions Γ̂i

jk. A direct calculation shows
that for real valued functions f and g defined over Q, and vector fields X, Y and Z:

∇fX+gY Z = f∇XZ + g∇Y Z,

∇X(Y + Z) = ∇XY + ∇XZ,

∇X(fY ) = f∇XY + X(f)Y,

where in coordinates, X(f) =
∑n

i=1
∂f
∂qi X

i.

When the functions Γ̂i
jk are computed according to

Γ̂i
jk(q) =

1

2

n∑

l=1

M li

(
∂Mlj(q)

∂qk
+

∂Mlk(q)

∂qj
−

∂Mjk(q)

∂ql

)
(16)

where M li(q) are the components of M−1(q), they are called the Christoffel symbols (of the second
kind) of the Riemannian metric M , and the affine connection is called the Levi-Civita connection.
From equations (13) and (16) it is easy to see that for a Levi-Civita connection,

Γijk =

n∑

l=1

MliΓ̂
l
jk.
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Assume that the potential forces are not present so that L(q, q̇) = T (q, q̇). The manipulator
dynamics equations (14) can be thus written as:

q̈ + M−1(q)C(q, q̇)q̇ = M−1(q)Y.

It can be seen that the last equation can be written in coordinates as

q̈i + Γ̂i
jk(q)q̇j q̇k = F i,

and in vector format as
∇q̇ q̇ = F, (17)

where ∇ is the Levi-Civita connection corresponding to M(q) and F = M−1(q)Y is the vector
field obtained from the one-form Y through the identity 〈Y ;X〉 = 〈〈F , X〉〉. In the absence of
the external forces, equation (17) becomes the so-called geodesic equation for the metric M . It
is a second order differential equation whose solutions are curves of locally minimal length – like
straight lines in R

n or great circles on a sphere. It can be also shown that among all the curves
γ : [0, 1] → Q that connect two given points, a geodesic is the curve that minimizes the energy
integral:

E(γ) =

∫ 1

0

T (γ(t), γ̇(t))dt.

This geometric insight implies that if a mechanical system moves freely with no external forces
present, it will move along the minimum energy paths.

When the potential energy is present, equation (17) still applies if the resulting conservative
forces are included in F . The one-form Y describing the conservative forces associated with the
potential energy V is the differential of V , that is, Y = −dV , where the differential dV is defined
by 〈dV ;X〉 = X(V ). The corresponding vector field F = −M−1(q)dV is related to the notion
of gradient of V , specifically, F = − grad V . In coordinates, differential and gradient of V have
components

(dV )i =
∂V

∂qi
, and (grad V )i = M ij ∂V

∂qj
.

3 Constrained systems

One of the advantages of Lagrange’s formalism is a systematic procedure to deal with constraints.
Generalized coordinates in themselves are a way of dealing with constraints. For example, for robot
manipulators, joints limit the relative motion between the links and thus represent constraints. We
can avoid modeling these constraints explicitly by choosing joint variables as generalized coordi-
nates. However, in robotics it is often necessary to constrain the motion of the end-effector in
some way, model rolling of the wheels of a mobile robot without slippage, or for example take into
account various conserved quantities for space robots. Constraints of this nature are external to
the robot itself so it is desirable to model them explicitly. Mathematically, a constraint can be
described by an equation of the form ϕ(q, q̇) = 0, where q ∈ R

n are the generalized coordinates
and ϕ : TQ → R

m. However, there is a fundamental difference between constraints of the form
ϕ(q) = 0, called holonomic constraints, and those where the dependence on the generalized ve-
locities can not be eliminated through the integration, known as nonholonomic constraints. Also,
among the nonholonomic constraints only those that are linear in the generalized velocities turn
out to be interesting in practice. In other words, typical nonholonomic constraints are of the form
ϕ(q, q̇) = A(q)q̇.

Holonomic constraints restrict the motion of the system to a submanifold of the configuration
manifold Q. For nonholonomic constraints such a constraint manifold does not exist. However,
formally the holonomic and nonholonomic constraints can be treated in the same way by observing
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that a holonomic constraints ϕ(q) = 0 can be differentiated to obtain A(q)q̇ = 0, where A(q) =
∂ϕ

∂q
∈ R

m×n. The general form of constraints can be thus assumed to be:

A(q)q̇ = 0. (18)

We will assume that A(q) has full rank everywhere.
Constraints are enforced on the mechanical system via a constraint force. A typical assumption

is that the constraint force does no work on the system. This excludes examples such as the end-
effector sliding with friction along a constraint surface. With this assumption, the constraint force
must be at all times perpendicular to the velocity of the system (strictly speaking, it must be in
the annihilator of the set of admissible velocities). Since the velocity satisfies equation (18), the
constraint force, say Λ, will be of the form

Λ = AT (q)λ, (19)

where λ ∈ R
m is a set of Lagrange multipliers. The constrained Euler-Lagrange equations thus

take the form:
d

dt

∂L

∂q̇
−

∂L

∂q
= Y + AT (q)λ. (20)

These equations, together with the constraints (18), determine all the unknown quantities (either
Y and λ if the motion of the system is given, or trajectories for q and λ if Y is given).

Several methods can be used to eliminate the Lagrange multipliers and simplify the set of
equations (18)-(20). For example, let S(q) be a matrix whose columns are the basis of the null-
space of A(q). Thus we can write:

q̇ = S(q)η (21)

for some vector η ∈ R
n−m. The components of η are called pseudo-velocities. Now multiply (20)

on the left with ST (q) and use equation (21) to eliminate q̇. The dynamic equations then become:

ST (q)M(q)S(q)η̇ + ST (q)M(q)
∂S(q)

∂q
S(q)η + ST (q)C(q, S(q)η) + ST (q)G(q) = ST (q)Y. (22)

The last equation together with equation (21) then completely describes the system subject to
constraints. Sometimes, such procedures are also known as embedding of constraints into the
dynamic equations.

3.1 Geometric interpretation

The constrained Euler-Lagrange equation can also be given an interesting geometric interpretation.
As we did in Section 2.4, consider a manifold Q with the Riemannian metric M . Equation (18)
only allows the system to move in the directions given by the null-space of A(q). Geometrically,
the velocity of the system at each point q ∈ Q must lie in the subset D(q) = A(q) of the tangent
space TqQ. Formally, D = ∪q∈QD(q) is a distribution on Q. For obvious reasons, this distribution
will be called the constraint distribution. Note that given a constraint distribution D, equation
(18) simply becomes q̇ ∈ D(q).

Let P : TQ → D denote the orthogonal (with respect to the metric M) projection onto the
distribution of feasible velocities D. In other words, at each q ∈ Q, P (q) maps TqQ into D(q) ⊂ TqQ.
Let D⊥ denote the orthogonal complement to D with respect to the metric M and let P⊥ = I −P ,
where I is the identity map on TQ. Geometrically, the equations (18) and (20) can be written as:

∇q̇ q̇ = Λ(t) + F, (23)

P⊥(q̇) = 0, (24)

where Λ(t) ∈ D⊥ is the same as that in equation (19) and is the Lagrange multiplier enforcing the
constraint.
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It is known, e.g., see [9, 17] that equation (23) can be written as:

∇̃q̇ q̇ = P (Y ), (25)

where ∇̃ is the affine connection given by

∇̃XY = ∇XY + ∇X

(
P⊥(Y )

)
− P⊥(∇XY ). (26)

We refer to the affine connection ∇̃ as the constraint connection. Typically, the connection ∇̃ is
only applied to the vector fields that belong to D. A short computation shows that for Y ∈ D:

∇̃XY = P (∇XY ) (27)

The last expression allows us to evaluate ∇̃XY directly and thus avoid significant amount of
computation needed to explicitly compute ∇̃ from equation (26). Also, by choosing a basis for D,
we can directly derive equation (22) from (25).

The important implication of this result is that even when a system is subject to holonomic or
nonholonomic constraints it is indeed possible to write the equations of motion in the form (17).
In every case the systems evolve over the same manifold Q but they are described with different
affine connections. This observation has important implications for control of mechanical systems
in general and methods developed for the systems in the form (17) can be quite often directly
applied to systems with constraints.

4 Impact equations

Quite often, robot systems undergo impacts as they move. A typical example are walking robots,
but impacts also commonly occur during manipulation and assembly. In order to analyze and
effectively control such systems it is necessary to have a systematic procedure for deriving the
impact equations. We describe a model for elastic and plastic impacts.

In order to derive the impact equations recall that the Euler-Lagrange equations (10) are derived
from the Lagrange-d’Alembert principle. First, for a given C2 curve γ : [a, b] → Q, define a variation
σ : (−ε, ε) × [a, b] → Q, a C2 map with the properties:

(i) σ(0, t) = γ(t);

(ii) σ(s, a) = γ(a), σ(s, b) = γ(b).

Let δq = d
ds

∣∣
s=0

σ(s, t). Note that δq is a vector field along γ. A curve γ(t) satisfies the Lagrange-
d’Alembert Principle for the force Y and the Lagrangian L(q, q̇) if for every variation σ(s, t):

d

ds

∣∣∣∣
s=0

∫ b

a

L

(
σ(s, t),

d

dt
σ(s, t)

)
dt +

∫ b

a

〈Y ; δq〉 dt = 0. (28)

Now assume a robot moving on a submanifold M1 ⊆ Q before the impact, on M2 ⊆ Q after the
impact, with the impact occurring on a M3 ⊆ Q, where M3 ⊆ M1 and M3 ⊆ M2. Typically, we
would have M1 = M2 when the system bounces off M3 (impact with some degree of restitution),
or M2 = M3 ⊆ M1 for a plastic impact. Assume that Mi = ϕ−1

i (0), where ϕi : Q → R
pi . In other

words, we assume that 0 is a regular value of ϕi and that the submanifold Mi corresponds to the
zero set of ϕi. The value pi is the co-dimension of the submanifold Mi. Let τ be the time at which
the impact occurs. A direct application of (28) leads to the following equation:

∫ b

a

(
∂L

∂q
−

d

dt

∂L

∂q̇

)
δq dt +

∫ b

a

〈Y ; δq〉 dt +

(
∂L

∂q̇

∣∣∣∣
t=τ−

−
∂L

∂q̇

∣∣∣∣
t=τ+

)
δq|t=τ = 0.
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Given that δq is arbitrary, the first two terms would yield the constrained Euler-Lagrange equations
(20). The impact equations can be derived from the last term:

(
∂L

∂q̇

∣∣∣∣
t=τ−

−
∂L

∂q̇

∣∣∣∣
t=τ+

)
δq|t=τ = 0. (29)

Since γ(s, τ) ∈ M3, we have dϕ3 · δq|t=τ = 0. Equation (29) thus implies:

(
∂L

∂q̇

∣∣∣∣
t=τ−

−
∂L

∂q̇

∣∣∣∣
t=τ+

)
∈ span dϕ3. (30)

The expression ∂L
∂q̇

can be recognized as the momentum. Equation (30) thus leads to the expected
geometric interpretation: the momentum of the system during the impact can only change in the
directions “perpendicular” to the surface on which the impact occurs.

Let ϕ1
3, . . . , ϕ

p3

3 be the components of ϕ3, and let grad ϕ
j
3 be the gradient of ϕ

j
3. Observe that

〈∂L(q,q̇)
∂q̇

;V 〉 = 〈〈q̇ , V 〉〉. Equation (30) can be therefore written as:

( q̇|t=τ− − q̇|t=τ+) =

p3∑

j=1

λ3j grad ϕ
j
3. (31)

In the case of a bounce, the equation suggests that the velocity in the direction orthogonal (with
respect to the Riemannian metric M) to the impact surface undergoes the change; the amount of
change depends on the coefficient of restitution. In the case of plastic impact, the velocity should
be orthogonally (again, with respect to the metric M) projected to the impact surface. In other
words, using appropriate geometric tools the impact can indeed be given the interpretation that
agrees with the simple setting typically taught in the introductory physics courses.

5 Bibliographic remarks

The literature on robot dynamics is vast and the following list is just a small sample. A good
starting point to learn about robot kinematics and dynamics are many excellent robotics textbooks
[3, 10, 21, 26, 29]. The earliest formulations of the Lagrange equations of motions for robot
manipulators are usually considered to be [32] and [15]. Computationally efficient procedures for
numerically formulating dynamic equations of serial manipulators using Newton-Euler formalism
are described in [19, 22, 30], and in Lagrange formalism in [14]. A comparison between the two
approaches is given in [28]. These algorithms have been generalized to more complex structures in
[4, 12, 18]. A good review of robot dynamics algorithms is [13]. Differential geometric aspects of
modeling and control of mechanical systems are the subject of [1, 6, 9, 20, 27]. Classical dynamics
algorithms are recast using differential geometric tools in [31] and [24] for serial linkages, and in
[25] for linkages containing closed kinematic chains. Control and passivity of robot manipulators
and electromechanical systems are discussed in [2, 23]. Impacts are extensively studied in [8]. An
interesting analysis is also presented in [16].

6 Conclusion

The chapter gives an overview of the Lagrange formalism for deriving the dynamic equations for
robotic systems. The emphasis is on the geometric interpretation of the classical results as such
interpretation leads to a very intuitive and compact treatment of constraints and impacts. We
start by providing a brief overview of kinematics of serial chains. Rigid-body transformations
are described with exponential coordinates; the product of exponentials formula is the basis for
deriving forward kinematics map and for the velocity analysis. The chosen formalism allows us to
provide a direct mathematical interpretation to many classical notions from screw calculus. Euler-
Lagrange equations for serial linkages are presented next. First, they are stated in the traditional
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coordinate form. The equations are then rewritten in the Riemannian setting using the concept of
affine connections. This form of Euler-Lagrange equations enables us to highlight their variational
nature. Next, we study systems with constraints. Again, the constrained Euler-Lagrange equations
are first presented in their coordinate form. We then show how they can be rewritten using the
concept of a constraint connection. The remarkable outcome of this procedure is that the equations
describing systems with constraints have exactly the same form as those for unconstrained systems,
what changes is the affine connection that is used. We conclude the chapter with a derivation of
equations for systems that undergo impacts. Using geometric tools we show that the impact
equations have a natural interpretation as a linear velocity projection on the tangent space of the
impact manifold.
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