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1 Metric and Normed Spaces

1.1 Metric Spaces

Recall that a metric space (X, d) is a set X equipped with a distance function
or metric d:X ×X → R such that, for all x, y, z ∈ X:

• d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y. (Positivitity)

• d(x, y) = d(y, x). (Symmetry)

• d(x, z) ≤ d(x, y) + d(y, z). (The Triangle Inequality)

Example 1.1 The real line, R, is a metric space, with metric d(a, b) = |a− b|.

The proof of this fact is completely straightforward.

Example 1.2 The complex numbers, C, form a metric space, with metric

d(w, z) = |w − z| =
√

(w1 − z1)2 + (w2 − z2)2

The proof of this fact is left as an exercise.

Example 1.3 Let (X, d) be a metric space. Let Y ⊆ X. Then the set Y is
also a metric space, with metric defined by restricting the metric on X, that is
to say

dY (x, y) = d(x, y)

for all points x, y ∈ Y .
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When we encounter subsets of metric spaces, we will in general assume that
we have this metric.

Definition 1.4 Let X and Y be metric spaces. We call a function f :X → Y
continuous at the point x ∈ X if for all ε > 0 there exists δ > 0 such that
d(f(x), f(y)) < ε whenever d(x, y) < δ.

We call the function f :X → Y continuous if it is continuous at every point
x ∈ X.

Definition 1.5 Let X be a metric space. A sequence of points (xn)n∈N in the
space X is said to converge to the point x ∈ X if for all ε > 0 there exists N ∈ N
such that d(xn, x) < ε whenever n ≥ N .

We write
lim
n→∞

xn = x

when a sequence (xn) converges to a point x. We say the point x is the limit of
the sequence (xn). We slso write xn → x as n→∞.

One also refers to limits of function. Let X and Y be metric spaces, and let
f :X\{x0} → Y . Then we say the function f has limit a at the point x0, and
write

lim
x→x0

f(x) = a

if for all ε > 0 there exists δ > 0 such that d(f(x), a) < ε whenever d(x, x0) < δ
(and x 6= x0).

By definition, a function f :X → Y is continuous at the point x0 ∈ X if and
only if the value f(x0) is defined, and

lim
x→x0

f(x) = f(x0)

Proposition 1.6 Let f :X → Y be a function between metric spaces. The
function f is continuous at the point x ∈ X if and only if, for any sequence
(xn) with limit x, the sequence (f(xn)) in the space Y has limit f(x).

Proof: Let f be continuous at the point x. Let (xn) be a sequence with limit
x.

Choose ε > 0. Then we have δ > 0 such that d(f(x), f(y)) < ε whenever
d(x, y) < δ.

Now we can find N ∈ N such that d(xn, x) < δ whenever n ≥ N . Hence
d(f(xn), f(x)) < ε whenever n ≥ N . We see that the sequence (f(xn)) converges
to f(x).

To prove the converse, suppose that the function f is not continuous at the
point x. Then we can find ε > 0 such that there is no δ > 0 with the property
that d(x, y) < δ implies d(f(x), f(y)) < ε.

To rephrase this statement, for all δ > 0 there is a point y ∈ X such that
d(x, y) < δ, but d(f(x), f(y)) ≥ ε.
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Take δ = 1
n . Then we have a point xn ∈ X such that d(x, xn) < 1

n , but
d(f(x), f(xn)) ≥ ε. We see that the sequence (xn) converges to x, but the
sequence (f(xn)) does not converge to (f(x)). 2

Let (X, d) be a metric space. Given a point x ∈ X and a real number δ > 0,
define

B(x, δ) = {y ∈ X | d(x, y) < δ}

We call the set B(x, δ) the open ball at the point x with radius δ.

Definition 1.7 We call a subset U ⊆ X open if for any point x ∈ Y , there
exists δ > 0 such that B(x, δ) ⊆ U .

We call a subset A ⊆ X closed if the complement X\A is open.

Example 1.8 In any metric space X, an open ball B(x, δ) is itself open. The
punctured open ball B′(x, δ) = B(x, δ)\{x} is also open.

Example 1.9 In any metric space X, given x ∈ X and δ > 0 the closed ball

B(x, δ) = {y ∈ X | d(x, y) ≤ δ}

is closed.

Example 1.10 Let X be a metric space X, let x ∈ X, and let δ > 0. Then
the set

S(x, δ) = {y ∈ X | d(x, y) = δ}

is closed.

Example 1.11 The interval (0, 1) is an open subset of the real line R. The
interval [0, 1] is a closed subset.

Example 1.12 In any metric space X, the space X itself and the empty set ∅
are both open.

1.2 Norms

Write K to denote either the real numbers, R, or the complex numbers, C. In
either case, given α ∈ K, we can define the modulus |α|.

Definition 1.13 Let V be a K-vector space. A norm on V is a mapping V → R,
written v 7→ ‖v‖, with the following properites.

• Let v ∈ V . Then ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0. (Positivity)

• Let α ∈ K and v ∈ V . Then ‖αv‖ = |α|‖v‖. (Homogeneity)

• Let u, v ∈ V . Then ‖u+ v‖ ≤ ‖u‖+ ‖v‖. (The Triangle Inequality)

4



A vector space equipped with a norm is called a normed vector space.

We leave the proof of the following as an exercise.

Proposition 1.14 Let (V, ‖−‖) be a normed vector space. Then V is a metric
space, with metric defined by the formula

d(v, w) = ‖v − w‖

2

In this course, we focus on studying metric spaces that are open subsets of
normed vector spaces.

Proposition 1.15 Let V be a normed vector space. Then the norm ‖−‖:V →
R is a continuous map.

Proof: Choose v ∈ V . Let ε > 0. Consider a point w ∈ V . Then by the
triangle inequality

‖v‖ = ‖(v − w) + w‖ ≤ ‖v − w‖+ ‖w‖

and so ‖v−w‖ ≥ ‖v‖− ‖w‖. Since ‖w− v‖ = ‖v−w‖, we also have ‖v−w‖ ≥
‖w‖ − ‖v‖. Thus

‖v − w‖ ≥ |‖v‖ − ‖w‖|
So, suppose that d(v, w) < ε. Then ‖v − w‖ < ε, and by the above, |‖v‖ −

‖w‖| < ε. So if we take ‘δ = ε’ in the definition of continuity, we see that the
norm is a continuous map, as required. 2

Example 1.16 The following are norms on the vector space Kn.

• The Euclidean norm

‖v‖2 =
√
|v1|2 + · · · |vn|2 v = (v1, . . . , vn)

• The sum norm

‖v‖1 = |v1|+ · · · |vn| v = (v1, . . . , vn)

• The max norm

‖v‖∞ = max(|v1|, . . . , |vn|) v = (v1, . . . , vn)

Note that the metric induced by the Euclidean norm on Rn is the Euclidean
metric. The metric induced by the Euclidean norm on Cn is the same thing as
the Euclidean metric on R2n.

We usually assume that the space Kn is equipped with the Euclidean norm.
In this case, we simply write the norm as ‖− ‖, reserving the notation ‖− ‖ for
when we need to be very careful and specific.

The proof that the above are norms is an exercise. The following result is
also an exercise.
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Proposition 1.17 For any point v ∈ Kn, we have:

‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1 ≤ n‖v‖∞

2

One reason that the Euclidean norm is important is that it comes from an
inner product. To be precise, recall that on Kn we can define an inner product
by the formula

〈u, v〉 = u1v1 + · · ·+ unvn

Here z denotes the complex conjugate of a complex number z; if the number
z happens to be real, then z = z.

Observe that the Euclidean norm, ‖ − ‖, can be defined by writing

‖v‖ =
√
〈v, v〉

The following result is called the Cauchy-Schwarz inequality

Lemma 1.18 Let u, v ∈ Kn. Then

|〈u, v〉| ≤ ‖u‖‖v‖

2

1.3 Bounded Linear Maps

Definition 1.19 Let T :V →W be a linear map between normed vector spaces.
We call T bounded if there exists M ≥ 0 such that ‖Tv‖ ≤M‖v‖ for all v ∈ V .

Note that, if required, we can choose M > 0. If M = 0 in the above
definition, then ‖Tv‖ = 0 for all v ∈ V . Consequently, Tv = 0 for all v ∈ V ,
that is to say T = 0.

Proposition 1.20 Let T :V → W be a linear map between normed vector
spaces. Then the following are equivalent:

(i) T is continuous.

(ii) T is continuous at the point 0.

(iii) T is bounded.

Proof:

(i)⇒ (ii): This is trivial.
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(ii)⇒ (iii): Let us take ε = 1 in the definition of continuity at the point 0. Then we
can find δ > 0 such that d(v, 0) < δ implies d(Tv, 0) < 1, ie: ‖v‖ < δ
implies ‖Tv‖ < 1.

Take M = 2
δ . Let v ∈ V \{0}. Then∥∥∥∥ δv

2‖v‖

∥∥∥∥ =
δ

2
< δ

Hence ‖T (δv/2‖v‖)‖ < 1. By linearity

δ

2‖v‖
‖Tv‖ < 1 and ‖Tv‖ < 2

δ
‖v‖ = M‖v‖

Certainly, if v = 0, then ‖Tv‖ = 0 ≤M‖v‖. So the map T is bounded.

(iii)⇒ (i): Let T :V → W be bounded. Then we can find M > 0 such that ‖Tv‖ ≤
M‖v‖ for all v ∈ V .

Choose ε > 0. Write δ = ε/M . Then, for v, w ∈ V with d(v, w) < δ, we
have

‖v − w‖ < ε

M

and

‖Tv − Tw‖ = ‖T (v − w)‖ ≤M‖v − w‖ < Mε

M
= ε

We see that the map T is continuous.

2

Definition 1.21 Let V and W be normed vector spaces, with V 6= {0}, and
let T :V → W be a bounded linear map. Then we define the operator norm of
the operator T by the formula

‖T‖ = sup
v∈V,v 6=0

‖Tv‖
‖v‖

Certainly ‖T‖ ≥ 0. By the above definition, we have the inequality

‖Tv‖ ≤ ‖T‖‖v‖

for all v ∈ V , and the value ‖T‖ is the smallest number where we have such an
inequality.

Let us write Hom(V,W ) to denote the space of all bounded linear maps
from V to W . We leave the proof of the following result as an exercise.
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Proposition 1.22 The set Hom(V,W ) is a normed vector space. The opera-
tions of addition and scalar multiplication defined by the formulae

(S + T )v = Sv + Tv S, T ∈ Hom(V,W ), v ∈ V

and
(αT )v = αT (v) T ∈ Hom(V,W ), α ∈ K, v ∈ V

The norm is defined by the above operator norm. 2

Example 1.23 Let w ∈ W . Let Tw:K→ W be the linear map defined by the
formula Tw(α) = αw. Then, for any scalar α ∈ K, we have

‖Tw(α)‖ = ‖αw‖ = |α|‖w‖

Hence the linear map Tw is bounded, and ‖Tw‖ = ‖w‖.

Note that any linear map T :K → W takes the form Tw for some w ∈ W .
Hence we can identify the space Hom(K,W ) with the normed vector space W .

1.4 Finite-Dimensional Spaces

Lemma 1.24 Equip the space Kn with the Euclidean norm. Let V be a normed
vector space, and let T :Kn → V be a linear map. Then the map T is bounded.

Proof: Let {e1, . . . , en} be the standard basis for Kn. Let v ∈ Kn, and write

v = α1e1 + · · ·+ αnen αi ∈ K

Let M = max(‖Te1‖, . . . , ‖Ten‖), where ‖ − ‖ is the norm on V . Then

‖Tv‖ = ‖α1Te1 + · · ·+ αnTen‖
≤ |α1|‖Te1‖+ · · ·+ |αn|‖Ten‖
≤ |α1|M + · · ·+ |αn|M
= M‖v‖1 ≤ nM‖v‖∞ ≤ nM‖v‖2

by proposition 1.17.
So the map T is bounded. 2

Now, recall the Heine-Borel theorem.

Theorem 1.25 Let Rn be equipped with the Euclidean metric. Then a subset
K ⊆ Rn is compact if and only if it is closed and bounded. 2

Given a compact space K, a continuous map f :K → R is bounded and
attains its bounds. Hence we can find a point a0 ∈ K such that f(a0) ≤ f(a)
for all a ∈ K.

Lemma 1.26 Let K be a compact subset of a normed vector space such that
0 6∈ K. Then we can find m > 0 such that ‖a‖ ≥ m for all a ∈ K.
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Proof: We have already seen that the norm is a continuous map. Hence, by
the above, we can find a point a0 ∈ K such that ‖a0‖leq‖a‖ for all a ∈ K.

Now 0 6∈ K, so a0 6= 0. Hence, if we set m = ‖a0‖, we have m > 0, and
‖a‖ ≥ m for all a ∈ K. 2

Theorem 1.27 Let V be an n-dimensional normed vector space. Then V is
linearly homeomorphic to the space Kn equipped with the Euclidean norm.

Proof: Since the spaces Kn and V have the same dimension, there is an
invertible linear map T :Kn → V . By lemma 1.24, the map T is continuous. We
want to show that the inverse T−1 is also continuous.

Since the norm is a continuous map, and the map T is continuous, the
composition

K T→ V
‖−‖→ R

is continuous.
Let S = {x ∈ Kn | ‖x‖ = 1} be the unit sphere in the space Kn. Then

the subset S is closed and bounded, and therefore compact by the Heine-Borel
theorem. It follows by lemma 1.26 that we can find m > 0 such that ‖Tx‖ ≥ m
for all x ∈ S.

Write M = 1
m . Observe that ‖T−1(0)‖ = 0 ≤ M‖0‖. Choose v ∈ V \{0}.

Then T−1v 6= 0, and T−1v
‖T−1v‖ ∈ S. Hence

T

(
T−1v

‖T−1v‖

)
≥ m

and ‖v‖ ≥ m‖T−1v‖.
We see that ‖T−1v‖ ≤M‖v‖ for all v ∈ V . Thus the map T−1 is bounded,

and we are done. 2

The above result tells us that a finite-dimensional vector space has the same
open sets for any choice of norm. In particular, as we shall see more fully in
the next section, when looking at properties such as continuity, limits, or which
subsets are compact, the choice of norm is irrelevant.

Corollary 1.28 Let V and W be normed vector spaces, where V is finite-
dimensional. Let T :V →W be a linear map. Then T is continuous.

Proof: By the above theorem, we have a linear homeomorphism φ:Kn → V .
By lemma 1.24, the map T ◦ φ:Kn →W is continuous.

The inverse of the homeomorphism φ is also continuous. Hence the map
T = T ◦ φ ◦ φ−1:V →W is also continuous, and we are done. 2
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2 Topological Spaces and Connectedness

2.1 Topologies and Continuity

Let f :X → Y be a function between metric spaces. We can write the definition
of continuity in terms of open balls. To be precise, we know that the function
f is continuous at the point x ∈ X if and only if for all ε > 0 there exists δ > 0
such that d(f(x), f(y)) < ε whenever d(x, y) < δ.

Consider the open balls

B(x, δ) = {y ∈ X | d(x, y) < δ} B(f(x), ε) = {z ∈ Y | d(f(x), z) < ε}

Thus the function f is continuous at the point x ∈ X if and only if for all
ε > 0 there exists δ > 0 such that f(y) ∈ B(f(x), ε) whenever y ∈ B(x, δ).

Rephrasing slightly, for all ε > 0 we can find δ > 0 such that B(x, δ) ⊆
f−1[B(f(x), ε)].

Proposition 2.1 Let f :X → Y be a map between metric spaces. The map
f is continuous if and only if for any open subset U ⊆ Y , the inverse image
f−1[U ] ⊆ X is open.

Proof: Let f :X → Y be continuous. Let U ⊆ Y be open. We want to show
that the inverse image f−1[U ] is open.

If f−1[U ] = ∅, then we are done. Otherwise, pick x ∈ f−1[U ]. Then f(x) ∈
U . Since the set U is open, we can find ε > 0 such that B(f(x), ε) ⊆ U . As we
mentioned above, by continuity there exists δ > 0 such that

B(x, δ) ⊆ f−1[B(f(x), ε)] ⊆ f−1[U ]

Hence the inverse image f−1[U ] is an open set, by definition.
Conversely, suppose that the inverse image f−1[U ] is open whenever U ⊆ Y

is an open subset. Let x ∈ X, and let ε > 0. Then the open ball B(f(x), ε) ⊆ Y
is certainly open.

Now the inverse image f−1[B(f(x), ε)] is open and contains the point x.
There thus exists δ > 0 such that B(x, δ) ⊆ f−1[B(f(x), ε)].

It follows that the function f is continuous at our chosen point x ∈ X, and
we are done. 2

The proof of the following result is similar to the above; we leave it as an
exercise.

Proposition 2.2 Let X and Y be metric spaces, let x0 ∈ X, and f :X\{x0} →
Y be a function. Then

lim
x→x0

f(x) = a

if and only if for any open set U ⊆ Y containing a there is an open set U ′ ⊆ X
containing a, such that f(x) ∈ U whenever x ∈ U ′\{x0}. 2
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The idea of open sets and the proposition 2.1 leads to a generalisation of the
notion of continuity.

First note the following result; we leave the proof as an exercise.

Proposition 2.3 Let X be a metric space. Then the collection of all open
subsets of X has the following properties.

• The space X and the empty set ∅ are open.

• Let U1, U2 ⊆ X be open sets. Then the intersection U1 ∩ U2 is open.

• Let {Uλ | λ ∈ Λ} be an arbitrary collection of open sets. Then the union
∪λ∈ΛUλ is open.

2

Definition 2.4 Let X be a set. Then a topology on X is a distinguished col-
lection, T , of subsets, such that:

• X ∈ T and ∅ ∈ T .

• Let U1, U2 ∈ T . Then U1 ∩ U2 ∈ T .

• Let {Uλ | λ ∈ Λ} be a collection of sets belonging to the collection T .
Then ∪λ∈ΛUλ ∈ T .

A set equipped with a topology is called a topological space.

We saw in the above proposition that any metric space can be considered to
be a topological space; the topology is the collection of open subsets.

In fact, in general, given a topological space, we term subsets that belong
to the topology open sets. As before, we call a subset A ⊆ X closed if the
complement X\A is open.

Proposition 2.5 Let X be a metric space. Let x, y ∈ X be points, where x 6= y.
Then there are open sets U1, U2 ⊆ X such that x ∈ U1, y ∈ U2, and U1∩U2 = ∅.

Proof: Let δ = d(x, y). Then we can take U1 = B(x, δ2 ) and U2 = B(y, δ2 ). 2

Example 2.6 Let X be any set. Then we can define a topology, T , on the set
X by writing T = {X, ∅}.

Suppose we have points x, y ∈ X with x 6= y. Then there are no open sets
U1, U2 ⊆ X such that x ∈ U1, y ∈ U2, and U1 ∩ U2 = ∅. It follows that the
above topology does not come from a metric.

Definition 2.7 Let X and Y be topological spaces. A function f :X → Y is
called continuous if for any open set U ⊆ Y , the inverse image f−1[U ] ⊆ X is
open.
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Definition 2.8 Let X and Y be topological spaces. A map f :X → Y is called
a homeomorphism if it is continuous and bijective, and the inverse map is also
continuous.

We call two spaces homeomorphic if there is a homeomorphism between
them.

Example 2.9 Define a map f : (−1, 1)→ R by the formula

f(x) =
x

1− |x|

Then the map f is continuous, and we have a continuous inverse f−1:R →
(−1, 1) defined by the formula

f−1(y) =
x

1 + |x|

Therefore the spaces (−1, 1) and R are homeomorphic.

Homeomorphic metric spaces are essentially the same as far as open sets
are concerned. Thus properties depending on open sets, such as continuity of
functions and compactness are the same for homeomorphic spaces.

2.2 Connected Spaces

It is no extra work to formulate the definitions in this section for topological
spaces. However, most of our examples will be metric spaces; in fact subsets of
normed vector spaces.

Definition 2.10 Let X be a topological space. A partition of X is a pair of
open subsets, U1 6= ∅ and U2 6= ∅, such that U1 ∩ U2 = ∅, and U1 ∪ U2 = X.

The space X is called connected if it admits no partition.

An equivalent formulation of the above definition, using the definition of a
closed set as the complement of an open set, is to say that a space X is connected
if and only if the only subsets which are both open and closed are the set X itself
and the empty set ∅.

Example 2.11 Let us consider the space {0, 1} as a metric space: the metric is
defined by considering the points 0 and 1 to be distance 1 apart, ie: we consider
the space {0, 1} as a subspace of the real line R.

Observe that

{0} = B(0,
1

2
) {1} = B(1,

1

2
)

So the subsets {0} and {1} are open. Certainly neither of these subsets
are empty, {0} ∩ {1} = ∅, and {0, 1} = {0} ∪ {1}. So the space {0, 1} is not
connected.
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Proposition 2.12 A metric space X is connected if and only if any continuous
map f :X → {0, 1} is constant.

Proof: Let f :X → {0, 1} be a non-constant continuous map. Let U1 =
f−1[{0}] and U2 = f−1[{1}]. The sets {0} and {1} are open by the above.
Thus by continuity, the inverse images U1 and U2 are open.

Since the map f is not constant, it is surjective. It follows that U1 6= ∅ and
U2 6= ∅. Obviously, U1 ∩ U2 = ∅, and U1 ∪ U2 = f−1[{0, 1}] = X. So the space
X is not connected.

Conversely, suppose that the space X is not connected. Then it admits
a partition X = U1 ∪ U2, where U1 and U2 are open and non-empty, and
U1 ∩ U2 = ∅. It follows that we have a well-defined non-constant continuous
map f :X → {0, 1} given by writing

f(x) =

{
0 x ∈ U1

1 x ∈ U2

2

Theorem 2.13 The interval [0, 1] ⊆ R is connected.

Proof: Let f : [0, 1] → {0, 1} be a continuous map. Suppose that f is not
constant. Then we can find a, b ∈ [0, 1] such that f(a) = 0 and f(b) = 1.

By the intermediate value theorem, for some value c between a and b, we
have f(c) = 1

2 . But the value 1
2 does not lie in the codomain of f . Hence this

statement is a contradiction.
It follows that the function f must be constant. Therefore the interval [0, 1]

is connected. 2

Proposition 2.14 Let X be a connected space, let Y be a topological space, and
let f :X → Y be a surjective continuous map. Then the space Y is connected.

Proof: Let g:Y → {0, 1} be a continuous map. Then the composite f ◦g:X →
{0, 1} is continuous, and therefore constant, since X is conntected.

It follows that the map g is constant, since the map f is surjective. Hence
the space Y is connected. 2

In particular, for any continuous map f :X → Y between topological spaces,
if the space X is connected, then so is the image f [X].

2.3 Path-Connected Spaces

As in the previous section, it is no extra work to formulate our main definitions
and abstract results for topological spaces rather than metric spaces. However,
later on we need to specialise.
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Definition 2.15 Let X be a topological space, and let x0, x1 ∈ X. Then a
path in X from x0 to x1 is a continuous map γ: [0, 1]→ X such that γ(0) = x0

and γ(1) = x1.
The space X is called path-connected if there is a path between any two

points in X.

Example 2.16 Let V be a normed vector space. Let x0 ∈ V , δ > 0. Then the
ball B(x0, δ) is path-connected.

To see this, let v0, v1 ∈ B(x0, δ). Write

γ(t) = v0 + t(v1 − v0)

It is straightforward to check that the map γ: [0, 1]→ V defined by the above
formula is continuous. Let t ∈ [0, 1], and observe

γ(t)− x0 = ((1− t)v0 + tv1)− x0 = (1− t)(v0 − x0) + t(v1 − x0)

Hence, since ‖v0 − x0‖ < δ and ‖v1 − x0‖ < δ, we have

‖γ(t)− x0‖ ≤ (1− t)‖v0 − x0‖+ t‖v1 − x0‖ < (1− t)δ + tδ = δ

Thus the map γ is a path in the ball B(x0, δ) from the point v0 to the point
v1.

Proposition 2.17 Let X be a path-connected topological space. Then X is also
connected.

Proof: Let X be path-connected. Suppose we have a non-constant continuous
map f :X → {0, 1}. Then we can find points x0, x1 ∈ X such that f(x0) = 0
and f(x1) = 1.

Since X is path-connected, we have a path, γ, in X from x0 to x1. So we
have a continuous non-constant function f ◦ γ: [0, 1] → {0, 1}. But by theorem
2.13, the interval [0, 1] is connected. Hence this statement is a contradiction.

It follows that we have no non-constant continuous map f :X → {0, 1}, and
hence that the space X is connected, as required. 2

The proof of the following fact is left as an exercise.

Example 2.18 Let G = {(x, sin(1/x)) | x > 0}. Let

X = ({0} × [−1, 1]) ∪G ⊆ R2

Then the space X is connected, but not path-connected.

The following proposition is also an exercise.

Proposition 2.19 Let X be a topological space. Then we can define an equiv-
alence relation, ∼, on X, by writing x ∼ y when there is a path in X from x to
y. 2
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The equivalence classes of the above equivalence relation are called the path-
components of the space X. If the space X is path-connected, then there is
only one path-component. Otherwise, the space X is the disjoint union of its
path-components.

Lemma 2.20 Let R be an open subset of a normed vector space. Then the
path-components of R are open sets.

Proof: Let C ⊆ R be a path-component. Let x0 ∈ C. Then, since the set R
is open, we can find δ > 0 such that B(x0, δ) ⊆ R. But the open ball B(x0, δ)
is path-connected by example 2.16. Hence B(x0, δ) ⊆ C.

It follows that the path-component C is open. 2

Theorem 2.21 Let R be a connected open subset of a normed vector space.
Then the space R is path-connected.

Proof: Suppose that the space R is not path-connected. The path-components
of the space R, {Cλ | λ ∈ Λ} are equivalence classes, and thus are pairwise
disjoint, and ∪λ∈ΛCλ = R.

Since the space R is not path-connected, there are at least two components.
Choose a component, C, and let D be the union of the other components. Then
C 6= ∅ and D 6= ∅. Further, C ∩D = ∅ and C ∪D = R.

By the above lemma, each path-component is an open set. Hence the set C
is open, and the set D is a union of open sets, and therefore open. We see that
the space R admits a partition R = C ∪D, and is therefore not connected. 2

3 Differentiation

3.1 The Total Derivative

Recall that a function f :R→ R is differentiable at a point x ∈ R if the derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists.
We can rewrite this equation

f(x+ h) = f(x) + f ′(x)h+ |h|r(h) lim
r→0

r(h) = 0

In this form, we can extend the above definition to normed vector spaces.

Definition 3.1 Let V and W be normed vector spaces, and let R ⊆ V be an
open subset. We say that a function ϕ:R→W is differentiable at a point x ∈ R

15



if there is a bounded linear map (Dϕ)x:V →W , and a function r:B(0, δ)→W
for some δ > 0 such that

ϕ(x+ v) = ϕ(x) + (Dϕ)xv + ‖v‖r(v)

for all v ∈ B(0, δ), where limv→0 r(v) = 0.
The above linear map (Dϕ)x:V → W is called the total differential of the

function ϕ at the point x.

We refer to a function ϕ:R → W as differentiable if it is differentiable at
every point of the domain R.

Note that if V and W are finite-dimensional normed vector spaces, the above
notion does not depend upon the choice of norm.

Lemma 3.2 Let V and W be normed vector spaces, let R ⊆ V be an open
subset, and let ϕ:R→W be a function that is differentiable at the point x ∈ R.

Then the total derivative (Dϕ)x is uniquely determined.

Proof: Suppose we have linear maps L1, L2:V → W , and functions
r1:B(0, δ1)→W , r2:B(0, δ2)→W such that

ϕ(x+ v) = ϕ(x) + L1v + ‖v‖r1(v) lim
v→0

r1(v) = 0

and
ϕ(x+ v) = ϕ(x) + L2v + ‖v‖r2(v) lim

v→0
r2(v) = 0

Let δ = min(δ1, δ2). Subtracting, we see that

0 = (L1 − L2)v + ‖v‖(r1(v)− r2(v))

whenever v ∈ B(0, δ). We need to show that L1 − L2 = 0. For convenience,
write L = L1 − L2, and r = r1 − r2. Then

0 = Lv + ‖v‖r(v) lim
v→0

r(v) = 0

Let u ∈ V , u 6= 0. Write v = tu, where t ∈ K. Then

0 = L(tu) + ‖tu‖r(tu)

Rearranging:
tL(u)

|t|‖u‖
= −r(tu)

Let t > 0. Then the above becomes

L(u)

‖u‖
= −r(tu)

Now, let t→ 0. Then −r(tu)→ 0, but the expression L(u)
‖u‖ remains constant.

Hence
L(u)

‖u‖
= 0
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that is to say L(u) = 0, and we are done. 2

Example 3.3 Let T :V → W be a bounded linear map. Then, for any point
x ∈ V and v ∈ V , we have

T (x+ v) = T (x) + Tv = T (x) + Tv + ‖v‖ · 0

It follows that the map T is differentiable, with total derivative T at any
point x ∈ V .

The following is similarly easy to check.

Example 3.4 Let c:R → W be a constant map, where R ⊆ V is an open set,
and V and W are normed vector spaces. Then the map c is differentiable, and
the total derivative is 0.

Proposition 3.5 Let V and W be normed vector spaces, and let R ⊆ V be an
open subset. Let ϕ1, ϕ2:R→W be functions that are differentiable at the point
x ∈ R.

Let α1, α2 ∈ K. Then the function α1ϕ1 +α2ϕ2 is differentiable at the point
x, with total derivative

D(α1ϕ1 + α2ϕ2)x = α1(Dϕ1)x + α2(Dϕ2)x

Proof: We have δ1, δ2 > 0, and functions r1:B(0, δ1)→W , r2:B(0, δ2)→W
such that

ϕ1(x+ v) = ϕ1(x) + (Dϕ1)xv + ‖v‖r1(v) lim
v→0

r1(v) = 0

and
ϕ2(x+ v) = ϕ2(x) + (Dϕ2)xv + ‖v‖r2(v) lim

v→0
r2(v) = 0

Let δ = min(δ1, δ2), and define r:B(0, δ) → W by the formula r(v) =
α1r1(v) + α2r2(v). Then

α1ϕ1(x+ v) + α2ϕ2(x+ v) = α1ϕ1(x) + α2ϕ2(x)
+(α1(Dϕ1)x + α2(Dϕ2)x)(v) + ‖v‖r(v)

where
lim
v→0

r(v) = 0

The result now follows. 2

We leave the following as an exercise.

Proposition 3.6 Let V and W be normed vector spaces, and let R ⊆ V be
an open subset. Let ϕ:R → W be a function that is differentiable at the point
x ∈ R. Then the function ϕ is also continuous at the point x. 2
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The following result is known as the chain rule. It illustrates the beauty and
potential utility of the concept of the total differential.

Theorem 3.7 Let U , V , and W be normed vector spaces. Let R ⊆ U and
S ⊆ V be open sets, and let ϕ:R→ S and ψ:S →W be functions.

Suppose that the function ϕ is differentiable at the point x ∈ R, and the
function ψ is differentiable at the point ϕ(x) ∈ S. Then the composite ψ◦ϕ:R→
W is differentiable at the point x ∈ R, with total derivative

D(ψ ◦ ϕ)x = (Dψ)ψ(x) ◦ (Dϕ)x

Proof: Set y = ϕ(x). Then

ϕ(x+ v) = ϕ(x) + (Dϕ)xv + ‖v‖r(v) lim
v→0

r(v) = 0

and
ψ(y + w) = ψ(y) + (Dψ)yw + ‖w‖s(w) lim

w→0
s(w) = 0

Observe

(ψ ◦ ϕ)(x+ v) = ψ(ϕ(x+ v))
= ψ(ϕ(x) + (Dϕ)xv + ‖v‖r(v))
= ψ(ϕ(x))

+(Dψ)y((Dϕ)xv + ‖v‖r(v))
+‖(Dϕ)xv + ‖v‖r(v) ‖ · s((Dϕ)xv + ‖v‖r(v))

So
(ψ ◦ ϕ)(x+ v) = (Dψ)y((Dϕ)x(v)) + ‖v‖t(v)

where

t(v) =
(Dψ)y(‖v‖r(v))

‖v‖
+
‖(Dϕ)xv + ‖v‖r(v) ‖

‖v‖
s((Dϕ)xv + ‖v‖r(v))

We must show that t(v)→ 0 as v → 0. Observe that

lim
v→0

(Dψ)y(‖v‖r(v))

‖v‖
= lim
v→0

(Dψ)yr(v) = 0

since the function r has limit 0 at 0, and the total derivative (Dϕ)y is continuous
and linear.

Let

q(v) =
‖(Dϕ)xv + ‖v‖r(v) ‖

‖v‖
s((Dϕ)xv + ‖v‖r(v))

Then it remains to show that q(v)→ 0 as v → 0. Since the derivative (Dϕ)x
is a bounded linear map, there is a constant M ≥ 0 such that

‖(Dϕ)xv‖ ≤M‖v‖
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for all v ∈ V .
By the triangle inequality, we have

‖q(v)‖ ≤ ‖(Dϕ)xv‖+ ‖v‖ · ‖r(v)‖
‖v‖

‖s((Dϕ)xv + ‖v‖r(v))‖

and so
‖q(v)‖ ≤ (M + ‖r(v)‖ )‖s((Dϕ)xv + ‖v‖r(v))‖

Let v → 0. Then ‖v‖r(v) → 0, and (Dϕ)xv → 0 by continuity. Since
limw→0 s(w) = 0, it follows that s((Dϕ)xv + ‖v‖r(v))→ 0.

Hence ‖q(v)‖ → 0. Therefore

lim
v→0

q(v) = 0

and we are finally done. 2

3.2 Differentiation of Paths

Let V be a normed vector space. Recall that a path in V is simply a continuous
function γ: [a, b]→ V .

Definition 3.8 We say that the path γ is differentiable at the point t ∈ [a, b]
if the derivative

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

h

exists.

The above makes sense, since h ∈ R. We can rewrite the above equation

γ(t+ h) = γ(t) + γ′(t)h+ |h|r(h) lim
h→0

r(h) = 0

Thus, when t ∈ (a, b), the above is related to the total derivative by the
formula

(Dγ)t(h) = γ′(t)h

Let V = Kn. Write γ(t) = (γ1(t), . . . , γn(t). Then it is straightforward to
check that

γ′(t) = (γ′1(t), . . . , γ′n(t))

Example 3.9 Define a path γ: [0, 2π]→ R2 by the formula

γ(t) = (cos t, sin t)

Then γ is differentiable, and γ′(t) = (− sin t, cos t).
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In the above example, note that γ(0) = γ(2π) = (1, 0). So γ(2π)− γ(0) = 0.
However, γ′(t) 6= 0 for all t, so there is no value c ∈ [0, 2π] such that

γ(2π)− γ(0) = (2π − 0)γ′(c)

The nearest analogy of the mean value theorem in higher dimensions is the
following result, which we call the mean value inequality.

Theorem 3.10 Let γ: [a, b]→ Rn be a differentiable function. Then there exists
c ∈ [a, b] such that

‖γ(b)− γ(a)‖ ≤ (b− a)‖γ′(c)‖

Proof: Suppose that γ(a) 6= γ(b); if γ(a) = γ(b), then the result is obvious.
Define a vector

z =
γ(b)− γ(a)

‖γ(b)− γ(a)‖
Then ‖z‖ = 1. Define a map k: [a, b]→ R by the formula

k(t) = 〈z, γ(t)〉

Then the function k is differentiable on the interval [a, b], with derivative

k′(t) = 〈z, γ′(t)〉

By the mean value theorem in ordinary real analysis, we can find c ∈ [a, b]
such that k(b)− k(a) = (b− a)k′(c). In particular,

|k(b)− k(a)| ≤ (b− a)|k′(c)|

Now

k(b)− k(a) = 〈 γ(b)− γ(a)

‖γ(b)− γ(a)‖
, γ(b)− γ(a)〉 = ‖γ(b)− γ(a)‖

because of the relation between the inner product and the Euclidean norm.
Hence, by the Cauchy-Schwarz inequality

‖γ(b)− γ(a)‖ ≤ (b− a)‖z‖‖γ′(c)‖ = (b− a)‖γ′(c)‖

and we are done. 2

3.3 Directional Derivatives

Let V and W be normed vector spaces, and let R ⊆ V be an open subset.

Definition 3.11 Let x ∈ R, and v ∈ V . Then we say that a function ϕ:R→W
is differentiable in the direction v if the directional derivative

Dv(ϕ)x = lim
t→0

ϕ(x+ tv)− ϕ(x)

t

exists.
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Note that the directional derivative Dv(ϕ)x is a vector in the space W . We
sometimes write Dv(ϕ)x = Dv(ϕ)(x). Observe that we can also write

Dv(ϕ) =
d

ds
ϕ(x+ sv)|s=0

Proposition 3.12 Let ϕ:R → W be a mapping that is differentiable at the
point x ∈ R. Then for all vectors v ∈ V , the directional derivative Dv(ϕ)x
exists, and is related to the total derivative by the formula

Dv(ϕ)x = (Dϕ)x(v)

Proof: Let v ∈ V . Let t ∈ K. Then

ϕ(x+ tv) = ϕ(x) + (Dϕ)x(tv) + ‖tv‖r(tv) lim
t→0

r(tv) = 0

Hence

lim
t→0

ϕ(x+ tv)− ϕ(x)

t
= (Dϕ)x(v) + lim

t→0

|t|‖v‖r(tv)

t

Now

lim
t→0
‖ |t|‖v‖r(tv)

t
‖ = ‖v‖ lim

t→0
‖r(tv)‖ = 0

and we are done. 2

Corollary 3.13 Let γ: [a, b]→ R be a differentiable function, and let ϕ:R→W
be a differentiable function. Then the path ϕ ◦ γ: [a, b]→ W is differentiable at
each point, and (ϕ ◦ γ)′(t) = Dγ′(t)(ϕ)γ(t).

Proof: Recall that γ′(t)h = (Dγ)th for any path γ. Hence, by the chain rule
and the above, for a real number h:

(ϕ ◦ γ)′(t)h = D(ϕ ◦ γ)th
= (Dϕ)γ(t)(γ

′(t)h)
= h(Dϕ)γ(t)(γ

′(t))
= hDγ′(t)(ϕ)γ(t)

The result is now clear. 2

Theorem 3.14 Let V and W be normed vector spaces, and let R ⊆ V be a
connected open subset. Then a function ϕ:R→W is constant if and only if it
is differentiable at each point x ∈ R, with (Dϕ)x = 0.
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Proof: If the function is constant, it is easy to check that it is differentiable
everywhere, and the total derivative is always zero.

Conversely, suppose that the function is differentiable everywhere on the do-
main R, and the total derivative is always zero. Then by the above proposition,
the directional derivatives are all zero.

Let x ∈ R. Then, since R is open, we can find δ > 0 such that B(x, δ) ⊆ R.
Let y ∈ B(x, δ). Then we can define a path, γ: [0, 1]→ B(x, δ), from x to y by
the formula

γ(t) = x+ t(y − x)

Let v = y − x. Then γ′(t) = v, and by corollary 3.13,

(ϕ ◦ γ)′(t) = Dγ′(t)(ϕ)γ(t) = 0

since the directional derivatives are all zero.
Hence, by the mean value inequality, ‖ϕ(γ(0))−ϕ(γ(1))‖ = 0, and so ϕ(x) =

ϕ(y).
The above argument shows that for any value, a, of the function f(x), the

set
Ca = {x ∈ R | f(x) = a}

is open.
Suppose that the function X is not constant. Then there are at least two

values, a and b. Hence we have non-empty open sets Ca, and

D =
⋃

w∈B\a

Cw

It is obvious that R = Ca∪D, and Ca∩D = ∅. Hence the domain R admits
a partition, and is therefore not connected, which is a contradiction. 2

Now, let V and W be finite-dimensional vector spaces, let u ∈ V , and let
R ⊆ V be an open subset, and let ϕ:R→W be a map such that the directional
derivative Du(ϕ)x exists for all x ∈ V . Then we have a map

Du(ϕ):R→W Du(ϕ)(x) = Du(ϕ)x

We can ask whether this new map is differentiable in another direction v ∈ V .
The following result is known as Schwarz’s theorem or Clairaut’s theorem.

Theorem 3.15 Let ϕ:R → W be a map such that for u, v ∈ V the second
directional derivatives DvDu(ϕ) and DvDu(ϕ) exist and are continuous. Then
DvDu(ϕ) = DuDv(ϕ).

Proof: Since the space W is finite-dimensional, we may look at components,
and assume that W = K. We can further assume, by splitting into real and
imaginary parts, that K = R.
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Fix x ∈ R. Define f(s, t) = ϕ(x+ su+ tv)− ϕ(s, t), for s, t ∈ R sufficiently
small that the expression makes sense. For fixed s and t, define a function
g: [0, s]→ R by the formula

g(σ) = ϕ(x+ σu+ tv)− ϕ(x+ σu)

By the mean value theorem for real functions, there exists s1 ∈ [0, s] such
that g(s)− g(0) = sg′(s1), that is

ϕ(x+ st+ tv)− ϕ(x+ su)− ϕ(x+ tv) + ϕ(x)
= sDu(ϕ)(x+ s1u+ tv)−Du(ϕ)(x+ s1u)

Now, define a map h: [0, t]→W by the formula

h(τ) = (Duϕ)(x+ s1u+ τv)

By the mean value theorem, we obtain t1 ∈ [0, t] such that h(t) − h(0) =
th′(t1), that is

Du(ϕ)(x+ s1t+ tv)−Du(ϕ)(x+ s1u) = tDvDu(ϕ)(x+ s1u+ t1v)

Combining the above two equations arising from the mean value theorem,
we see that

ϕ(x+ su+ tv)− ϕ(x+ su)− ϕ(x+ tv) + ϕ(x) = stDvDu(ϕ)(x+ s1u+ t1v)

Similarly, applying the above trick in the opposite order, we have s2 ∈ [0, s]
and t2 ∈ [0, t] such that

ϕ(x+ su+ tv)− ϕ(x+ su)− ϕ(x+ tv) + ϕ(x) = stDuDv(ϕ)(x+ s2u+ t2v)

Hence

DvDu(ϕ)(x+ s1u+ t1v) = DuDv(ϕ)(x+ s2u+ t2v)

whenever s 6= 0 and t 6= 0.
If we take the limit as s → 0 and t → 0, then certainly s1 → 0, t1 → 0,

s2 → 0, and t2 → 0. The derivatives DvDu(ϕ) and DuDv(ϕ) are assumed in
the statement of the theorem to be continuous at the point x.

Hence
DvDu(ϕ)x = DvDu(ϕ)x

and we are done. 2
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3.4 Partial Derivatives

Let R ⊆ Km be an open subset, and let f :R → K be a map. Let (x1, . . . , xm)
be coordinates in the space Km. Then the partial derivative, ∂f

∂xj
is defined by

differentiating the function f with respect to the variable xj while treating the
other variables as constants.

More generally, if we have a function f :R→ Kn, we can write

f(x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))

and form the partial derivatives ∂fi
∂xj

.

Proposition 3.16 Let {e1, . . . , em} and {e′1, . . . , e′n} be the standard bases of
the space Km and Kn respectively. Then

Dej (f)x =
∂f1

∂xj
(x)e′1 + · · ·+ ∂fn

∂xj
(x)e′n

Proof: Let x ∈ R. Then the partial derivative ∂fi
∂xj

(x) is defined as the limit

∂fi
∂xj

(x) = lim
t→0

fi(x1, . . . , xj + t, . . . , xm)− fi(x1, . . . , xm)

t

We can write this limit

∂fi
∂xj

(x) = lim
t→0

fi(x+ tej)− fi(x)

t

and the result follows. 2

In particular, the partial derivatives exist if and only if the directional deriva-
tives in the directions of the standard basis vectors exist.

The following is immediate, by Schwarz’s theorem.

Corollary 3.17 Let R ⊆ Km be an open subset, and let (x1, . . . , xm) be coor-
dinates in the space Km. let i, j ∈ {0, . . . ,m}, and let f :R→ K be a map such
that the second partial derivatives

∂2f

∂xi∂xj
(x)

∂2f

∂xj∂xi
(x)

exist and are continuous for all x ∈ R.
Then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
2

Partial derivatives are useful for computations, but depend upon a choice of
basis, and are therefore less useful theoretically.
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Example 3.18 Define a function f :R2 → R by the formula

f(x, y) =
xy3

x2 + y6
(x, y) 6= (0, 0)

and f(0, 0) = 0.
Then the partial derivatives ∂f

∂x (0, 0) and ∂f
∂y (0, 0) exist. However, the func-

tion f is not continuous, and hence not differentiable, at the point (0, 0).

We leave the computations needed to prove the statements in the above
example as an exercise.

Now, let R ⊆ Km be an open subset, and let f :R→ Kn be differentiable at
the point x ∈ R. Let {e1, . . . , em} and {e′1, . . . , e′n} be the standard bases of the
spaces Km and Kn respectively.

Then by proposition 3.12 and the above proposition, we have

(Df)x(ej) =
∂fi
∂xj

(x)e′1 + · · ·+ ∂fn
∂xj

(x)e′n

Hence the total derivative (Df)x has matrix
(
∂fi
∂xj

(x)
)

with respect to the

standard bases.
Let y = f(x), and suppose we have a map g: f [R] → Kp that is differen-

tiable at the point y. Abusing notation somewhat, let us write (f1, . . . , fn) to
denote coordinates in the space Kn. Then the total derivative (Dg)y has ma-

trix
(
∂gi
∂fj

(y)
)

, and by the chain rule the matrix of the derivative D(g ◦ f)x is

obtained by matrix multiplication of the above two matrices.

Theorem 3.19 let R ⊆ Km be an open subset, and let ϕ:R →
Kn. Let (x1, . . . , xm) be coordinates in Km, write ϕ(x1, . . . , xm) =
(ϕ1(x1, . . . , xm), . . . ϕn(x1, . . . , xm)), and let x ∈ R.

Suppose that the partial derivatives of the function ϕ all exist on R, and are
continuous at the point x. Then the total derivative (Dϕ)x exists, and is given

by the matrix
(
∂ϕi
∂xj

)
with respect to the standard bases of the vector spaces Km

and Kn.

Proof: Let {e1, . . . , em} and {e′1, . . . , e′n} be the standard bases of the spaces
Km and Kn respectively. Then the directional derivatives

Dj(ϕ)y = Dej (ϕ)(y) =
∂ϕ1

∂x1
(y)e′1 + · · ·+ ∂ϕ1

∂xn
(y)e′n

exist for all points y ∈ R, and are continuous at the point x.
Define a linear map D:Km → Kn by the formula

D(v1, . . . , vm) =

m∑
j=1

vjDj(ϕ)(x)
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We need to show that the linear map D is the total derivative of the function
ϕ at the point x.

Let v = (v1, . . . , vm), and set

Xj = x+ v1e1 + · · · vjej

so that Xm = x+ v and X0 = x. Then, for any sufficiently small vector v:

‖ϕ(x+ v)− ϕ(x)−D(v)‖ = ‖ϕ(x+ v)− ϕ(x)−
∑m
j=1 vjDj(ϕ)(x)‖

= ‖
∑m
j=1(ϕ(Xj)− ϕ(Xj−1)− vjDj(ϕ)(x))‖

≤
∑m
j=1 ‖ϕ(Xj)− ϕ(Xj−1)− vjDj(ϕ)(x)‖

We can define a path γj : [0, 1]→ Kn by the formula

γj(t) = ϕ(Xj−1 + tvjej)− tvjDj(ϕ)(x)

Existence of all partial derivatives in the region R means that the map γj is
differentiable. By the chain rule, the derivative is given by the formula

γ′j(t) = vjDj(ϕ)(Xj−1 + tvjej)− vjDj(ϕ)(x)

By the mean value inequality, there is a point cj ∈ [0, 1] such that

‖γj(1)− γj(0)‖ ≤ ‖γ′j(cj)‖

ie:

‖ϕ(Xj−1+vjej)−ϕ(Xj−1)−vjDj(ϕ)(x)‖ ≤ ‖vjDj(ϕ)(Xj−1+cjvjej)−vjDj(ϕ)(x)‖

Takin sums, we see that

‖ϕ(x+ v)− ϕ(x)−D(v)‖ ≤
∑n
j=1 |vj |‖Dj(ϕ)(Xj−1 + cjvjej)− vjDj(ϕ)(x)‖

≤ ‖v‖∞
∑m
j=1 ‖Dj(ϕ)(Xj−1 + cjvjej)−Dj(ϕ)(x)‖

≤ ‖v‖
∑m
j=1 ‖Dj(ϕ)(Xj−1 + cjvjej)−Dj(ϕ)(x)‖

by proposition 1.17.
Now the partial derivatives, and hence the functions Dj(ϕ) are continuous

at the point x. Certainly Xj−1 → x as v → 0. It follows that

lim
v→0
‖Dj(ϕ)(Xj−1 + cjvjej)−Dj(ϕ)(x)‖ = 0

For sufficiently small v, let

r(v) =
ϕ(x+ v)− ϕ(x)−D(v)

‖v‖

Then
ϕ(x+ v) = ϕ(x) +D(v) + ‖v‖r(v)
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By the above,

‖r(v)‖ ≤
m∑
j=1

‖Dj(ϕ)(Xj−1 + cjvjej)−Dj(ϕ)(x)‖

and
lim
v→0

r(v) = 0

Hence the map D is the total derivative of the function ϕ at the point x, as
required. 2

Example 3.20 Define a map f :R2 → R2 by the formula

f(x, y) = (ex+y, x2 + y2)

Write f1 = ex+y and f2 = x2 + y2. Then

∂f1

∂x
= ex+y ∂f1

∂y
= ex+y

and
∂f2

∂x
= 2x

∂f2

∂y
= 2y

These partial derivatives are all continuous. Hence the total differential is
the linear transformation defined by the matrix

(Df)(x,y) =

(
ex+y ex+y

2x 2y

)
Let v = (1, 1). Then the directional derivative Dv(f)(x, y) is, as a column

vector:

Dv(f)(x, y) =

(
ex+y ex+y

2x 2y

)(
1
1

)
=

(
2ex+y

2(x+ y)

)
or in other words Dv(f)(x, y) = (2ex+y, 2(x+ y)).

Example 3.21 Let h:R2 → R be defined by the formula

h(x, y) = sin(ex+y + x2 + y2)

Define a map g:R2 → R by the formula g(x, y) = sin(x+ y).
Then

∂g

∂x
= cos(x+ y)

∂g

∂y
= cos(x+ y)

These partial derivatives are both continuous. Hence the map g has total
differential defined by the matrix

(Dg)(x,y) =
(

cos(x+ y) cos(x+ y)
)
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Observe that h = g◦f , where f is the function in the above example. Hence,
by the chain rule

(Dh)(x,y) = (Dg)(ex+y,x2+y2)(Df)(x,y)

that is

(Dh)(x,y) =
(

cos(ex+y + x2 + y2) cos(ex+y + x2 + y2)
)( ex+y ex+y

2x 2y

)
so

(Dh)(x,y) =
(
cos(ex+y + x2 + y2)(ex+y + 2x) cos(ex+y + x2 + y2)(ex+y + 2y)

)
The proof of the following result is an exercise using the above theorem.

Proposition 3.22 Let V and W be finite-dimensional vector spaces, and let
R ⊆ V be an open subset. Let ϕ:V →W be a function such that for all v ∈ V ,
the direction derivative Dv(ϕ)(x) exists for all x ∈ R and defines a continuous
function Dv(ϕ):R→W .

Then for all x ∈ R the total derivative (Dϕ)x exists, and is given by the
formula (Dϕ)x(v) = Dv(ϕ)(x). 2

3.5 Real and Complex Differentiability

let V and W be complex normed vector spaces. The spaces V and W can also
be considered as real normed vector spaces (with double the dimension). Let
R ⊆ V be an open subset. When we consider a map ϕ:R → W , we have to
distinguish between real differentiability and complex differentiability.

Recall that differentiability at a point x ∈ R is the condition

ϕ(x+ v) = ϕ(x) +Dv + ‖v‖r(v) lim
v→0

r(v) = 0

where D:V →W is a linear map.
However, complex differentiability means that the map D is C-linear,

whereas real differentiability means that the mapD is R-linear. Thus, real differ-
entiability is weaker than complex differentiability. Any complex-differentiable
map is also real-differentiable. The converse of this statement is not true, as we
shall see below.

Lemma 3.23 Let V and W be complex normed vector spaces, let R ⊆ V be
open, and let ϕ:R → W be a function that is real-differentiable at a point
x ∈ R, with real total derivative (Dϕ)x:V →W .

The function ϕ is complex-differentiable at the point x ∈ R if and only if
(Dϕ)x(iv) = i(Dϕ)x(v) for all v ∈ V . If this condition is fulfilled, the complex
differential is also (Dϕ)x.
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Proof: The condition

ϕ(x+ v) = ϕ(x) + (Dϕ)xv + ‖v‖r(v) lim
v→0

r(v) = 0

completely determines the total derivative (Dϕ)x at the point x.
It follows that, if the real derivative is (Dϕ)x, then we have a complex

derivative, which is also (Dϕ)x, if and only if the R-linear map (Dϕ)x is also
C-linear.

But the last condition is equivalent to saying that (Dϕ)x(iv) = i(Dϕ)x(v)
for all v ∈ v. 2

Theorem 3.24 Let R ⊆ Cm be an open subset, and let ϕ:R→ Cn be a function
that is real-differentiable at a point x ∈ R.

Let (z1, . . . , zm) be coordinates in the space Cm, and write zj = xj + iyj,
where xj , yj ∈ R. Then the function ϕ is complex-differentiable at the point x
if and only if

∂ϕ

∂yj
(x) = i

∂ϕ

∂xj
(x)

for all j.

Proof: Write D = (Dϕ)x. By the above, we need to show that D(iv) = iD(v)
for all v ∈ Cm if and only if

∂ϕ

∂yj
(x) = i

∂ϕ

∂xj
(x)

for all j.
Let {e1, . . . , em} be the standard basis of Cm. We know that

∂ϕ

∂yj
(x) = (Diejϕ)(x) = D(iej)

and
∂ϕ

∂xj
(x) = (Dejϕ)(x) = D(ej)

By R-linearity the condition D(iv) = iD(v) holds for all v ∈ Cm if and only
if D(iej) = iD(ej) for each basis vector ej . The result now follows. 2

We leave the proof of the following as an exercise.

Corollary 3.25 Let R ⊆ Cm be an open subset, and let ϕ:R→ C be a function
that is real-differentiable at a point x ∈ R.

Write ϕ = g + ih, where g and h are real-valued functions. Let (z1, . . . , zm)
be coordinates in the space Cm, and write zj = xj + iyj, where xj , yj ∈ R. Then
the function ϕ is complex-differentiable at the point x if and only if

∂g

∂yj
(x) = − ∂h

∂xj
(x)

∂g

∂xj
(x) =

∂h

∂yj
(x)
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for all j. 2

The above equations are called the Cauchy-Riemann equations.

Example 3.26 Define f :C→ C by the formula

f(z) = z

If have have z = x+ iy, then z = x− iy.
Writing f = g + ih, we have g(x, y) = x and h(x, y) = −y. We have partial

derivatives
∂g

∂y
= 0 =

∂h

∂x

and
∂g

∂x
= 1

∂h

∂y
= −1

The partial derivatives are continuous, so the function f is real-differentiable.
However, the Cauchy-Riemann equations are not satisfied, so the function f is
not complex-differentiable.

Example 3.27 Define f :C2 → C by the formula

f(u+iv, x+iy) = u2x2+v2y2−u2y2−v2x2−4uvxy+2i(u2xy−v2xy+uvx2−uvy2)

Write f = g + ih, where g and h are real-valued functions. Then

g(u, v, x, y) = u2x2 + v2y2 − u2y2 − v2x2 − 4uvxy

and
h(u, v, x, y) = 2(u2xy − v2xy + uvx2 − uvy2)

We have partial derivatives

∂g

∂v
= 2vy2 − 2vx2 − 4uxy

∂h

∂u
= −2vy2 + 2vx2 + 4uxy

∂g

∂u
= 2ux2 − 2uy2 − 4vxy

∂h

∂v
= 2ux2 − 2uy2 − 4vxy

∂g

∂y
= 2v2y − 2u2y − 4uvx

∂h

∂x
= −2v2y + 2u2y + 4uvx

∂g

∂x
= 2u2x− 2v2x− 4uvy

∂h

∂y
= 2u2x− 2v2x− 4uvy

The above are all continuous, so the function f is real-differentiable. Further,
the Cauchy-Riemann equations are satisfied so the function f is also complex-
differentiable.
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4 Differential Forms

4.1 The Notion of a Differential Form

Let V and W be normed vector spaces. Recall that Hom(V,w) is the vector
space of bounded linear maps T :V → W . Assuming V 6= {0}, we can define a
norm on the space Hom(V,W ) by the formula

‖T‖ = sup
v∈V,v 6=0

‖Tv‖
‖v‖

As already mentioned, we call this norm the operator norm. If we need to
talk about continuity or differentiability in the space Hom(V,W ), we assume
that we have this norm.

If the spaces V and W are finite-dimensional, with dimensions m and n re-
spectively, then the space Hom(V,W ) is also finite-dimensional, with dimension
mn. In this case, we do not need to worry about the particular choices of norms.

Definition 4.1 Let V and W be finite-dimensional vector spaces. Let R ⊆ V
be an open set. Then a differential form of degree 1 on the set R with values in
the vector space W is a map

ω:R→ Hom(V,W )

We write Ω1(R;W ) to denote the set of degree 1 differential forms on R with
values in W .

Actually, we only consider degree one differential forms in this course. Hence,
from now on, we refer to a map ω:R→ Hom(V,W ) just as a differential form.

Example 4.2 Let ϕ:R → W be a differentiable map. Then for each point
x ∈ R we can form the derivative (Dϕ)(x) ∈ Hom(V,W ).

Thus the derivative Dϕ is a differential form.

Observe that the set Ω1(R;W ) (with pointwise addition and scalar multipli-
cation) is a vector space over the field K. Moreover, given a function f :R→ K
and a differential form ω, we can define a differential form fω by writing

(fω)(x) = f(x)ω(x) x ∈ R

Here f(x) ∈ K is a scalar, and ω(x):V → W is a linear map, so the above
makes sense.

Definition 4.3 Let R ⊆ Km be an open subset. Then we define the differential
form dxj ∈ Ω1(R;K) by writing

dxj(x)(v1, . . . , vm) = vj

for all x ∈ R and (v1, . . . , vm) ∈ Km.
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Given functions gj :R→ K, we have a differential form

g1dx1 + · · ·+ gmdxm ∈ Ω1(R,W )

Proposition 4.4 Let R ⊆ Km be an open set, and let ω ∈ Ω1(R;K). Then
there are functions gj :R→ K such that

ω = g1dx1 + · · ·+ gmdxm

Proof: Let x ∈ R. Then we have a linear map ω(x):Km →W .
Let {e1, . . . , em} be the standard basis of the space Km. Define the function

gj :R → K by writing gj(x) = ω(x)(ej). Then, for a vector v = (v1, . . . , vm) ∈
Km, we have

ω(x)(v1, . . . , vn) = v1ω(x)(e1) + · · ·+ vmω(x)(em)
= g1(x)v1 + · · ·+ gm(x)vm
= g1(x)dx1(x)(v) + · · ·+ gm(x)dxm(x)(v)

and are done. 2

Proposition 4.5 Let f :R→ K be a differentiable function. Then

Df =

m∑
j=1

∂f

∂xj
dxj

Proof: Let v = (v1, . . . , vm) ∈ Km, and let x ∈ R. Since the derivative

(Df)(x) has matrix
(
∂f
∂xj

(x)
)

with respect to the standard basis of the space

Km, we see that

(Df)(x)(v) =

n∑
j=1

∂f

∂xj
(x)vj =

 m∑
j=1

∂f

∂xj
dxj

 (x)(v)

and we are done. 2

4.2 Exactness

We have already seen that for a differentiable function, f , the total derivative
Df is a differentiable form. The fundamantal question we are going to examine
in this course is precisely which differential forms arise in this way.

Definition 4.6 We call a differential form ω:R→ Hom(V,W ) exact if there is
a differentiable function ϕ:R→W such that Dϕ = ω.

Such a function ϕ is called a primitive function for the differential form ω.
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For example, let R ⊆ R be an open interval, and let ω:R → Hom(R,R)
be a continuous differential form. Then we can write ω = f dx, where f is a
continuous function.

Pick x0 ∈ R, and define a function F :R→ R by the formula

F (x) =

∫ x

x0

f(t) dt

Then by the fundamental theorem of calculus, F ′(x) = f(x). It follows that
Df = f dx = ω. Thus the form ω is exact, with primitive function F .

In higher dimensions, this problem is far more difficult to solve, and not
every continuous form is exact. The exactness question depends upon, amongst
other things, the shape of the region R.

Proposition 4.7 Let V and W be finite-dimensional vector spaces, let R ⊆ V
be a connected open subset, and let ω ∈ Ω1(R;W ) be an exact differential form.

Let ϕ1 and ϕ2 be primitive functions of the form ω. Then the difference
ϕ1 − ϕ2 is constant.

Proof: The difference ϕ1 − ϕ2 is differentiable, with derivative

D(ϕ1 − ϕ2) = Dϕ1 −Dϕ2 = ω − ω = 0

The result now follows by theorem 3.14. 2

Corollary 4.8 Let ω ∈ Ω1(R;W ) be an exact differential form, where R ⊆ V
is a connected open susbset.

Let x ∈ R and w ∈ W . Then the form ω has a unique primitive function,
ϕ:R→W such that ϕ(x) = w.

Proof: Let ψ:R→W be a primitive function for the form ω. Define ϕ:R→W
by the formula

φ(x) = psi(x) + w − ψ(x0)

Then Dφ = Dψ = ω, since the derivative of a constant function is constant,
and φ(x0) = w.

Uniqueness now follows from the above proposition. 2

4.3 Pullbacks

Let V and W be finite-dimensional vector spaces. Consider a differential form
ω ∈ Ω1(R;W ) where R ⊆ V is an open subset.

Let V ′ be another finite-dimensional vector space, let R′ ⊆ V ′ be open, and
let f :R′ → R be a differentiable map. Then the differential Df gives us a linear
map (Df)x:V ′ → V for each point x ∈ R′.
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Definition 4.9 We define the pullback of the form ω along f to be the differ-
ential form f∗ω ∈ Ω1(R′;W ) defined by writing

(f∗ω)(x)(v′) = ω(f(x))(Df)x(v′)) x ∈ R′, v′inV ′

Thus, given x ∈ R′, the linear map (f∗ω)(x):V ′ →W is the composition

V ′
Dfx→ V

ω(f(x))→ W

Proposition 4.10 Let ω ∈ Ω1(R;W ) be an exact differential form, with prim-
itive function ϕ. let f :R′ → R be a differentiable map. Then the pullback
f∗ω ∈ Ω1(R;W ) is also exact, with primitive function ϕ ◦ f .

Proof: Let x ∈ R′ and v ∈ V ′. By the chain rule

D(ϕ ◦ f)x(v′) = (Dϕ)f(x)(Df)x(v′)

By definition of pullback

f∗ω(x)(v′) = ω(f(x))(Df)x(v′) = (Dϕ)f(x)(Df)x(v′)

2

Let ω ∈ Ω1(R;K), where R ⊆ Kn is an open subset. Write

ω = g1dx1 + · · ·+ gndxn

Let f :R′ → R be a differentiable map, where R′ ⊆ Km. Write

f(u1, . . . , um) = (f1(u1, . . . , um), . . . , fn(u1, . . . , um))

The derivative (Df)(u) is the matrix
(
∂fi
∂uj

(u)
)

. Hence the pullback f∗ω(u)

is obtained from the expression

ω = g1dx1 + · · ·+ gndxn

by writing

dxi =
∂fi
∂u1

(u)du1 + · · ·+ ∂fi
∂um

(u)dum

and
gi(x) = gi(f(u))

Example 4.11 Let ω = y dx−x dy ∈ Ω1(R2,R). Define a map f : (0,∞)×R→
R2 by the the formula

f(r, θ) = (r cos θ, r sin θ)

Write x = r cos θ and y = r sin θ. Then

∂x

∂r
= cos θ

∂x

∂θ
= −r sin θ

34



and
∂y

∂r
= sin θ

∂y

∂θ
= r cos θ

We see that

dx = cos θ dr − r sin θ dθ dy = sin θ dr + r cos θ dθ

Hence

f∗ω = r sin θ cos θ dr − r2 sin2 θ dθ − r cos θ sin θ dr − r2 cos2 θ dθ
= −r2(sin2 θ + cos2 θ) dθ
= −r2 dθ

4.4 Symmetric Forms

Let V and W be real finite-dimensional vector spaces. Let R ⊆ V be open, and
let ω ∈ Ω1(R;W ). Then the differential form ω is a map ω:R → Hom(V,W ).
It makes sense to ask whether the map ω, as written above, is differentiable. If
this is the case, then the derivative (Dω)x at the point x ∈ R is a map

(Dω)x:V → Hom(V,W )

Write (Dω)x(u, v) = (Dω)x(u)(v). Then we can view the differential (Dω)x
as a map (Dω)x:V × V →W .

The map (DΩ)x is a bilinear map, ie: if we fix u, v ∈ V , the maps
(Dω)x(u,−):V →W and (Dω)x(−, v):V →W are linear.

Definition 4.12 let ω ∈ Ω1(R;w) be a differentiable differential form. Then
we call the form ω symmetric if, given x ∈ R, we have

(Dω)x(u, v) = (Dω)x(v, u)

for all u, v ∈ V .

Note that we are only considering the notion of symmetry for real differential
forms. The plan in this section is to show that any continuously differentiable
exact differential form is symmetric. To do this, we first need a computational
lemma.

Lemma 4.13 Let ω ∈ Ω1(R;W ) be a differentiable differential form.

1. Let v ∈ V . Define a function fv:R→W by the formula fv(x) = ω(x)(v).
Then, for a vector u ∈ V , we have directional derivative Du(fv)x =
(Dω)x(u, v).

2. Suppose that the form ω is exact, with primitive function ϕ. Then for all
x ∈ r and u, v ∈ V , we have the formula (Dω)x(u, v) = DuDv(ϕ)(x).

Proof:

35



1. Define a linear map Evv:Hom(V,W ) → W by the formula Evv(T ) =
T (v). Then the map fv is the composition

R
ω→ Hom(V,W )

Evv→ W

Since the map Evv is linear, we have total derivative (DEvv)(T ) =
Evv(T ). Hence, by the chain rule

Du(fv)x = (Dfv)x(u) = Evv(Dω)x(u) = (Dω)x(u)(v) = (Dω)x(u, v)

2. By the above, we know that

(Dω)x(u, v) = Du(fv)x

where
fv(x) = ω(x)(v) = (Dϕ)x(v) = Dv(ϕ)x

Hence
(Dω)x(u, v) = DuDv(ϕ)x

as claimed.

2

Theorem 4.14 let ω ∈ Ω1(R;W ) be a continuously differentiable differentiable
form. Suppose that the form ω is exact. Then the form ω is symmetric.

Proof: Since the form ω is exact, we have a primitive function ϕ, and by the
above lemma

Dω(u, v) = DuDv(ϕ)

Since the form ω has continuous derivative, Schwarz’s theorem applies, and
DuDv(ϕ) = DvDu(ϕ). Thus the form ω is symmetric, and we are done. 2

The following proposition provides an easy way to test when a form is sym-
metric.

Proposition 4.15 Let R ⊆ Rm be an open subset, and let ω ∈ Ω1(R;R) be a
differentiable differential form. Write

ω = g1dx1 + · · ·+ gmdxm

Then the form ω is symmetric if and only if

partialgi
∂xj

=
∂gj
∂xi

for all i and j.
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Proof: Since the form ω is differentiable, the functions gi are all differentiable.
Let {e1, . . . , em} be the standard basis of the space Rm. Define a function
fi:R→ K by the formula fi(x) = ω(x)(ei).

Then by lemma 4.13, we have

∂fi
∂xj

(x) = (Dω)x(ej , ei)

Observe that ω(x)(ei) = gi. Hence

(Dω)x(ej , ei) =
∂gi
∂xj

(x)

Thus, if the the form ω is symmetric, the condition

∂gi
∂xj

=
∂gj
∂xi

holds for all i and j.
Conversely, if

∂gi
∂xj

=
∂gj
∂xi

for all i and j, then, by the above, given x ∈ R

(Dω)x(ei, ej) = (Dω)x(ej , ei)

It is now easy to check that (Dω)x(u, v) = (Dω)x(v, u) for all u, v ∈ Km,
since the set {e1, . . . , em} is a basis of the space Km, and the map (Dω)x:Rm×
Rm → R is bilinear. 2

Example 4.16 Let
ω = x dx+ y dy ∈ Ω1(K2,K)

Then we have

ω = g1 dx+ g2 dy g1(x, y) = x, g2(x, y) = y

Now
∂g1

∂y
= 0 =

∂g2

∂x

So the differential form ω is symmetric.

Example 4.17 Let

ω = xy dx+ xy dy ∈ Ω1(K2,K)

Then we have

ω = g1 dx+ g2 dy g1(x, y) = xy, g2(x, y) = xy

Now
∂g1

∂y
= x

∂g2

∂x
= y

So the differential form ω is not symmetric.
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4.5 Complex Differential Forms and Symmetry

Let R ⊆ C be an open subset, and let ω ∈ Ω1(R;C) be a complex differential
form. Then we can write

ω = f dz

for some function f :R → C. Here dz(w):C → C is the identity map for all
w ∈ C.

Using the basis {1, i} we can of course regard the complex numbers, C, as
real vector space, and the form ω is a real differential form.

Theorem 4.18 Let ω = f dz ∈ Ω1(R;C) be continuously differentiable as a
real differential form. Then the form ω is symmetric (as a real differential
form) if and only if the function f :R→ C is complex-differentiable.

Proof: Write z = x + iy, where x, y ∈ R, and f(z) = f(x + iy) = g(x, y) +
ih(x, y), where g and h are real-valued functions.

We know that dz = dx+ i dy. Hence

f dz = (g + ih)(dx+ i dy) = (g + ih)dx+ (ig − h)dy

By proposition 4.15, the form f dz is symmetric if and only if

∂(g + ih)

∂y
=
∂(ig − h)

∂x

that is
∂g

∂y
= −∂h

∂x

∂g

∂x
=
∂h

∂y

But the above are the Cauchy-Riemann equations, and the functions g and
h are continuously differentiable. The result therefore follows by corollary 3.25.
2

The above result is the key to relating results concerning differential forms
to complex analysis.

5 Integration of Differential Forms

5.1 Integration of Vector-Valued Functions

Let V be a finite-dimensional vector space over the field K. Let f : [a, b] → V
be a continuous map, and let {e1, . . . , en} be a basis of the space V . Write
f(t) = f1(t)e1 + · · ·+ fn(t)en. Then the functions fi: [a, b]→ R are continuous,
and we can define the integral∫ b

a

f(t) dt =

(∫ b

a

f1(t) dt

)
e1 + · · ·+

(∫ b

a

fn(t) dt

)
en
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It is easy to check that this concept is independent of the choice of basis.
Further, the fundamental results concerning integrals in this setting can be
deduced from the corresponding results for ordinary, scalar-valued, integrals.

Some such results, which we will use in this course, are the following.

• Linearity

Let α, β ∈ K, and let f, g: [a, b]→ V be continuous functions. Then∫ b

a

(αf(t) + βg(t)) dt = α

∫ b

a

f(t) dt+

∫ b

a

g(t) dt

• Additivity

Let f : [a, b]→ V be a continuous function. Let c ∈ (a, b). Then∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

• The Fundamental Theorem of Calculus (version 1)

Let I ⊆ R be an open interval, and let f : I → V be a continuous function.
Choose x0 ∈ I, and define

F (x) =

∫ x

x0

f(t) dt

Then the function F is differentiable, with derivative F ′(x) = f(x).

• The Fundemental Theorem of Calculus (version 2)

Let f : [a, b]→ V . Suppose we have a differentiable function F : [a, b]→ V
such that F ′(t) = f(t) for all t ∈ [a, b]. Then∫ b

a

f(t) dt = F (b)− F (a)

• The Mean Value Inequality

Suppose that the space W is equipped with a norm. Let f : [a, b]→ V be
a continuous function. Then∥∥∥∥∥

∫ b

a

f(t) dt

∥∥∥∥∥ ≤
∫ b

a

‖f(t)‖ dt

• Differentiation Under the Integral Sign

Let f : [a, b]× [c, d]→ V be a continuous map such that the partial deriva-
tive ∂f

∂t (x, t) exists and is continuous in both the variables x and t. Then

d

dt

∫ b

a

f(x, t) dx =

∫ b

a

∂f

∂t
(x, t) dx
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5.2 Path Integrals

Let V and W be finite-dimensional vector spaces, and let R ⊆ V be an open
subset. Let ω ∈ Ω1(R;W ) be a continuous differential form, and let γ: [a, b]→ R
be a differentiable path.

The pullback γ∗ω ∈ Ω1([a, b];W ) is a continuous map γ∗ω: [a, b] →
Hom(R,W ). As we discussed in example 1.23, we can identify the space
Hom(R,W ) with the space W by associating the vector w ∈ W to the map
Tw:R→W defined by the formula Tw(α) = αw. Furthermore, with the opera-
tor norm, ‖Tw‖ = ‖w‖.

If we make this association, we have a continuous map γ∗ω: [a, b] → W
defined by the formula

(γ∗ω)(t) = ω(γ(t))(γ′(t))

Definition 5.1 Let ω ∈ Ω1(R;W ) be a continuous differential form, and let
γ: [a, b] → R be a differentiable map. Then we define the path integral of ω
along the path γ by writing∫

γ

ω =

∫ b

a

γ∗ω =

∫ b

a

ω(γ(t))γ′(t) dt ∈W

As a special case, let R ⊆ Rn be an open subset, and let ω ∈ Ω1(R;R) be a
continuous differential form.

Write
ω = g1dx1 + · · ·+ gndxn

where each map gj :R → R is continuous. Let γ: [a, b] → R be a differentiable
path. Write

γ(t) = (γ1(t), . . . , γn(t)

Then by the above formula for the pull-back,

(γ∗ω)(t) = g1(γ(t))γ′1(t) + · · ·+ gn(γ(t))γ′n(t)

and ∫
γ

ω =

∫ b

a

g1(γ(t))γ′1(t) dt+ · · ·+
∫ b

a

gn(γ(t))γ′n(t) dt

Example 5.2 Let R ⊆ C be an open subset, and let f :R→ C be a continuous
function. Then, by definition∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt

which is the usual definition of a complex path integral.

Thus, integration of differential forms along a path is a generalisation of the
notion of integration of complex functions along a path.
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Example 5.3 Define a path γ: [0, π] → R2 by the formula γ(t) = (cos t, sin t).
Let ω = x dy − y dx.

Then
γ′(t) = (− sin t, cos t)

and
(γ∗ω)(t) = cos t(cos t)− (sin t)(− sin t) = cos2 t+ sin2 t = 1

We see that ∫
γ

ω =

∫ π

0

dt = π

Definition 5.4 Let V be a finite-dimensional vector space, and let R ⊆ V . We
call a continuous path γ: [a, b]→ R piecewise differentiable if there are values

a = c0 < c1 < · · · < ck = b

such that the restricted paths γ|[ci,ci+1]: [ci, ci+1] → R are differentiable for all
i.

Given a piecewise differentiable path as above, and a continuous differential
form ω ∈ Ω1(R;W ), then we define the path integral∫

γ

ω =

∫ c1

c0

γ∗ω +

∫ c2

c1

γ∗ω + · · ·+
∫ ck

ck−1

γ∗ω

We now present a number of results to help us evaluate and analyse path
integrals. In all of these results, we consider finite-dimensional vector spaces V
and W , and an open subset R ⊆ V .

Proposition 5.5 Let α1, α2 ∈ K, and let ω1, ω2 ∈ Ω(R;W ) be continuous dif-
ferential forms. Let γ: [a, b]→ R be a piecewise differentiable path. Then∫

γ

(α1ω1 + α2ω2) = α1

∫
γ

ω1 + α2

∫
γ

ω2

Proof: The result follows immediately be definition of the path integral and
linearity of the integral of a vector-valued function. 2

Definition 5.6 Let γ: [a, b] → R and β: [b, c] → R be a path such that γ(b) =
β(b). Then we define the concatenation of γ and β to be the path γβ: [a, c]→ R
defined by writing

γβ(t) =

{
γ(t) t ≤ b
β(t) t ≥ b
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By definition the concatenation γβ is a continuous function, and therefore a
path. If the paths γ and β are piecewise-differentiable, then so is the concate-
nation γβ.

Note that, even when the paths γ: [a, b] → R and β: [b, c] → R are differen-
tiable, the concatenation γβ is probably not differentiable, but only piecewise-
differentiable; in general, we have a ‘kink’ at the point b.

The following result is completely straightforward to check.

Proposition 5.7 Let ω ∈ Ω1(R;W ) be a continuous differential form, and
let γ: [a, b] → R and β: [b, c] → R be piecewise differentiable paths such that
γ(b) = β(b). Then ∫

γβ

ω =

∫
γ

ω +

∫
β

ω

2

Definition 5.8 Let γ: [a, b] → R be a continuous path. Then we define the
reverse path, γ: [a, b]→ R, by the formula

γ(t) = γ(a+ b− t)

The reverse of a piecewise-differentiable path is again piecewise-
differentiable. The following result is again straightforward.

Proposition 5.9 Let γ: [a, b] → R be a piecewise-differentiable path, and let
ω ∈ Ω1(R;W ) be continuous. Then∫

γ

ω = −
∫
γ

ω

2

The following result shows that we can reparametrise paths when evaluating
integrals. We leave the proof of the following as an exercise.

Proposition 5.10 Let γ: [a, b] → R be a piecewise-differentiable path, and let
θ: [c, d]→ [a, b] be a differentiable mapping such that θ(c) = a and θ(d) = b.

Let ω ∈ Ω1(R;W ) be continuous. Then∫
γ

ω =

∫
γ◦θ

ω

2

Proposition 5.11 Let U be a finite-dimensional vector space, let S ⊆ U be
open, and let ψ:S → R be a continuously differentiable map.

Let β: [a, b]→ S and γ: [a, b]→ R be piecewise-differentiable paths such that
γ = ψ ◦ β. Then ∫

γ

ω =

∫
β

ψ∗ω
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Proof: By proposition 5.7, it suffices to check the result when the paths γ
and β are differentiable. In this case, by the chain rule and the definition of
pull-back ∫

γ
ω =

∫ b
a
ω(γ(t))γ′(t) dt

=
∫ b
a
ω(ψ(β(t))(Dψ)β(t)β

′(t) dt

=
∫ b
a
ψ∗(ω)(β(t))β′(t) dt

=
∫
β
ψ∗ω

and we are done. 2

Now, let V and W be finite-dimensional normed vector spaces. Given a
differential form ω ∈ Ω1(R;W ), for a point x ∈ R, we have a bounded linear
map ω(x):V →W . If we equip the space Hom(V,W ) with the operator norm,
we can define the norm ‖ω(x)‖.

Proposition 5.12 Let γ: [a, b]→ R be a piecewise-differentiable path. Let ω ∈
Ω1(R;W ) be a continuous differential form. Then∥∥∥∥∫

γ

ω

∥∥∥∥ ≤ ∫ b

a

‖ω(γ(t))‖ · ‖γ′(t)‖ dt

Proof: By the mean value inequality for integrals, we have

‖
∫
γ
ω‖ = ‖

∫ b
a
ω(γ(t), γ′(t)) dt‖

≤
∫ b
a
‖ω(γ(t))γ′(t)‖ dt

≤
∫ b
a
‖ω(γ(t))‖ · ‖γ′(t)‖ dt

Here the last inequality follows by the definition of the operator norm. 2

5.3 Path Integrals and Exact Forms

Let V and W be finite-dimensional vector spaces, and let R ⊆ V be an open
subset. Recall that a differential form ω ∈ Ω1(R;W ) is termed exact if there
is a differentiable function ϕ:R → W such that Dϕ = ω. Such a function ϕ is
called a primitive function for the form ω.

Definition 5.13 We call a path γ: [a, b]→ R closed if γ(a) = γ(b).

A closed path is also called a loop or a contour. Given a continuous differ-
ential form ω ∈ Ω1(R;W ), we sometimes write∫

γ

ω =

∮
γ

ω

when the path γ is a loop.
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Theorem 5.14 Suppose that the subset R ⊆ V is connected. Let ω ∈ Ω1(R;W )
be a continuous differential form. Then the following are equivalent.

1. The form ω is exact.

2. For every piecewise differentiable path γ: [a, b]→ R, the path integral
∫
γ
ω

depends only on the start point γ(a) and end point γ(b).

3. For every closed piecewise differentiable path γ, we have
∮
γ
ω = 0.

Further, if the form ω is exact, and we choose a point x0 ∈ R, then we have
a primitive function

ϕ(x) =

∫
γ

ω

where we choose γ to be any path in the region R with start point x0 and end
point x.

Proof:

• (1)⇒ (2):

Let ω be exact, with primitive function ϕ. Let γ: [a, b]→ V be a differen-
tiable path.

By proposition 4.10, we have γ∗ω = D(ϕ ◦ γ). Observe:∫
γ

ω =

∫ b

a

γ∗ω =

∫ b

a

D(ϕ ◦ γ) =

∫ b

a

(ϕ ◦ γ)′(t) dt

Hence, by the fundamental theorem of calculus∫
γ

ω = ϕ(γ(b))− ϕ(γ(a))

which only depends on the points γ(b) and γ(a) since any two primitive
functions only differ by a constant.

The corresponding result for piecewise-differentiable paths follows by the
above by considering such a path as a concatenation of differentiable paths.

• (2)⇒ (3):

Let γ: [a, b]→ R be a closed piecewise-differentiable path. Then by (2), the
integral

∫
γ
ω only depends on the points γ(a) and γ(b). But γ(b) = γ(a),

so the integral along the path γ is the same as the integral along a constant
path, which is zero.

• (3)⇒ (2):

Let γ1 and γ2 be two piecewise-differentiable paths where γ1 and γ2 begin
at the same point, and γ1 and γ1 and γ2 end at the same point. Then
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the end-point of the path γ1 is the same as the start-point of the reversed
path γ2, so we can form the concatenation γ1γ2.

The path γ1γ2 is a closed path, so by (3):

0 =

∫
γ1γ2

ω =

∫
γ1

ω +

∫
γ2

ω =

∫
γ1

ω −
∫
γ2

ω

• (2)⇒ (1):

Pick x0 ∈ R. Let x ∈ R. Since the open set R is a connected open set of
a finite-dimensional vector space, it is also path-connected, and we have a
path γx: [a, b] → R such that γx(a) = x0 and γx(b) = x. It is an exercise
to show that we can choose such a path to be piecewise-differentiable.

By (2), the function

ϕ(x) =

∫
γ

ω

is well-defined, that is to say it only depends on the point x, and not the
precise choice of path γx.

Now, let v ∈ V . Since the set R is open, we can find s > 0 such that
B(0, s‖v‖) ⊆ R. Define a path

γv,s: [0, s]→ R γv,s(t) = x+ tv

Then the path γv,s is a linear path from the point x to the point x+ sv.
Using the above path γ, and the definition of the function ϕ, we see

ϕ(x+ sv)− ϕ(x) =

∫
γγv,s

ω −
∫
γ

ω =

∫
γv,s

ω =

∫ s

0

ω(x+ tv)(v) dt

Hence we have directional derivative

Dv(ϕ)(x) = lim
s→0

1

s

∫ s

0

ω(x+ tv)(v) dt

By the definition of the derivative, and the fundamental theorem of calcu-
lus, we deduce that Dv(ϕ)(x) = ω(x)(v). Since the differential form ω is
continuous, the total derivative Dϕ exists, and is defined by the formula
(Dϕ)(x) = ω(x). This completes the proof.

The last part of the theorem follows by the method used to prove the impli-
cation (2)⇒ (1). 2

One further point from the above proof is worth singling out. Namely, if ω
is an exact differential form, with primitive function ϕ, and γ: [a, b] → R is a
piecewise-differentiable path, then∫

γ

ω = ϕ(γ(b))− ϕ(γ(a))
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5.4 Path Integrals and Symmetric Forms

Let V and W be real finite-dimensional vector spaces, and let R ⊆ V be
open. Let ω:R:Hom(V,W ) be a differentiable differential form, and let us
write (Dω)x(v)(w) = (Dω)x(v, w).

Recall that we call the differential form ω symmetric if (Dω)x(u, v) =
(Dω)x(v, u) for all points x ∈ R and vectors u and v. We have already seen that
any exact differential form is symmetric. Our aim in this section is to prove a
partial converse of this result.

The converse depends on the shape of the region R under consideration.

Definition 5.15 Let V be a vector space. We call a subset R ⊆ V star-shaped
if there is a point x0 ∈ R such that for all x ∈ R the line segment γ: [0, 1]→ V
defined by the formula γ(t) = x0 + t(x− x0) is contained entirely in the set R.

Example 5.16 The vector space V is itself star-shaped.

Example 5.17 Let V be a normed vector space, let x0 ∈ V , and let δ > 0.
Then the open ball B(x0, δ) is star-shaped: for any point x ∈ V the line segment
from x0 to x is contained within the set B(x0, δ).

Example 5.18 The punctured complex plane Cx = C\{0} is not star-shaped.

Observe that a star-shaped set is certainly path-connected.
Now, let ω:R → Hom(V,W ) be a differentiable differential form. Write

ω̃(x, v) = ω(x)(v). Then the function ω̃ is the composition

R× V (ω,1)→ Hom(V,W )× V Ev→ W

where we define Ev:Hom(V,W )× V →W by the formula Ev(T, v) = T (v).

Lemma 5.19 The map Ev is differentiable, with directional derivatives

(D(S,u)Ev)(T, v) = S(v) + T (u)

Proof: Observe

Ev(S + T, u+ v) = (S + T )(u+ v)
= S(u) + S(v) + T (u) + T (v)
= Ev(S, u) + S(v) + T (u) + T (v)

Write

r(T, v) =
T (v)

‖(T, v)‖
where the norm on the space Hom(V,W )× V is defined by the formula

‖(T, v)‖ = max(‖T‖, ‖v‖)

46



Observe

‖r(T, v)‖ =
‖T (v)‖

max(‖T‖, ‖v‖)
≤ ‖T‖ · ‖v‖

max(‖T‖, ‖v‖)
≤ (max(‖T‖, ‖v‖)2

max(‖T‖, ‖v‖)
= ‖(T, v)‖

It follows that
lim

(T,v)→0
r(T, v) = 0

and by definition of the total derivative,

(DEv)(S,u)(T, v) = S(v) + T (u)

as required. 2

Since the form ω is differentiable, for each point x ∈ R we can form the
derivative

(Dω)x:V → Hom(V,W )

For convenience, recall that we write

(Dω)x(u, v) = (Dω)x(u)(v)

Lemma 5.20 The map ω̃:R×V →W has total derivative given by the formula

Dω̃(x, u)(v1, v2) = (Dω)x(v1, u) + ω(x)(v2)

Proof: The result is immediate from the above lemma, the definition of the
function ω̃, and the chain rule. 2

Theorem 5.21 Let V and W be finite-dimensional vector spaces, and let
R ⊆ V be an open star-shaped subset. Let ω ∈ Ω1(R;W ) be a continuously
differentiable differential form. Suppose that ω is symmetric. Then ω is exact.

Further, choose a point x0 ∈ R such that for all x ∈ R, the path γx: [0, 1]→ V
defined by the formula γx(t) = x0 + t(x − x0) is contained in R. Then the
differential form ω has a primitive function defined by the formula

ϕ(x) =

∫
γx

ω =

∫ 1

0

ω(x0 + tx)(x− x0) dt

Proof: For convenience, let us assume that x0 = 0. Then

ϕ(x) =

∫ 1

0

ω(tx)(x) dt =

∫ 1

0

ω̃(tx, x) dt

Let u ∈ V . Let ft(x) = ω̃(tx, x) so that

ϕ(x) =

∫ 1

0

ft(x) dt
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By definition of the directional derivative

∂

∂s
ft(x+ su)(0) = Du(ft)(x)

and

Du(ϕ)(x) =
d

ds

∫ 1

0

ft(x+ su) dt

By lemma 5.20, we have

Du(ft)(x) = (Dω)tx(tu, x) + ω(tx)(u)

Since the form ω is continuously differentiable, we see that the directional
derivative Du(ft)(x) is continuous in the variables x and t. Hence we can
differentiate under the integral sign to obtain the formula

Du(ϕ)(x) =

∫ 1

0

Du(ft)(x) dt

By symmetry and bilinearity, we see that

Duft(x) = t(Dω)tx(x, u) + ω(tx)(u)

Let g(t) = tω(tx)(u). Then by the chain rule and the product rule

g′(t) = ω(tx)(u) + t(Dω)tx(x, u) = Duf(t)

Hence

Du(ϕ)(x) =

∫ 1

0

g′(t) dt = g(1)− g(0) = ω(x)(u)

by the fundamental theorem of calculus.
These directional derivatives all exist and are continuous, by continuity of

the differential form ω. It follows that we have total derivative Dϕ = ω, and we
are done. 2

Definition 5.22 Let V and W be normed vector spaces, and let R ⊆ V be
open. Then we call a differential form ω ∈ Ω1(R;V ) closed or locally exact if
for each point x ∈ R there is an open set U 3 x such that the restriction ω|U is
exact.

Theorem 5.23 Let V and W be finite-dimensional vector spaces. Let R ⊆ V
be open, and let ω:R→ Hom(V,W ) be a continuously differentiable differential
form.

Then the form ω is locally exact if and only if it is symmetric.
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Proof: Let ω be locally exact. Let x ∈ R. Then there is an open set U 3 x
such that the restriction ω|U is exact. By theorem 4.14, the restriction ω|U
is symmetric. In particular, for all vectors u, v ∈ V , we have (Dω)x(u, v) =
(Dω)x(v, u).

Since the above equation holds for all x ∈ R, the differential form ω is
symmetric.

Conversely, suppose that ω is symmetric. Let x ∈ R. Then there is an open
ball B(x, δ) ⊆ R. But open balls are star-shaped. Thus the restriction ω|B(x,δ)

is exact by the above theorem. Since open balls are open sets, the above tells
us that the differential form ω is locally exact. 2

6 The Fundamental Group

6.1 Homotopies

In this section, we will assume that a path in a topological space X is a contin-
uous maps γ: [0, 1] → X; we confine ourselves to the interval [0, 1] rather than
more general intervals.

Definition 6.1 Let X be a topological space. Let γ0, γ1: [0, 1] → X be two
paths with the same start point p = γ0(0) = γ(0), and end point q = γ0(1) =
γ1(1).

We call the paths γ0 and γ0 homotopic if there is a continuous map H: [0, 1]×
[0, 1]→ X such that

H(0, t) = γ0(t) H(1, t) = γ1(t)

for all t ∈ [0, 1], and
H(s, 0) = p H(s, 1) = q

for all s ∈ [0, 1].
A map H with the above properties is called a homotopy from the path γ0

to the path γ1.

For each point s ∈ [0, 1], the map H(s,−): [0, 1] → X is itself a path. Thus
the idea of a homotopy from the path γ0 to the path γ1 is that of a continuous
deformation.

Lemma 6.2 The notion of paths in the space X with start point p ∈ X and
end point q ∈ X being homotopic is an equivalence relation.

Proof:

• Let γ: [0, 1] → X be a path such that γ(0) = p and γ(1) = q. Then we
can define a homotopy H: [0, 1] × [0, 1] → X from the path γ to itself by
the formula H(s, t) = γ(t).

Thus the notion of paths being homotopic is reflexive.
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• Let γ0, γ1 be homotopic paths in X from p to q. Then we have a homotopy
H: [0, 1] × [0, 1] → X from γ0 to γ1. The reversed homotopy, H: [0, 1] ×
[0, 1]→ X, defined by the formula H(s, t) = H(1−s, t) is then a homotopy
from γ1 to γ0.

Thus the notion of paths being homotopic is symmetric.

• Let γ1, γ2, γ3: [0, 1]→ X be paths such that γ1 and γ2 are homotopic, and
γ2 and γ3 are homotopic. Let H1 be a homotopy from γ1 to γ2, and let
H2 be a homotopy from γ2 to γ3. Then we can define a homotopy, H,
from γ1 to γ3 by the formula

H(s, t) =

{
H1(2s, t) s ≤ 1

2
H2(2s− 1, t) s ≥ 1

2

Since H1(1, t) = γ2(t) = H2(0, t) for all t ∈ [0, 1], the map H is continuous;
we leave it as an exercise to check the precise details.

We see that the notion of paths being homotopic is transitive.

2

We call the following the reparametrisation lemma.

Lemma 6.3 Let γ: [0, 1] → X be a path in a topological space. Let θ: [0, 1] →
[0, 1] be a continuous map such that θ(0) = 0 and θ(1) = 1. Then the maps γ
and γ ◦ θ are homotopic.

Proof: Let s, t ∈ [0, 1]. Then θ(t) ∈ [0, 1], and (1−s)t+sθ(t) ∈ [0, 1]. Further,
for all s ∈ [0, 1], when t = 0, we have (1 − s)t + sθ(t) = 0, and when t = 1, we
have (1− s)t+ sθ(t) = 1.

We can therefore define a homotopy from the path γ to the path γ ◦ θ by
the formula

H(s, t) = γ((1− s)t+ sθ(t))

2

Since we are confining our paths to the interval [0, 1] we need a slightly
different notion of concatenation of paths. The following idea works; the slight
differences to the earlier definition do not matter.

Definition 6.4 Let γ, β: [0, 1] → X be paths in the space X such that γ(1) =
β(0). Then we define the concatenation γβ: [0, 1] → X to be the path defined
by the formula

γβ(t) =

{
γ(2t) t ≤ 1

2
β(2t− 1) t ≥ 1

2
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Suppose we have paths γ, β, α: [0, 1]→ X such that γ(1) = β(0), and β(1) =
α(0). Then the order in which we take the concatenations matter. To be precise,
the paths (γβ)α and γ(βα) are not equal; these are defined by the formulae

(γβ)α =

 γ(4t) t ≤ 1
4

β(4t− 1) 1
4 ≤ t ≤

1
2

α(2t− 1) t ≥ 1
2

and

γ(βα) =

 γ(2t) t ≤ 1
2

β(4t− 2) 1
2 ≤ t ≤

3
4

α(4t− 3) t ≥ 3
4

respectively.
Thus the operation of concatenation is not associative. However, we do have

the following.

Lemma 6.5 The paths (γβ)α and γ(βα) are homotopic.

Proof: Define a continuous map θ: [0, 1]→ [0, 1] by the formula

θ(t) =

 2t t ≤ 1
4

t+ 1
4

1
4 ≤ t ≤

1
2

1
2 t+ 1

2 t ≥ 1
2

Then θ(0) = 0, θ(1) = 1, and (γβ)α = γ(βα) ◦ θ. The result now follows
from the reparametrisation lemma. 2

The proof of the following is straightforward to check.

Lemma 6.6 Let γ1, β1: [0, 1] → X be homotopic paths, both with end point p.
Let γ2, β2: [0, 1] → X be homotopic paths, both with start point p. Then the
concatenations γ1γ2 and β1β2 are homotopic. 2

Definition 6.7 Let γ: [0, 1] → X be a path from the point p to the point q.
Then we define the reverse path, γ: [0, 1]→ X, from the point q to the point p,
by the formula γ(t) = γ(1− t).

The following is again straightforward.

Lemma 6.8 Let γ1 and γ2 be homotopic paths. Then the reverse paths γ1 and
γ2 are homotopic. 2

Now, choose a point x0 ∈ X. Let c: [0, 1]→ X be the constant path, defined
by writing c(t) = x0 for all t ∈ [0, 1].

Lemma 6.9 Let γ: [0, 1]→ X be a path in X with starting point x0. Then the
concatenation γγ is homotopic to the constant path c.
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Proof: The concatenation γγ is defined by the formula

γγ(t) =

{
γ(2t) t ≤ 1

2
γ(1− 2t) t ≥ 1

2

We can define a homotopy from the constant path c to the concatenation
γγ by the formula

H(s, t) =

{
γ(2st) t ≤ 1

2
γ(2s(1− t)) t ≥ 1

2

2

6.2 The Fundamental Group

Let X be a topological space, and let x0 ∈ X. A path γ: [0, 1] → X such that
γ(0) = γ(1) = x0 is called a loop in X that is based at the point x0.

We saw in the previous section that the notion of loops in the space X
based at the point x0 being homotopic is an equivalence relation. We call the
equivalence classes of this relation the homotopy classes of loops based at the
point x0.

Definition 6.10 The fundamental group of X at the point x0 is the set of
homotopy classes of loops in X based at x0.

We use the notation π1(X,x0) to denote the above fundamental group.
Given a path, γ, we write [γ] to denote the homotopy class. Thus, when γ
is a loop based at the point x0, we have [γ] ∈ π1(X,x0).

The proof of the result is left as an exercise. The most efficient method of
proof is to use the various lemmas proved in the previous section.

Theorem 6.11 The fundamental group π1(X,x0) is a group. The group oper-
ation is defined by the formula

[γ] · [β] = [γβ]

where γ and β are loops in X based at x0.
Let c: [0, 1] → X be the constant map onto the point x0. Then the funda-

mental group has identity element [c].
Inverses are defined by the formula [γ]−1 = [γ]. 2

Let ϕ:X → Y be a continuous map between topological spaces. Fix x0 ∈ X,
and let y0 = ϕ(x0) ∈ Y . Then we have an induced group homomorphism

ϕ∗:π1(X,x0)→ π1(Y, y0)

where y0 = ϕ(x0) is defined by the formula

ϕ∗([γ]) = [ϕ ◦ γ]
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Given another continuous map ψ:Y → Z, we can check that (ψ ◦ ϕ)∗ =
ψ∗ ◦ ϕ∗. Further, if 1X :X → X is the identity map, then (1X)∗ = 1π1(X,x0).

It follows that homeomorphic topological spaces have isomorphic fundemen-
tal groups.

Changing topic slightly, the proof of the following result is left as an exercise.

Theorem 6.12 Let X be a path-connected topological space. Then, up to iso-
morphism, the fundamental group π1(X,x0) does not depend on the point x0.
2

Thus, when X is a path-connected space, we will sometimes write simply
π1(X) to denote the fundamental group, omitting explicit mention of a chosen
basepoint.

Definition 6.13 Let X be a path-connected topological space. Then we call
X simply-connected if the fundamental group π1(X) is trivial.

Definition 6.14 Let X be a topological space. We call X contractible if there
is a point x0 ∈ X and a continuous map H:X×[0, 1]→ X such that H(x, 0) = x
and H(x, 1) = x0 for all x ∈ X.

Example 6.15 A star-shaped subset of a normed vector space is contractible.
To see this, let X be star-shaped. Choose x0 ∈ X such that for any point

x ∈ X, the straight line joining x0 to x lies entirely within the set X. Then we
can define a continuous map

H: [0, 1]×X → X

by the formula
H(x, t) = x+ t(x0 − x)

Then H(x, 0) = x and H(x, 1) = x0 for all x ∈ X.

We leave the proof of the following as an exercise.

Proposition 6.16 Any contractible space is path-connected. 2

Proposition 6.17 Any contractible space is simply-connected.

Proof: Let X be contractible. Then we have a point x0 ∈ X and a continuous
map H: [0, 1]×X → X such that H(0, x) = x and H(1, x) = x0 for all x ∈ X.

Let γ: [0, 1]→ X be a loop based at x0. Then the map H ′: [0, 1]× [0, 1]→ X
defined by writing H ′(x, t) = H(s, γ(t)) is a homotopy from the loop γ to
the constant loop c. It follows that [γ] = [c] is the identity element of the
fundamental group.

We see that the fundamental group contains only the identity element, and
we are done. 2
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6.3 Coverings

Let I be an arbitrary set, and let Y be a topological space. Let {Ai | i ∈ I} be
a collection of open subsets of the space Y . We call the above collection of sets
pairwise disjoint if Ai ∩Aj = ∅ whenever i 6= j.

We use the notation qi∈IAi to denote the union
⋃
i∈I Ai when the the sets

Ai are pairwise disjoint.

Definition 6.18 Let X be a topological space. A surjective continuous map
p:E → X is called a covering map of the space X if for each point x ∈ X we
have an open set U 3 x such that:

• We can write
p−1[U ] = qi∈IVi

where each set Vi ⊆ E is open.

• For each i ∈ I, the restriction p|Vi :Vi → Ui is a homeomorphism.

The space E in the above definition is called a covering space for the space
X.

Example 6.19 Let X be a topological space. Let {Xi | i ∈ I} be disjoint
spaces equipped with homeomorphisms pi:Xi → X.

Then the disjoint union E = qi∈IXi is a covering space. The covering map
p:E → X is defined by writing p(xi) = pi(xi) whenever xi ∈ Xi.

A covering space of the type defined in the above example is called trivial

Example 6.20 Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle. Define
a map p:R→ S1 by the formula

p(t) = (cos t, sin t)

The map p is continuous an surjective. Choose t0 ∈ R, and 0 < δ < π. Then
the pre-image

p−1[{(cos t, sin t) | t0 − δ < t < t0 + δ}]

is the disjoint union

qk∈Z(t0 − δ + 2kπ, t0 + δ + 2kπ)

The map p restricted to the interval (t0 − δ+ 2kπ, t0 + δ+ 2kπ) is a homeo-
morphism onto the set

{(cos t, sin t) | t0 − δ < t < t0 + δ}

Thus the space R is a covering space of the circle S1; the map p:R→ S1 is
a covering map.
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6.4 Liftings

Definition 6.21 Let X and Y be topological spaces. Let p:E → Y be a
covering map. Then a lifting of a continuous map f :X → Y is a continuous
map f̃ :X → E such that p ◦ f̃ = f .

Lemma 6.22 Let X be a connected topological space. Let p:E → Y be a cov-
ering map, and let f :X → Y be a continuous map. Let x0 ∈ X, and let f̃1 and
f̃2 be liftings of the map f such that f̃1(x0) = f̃2(x0). Then f̃1 = f̃2.

Proof: Let S = {x ∈ X | f̃1(x) = f̃2(x)}. Then x0 ∈ S, so S 6= ∅.
Choose a point x ∈ S. Then by definition of a covering space, we have an

open set U ⊆ Y such that f(x) ∈ U and

p−1[U ] = qi∈IVi

where the sets Vi ⊆ E are open, and the restrictions pi = p|Vi :Vi → U are
homeomorphisms.

Since x ∈ S, f̃1(x) = f̃2(x). Let f̃1(x) = f̃2(x) ∈ Vi. By continuity, the set

Wx = f̃1
−1

[Vi] ∩ f̃2
−1

[Vi]

is open. Certainly x ∈Wx, so Wx 6= ∅.
Let y ∈ Wx. Then f̃1(y) ∈ Vi and f̃2(y) ∈ Vi. Since the maps f̃1 and

f̃2 are liftings of the map f , pif̃1(y) = pif̃2(y) = f(y). Since the map pi is
homeomorphism, we see that f̃1(y) = f̃2(y), and y ∈ S.

We have shown that
S =

⋃
x∈S

Wx

where each set Wx is open. Hence the set S is open.
Now, let T = {x ∈ X | f̃1(x) 6= f̃2(x)}. Suppose that T 6= ∅. Then as above,

we can show that the set T is open, and we have a partition X = S ∪ T , which
contradicts the fact that the set X is connected.

Hence T = ∅, which means that S = X, and we are done. 2

Theorem 6.23 Let p:E → X be a covering. Let γ: [0, 1] → X be a path.
Choose a point y0 ∈ E such that p(y0) = γ(0). Then there is a unique lifting
γ̃: [0, 1]→ E such that γ̃(0) = y0.

Proof: We need to show existence of the path γ̃; once we have shown existence,
uniqueness follows by the above lemma.

Let S be the set of all points s ∈ [0, 1] where the restricted path
γ|[0,s]: [0, s]→ X has a lifting γ̃: [0, s]→ X such that γ̃(0) = y0.

Certainly 0 ∈ S. We need to show that 1 ∈ S.
Suppose s0 ∈ S, and s0 < 1. Then we have a path γ̃: [0, s0] → X such that

γ̃(0) = y0 and p ◦ γ̃(t) = γ(t) whenever t ∈ [0, s0].
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By definition of a covering space, we have an open set U ⊆ X such that
γ(s0) ∈ U , and

p−1[U ] = qi∈IVi
where Vi ⊆ E is an open set, and the restriction pi = p|Vi :Vi → U is a homeo-
morphism.

Since the path γ is continuous, we can find δ > 0 such that γ(t) ∈ U whenever
|t − s0| < 2δ, and t ∈ [0, 1]. Suppose that γ(s0) ∈ Ui. Then we can define a
path γ̃1: [0, t0 + δ] → E such that γ̃1(0) = y0 and p ◦ γ̃1(t) = γ(t) whenever
t ∈ [0, t0 + δ] by the formula

γ̃1(t) =

{
γ̃(t) t ≤ s0

p−1
i (γ(t)) s0 ≤ t ≤ s0 + δ

We have shown that, given s0 ∈ S, we have δ > 0 such that s0 + δ ∈ S. But
this implies that 1 ∈ S; the precise details are left as an exercise. 2

The proof of the following result is similar to the above, but the extra variable
present makes it more fiddly. We therefore omit the details.

Theorem 6.24 Let p:E → X be a covering. Let H: [0, 1] × [0, 1] → X be a
continuous map. Fix y0 ∈ E such that p(y0) = H(0, 0). Then there is a unique
lifting H̃: [0, 1]× [0, 1]→W such that H̃(0, 0) = y0.

Further, if the map H(−, 0) is constant, then the map H̃(−, 0) is also con-
stant. 2

Corollary 6.25 Let p:E → X be a covering. Let γ1, γ2: [0, 1]→ X be two paths
such that γ1(0) = γ2(0) and γ1(1) = γ2(1).

Let γ̃1 be a lifting of the path γ1, and γ̃2 be a lifting of the path γ2 such
that γ̃1(0) = γ̃2(0). Suppose that the paths γ1 and γ2 are homotopic. Then
γ̃1(1) = γ̃2(1), and the liftings γ̃1 and γ̃2 are homotopic. 2

6.5 Computations of the Fundamental Group

We have already seen that the fundamental group of a contractible space is
trivial. In this section we use the ideas of coverings and liftings to compute
some non-trivial fundamental groups. We begin with the circle

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}

Lemma 6.26 Let γ: [0, 1] → S1 be a closed path, and let p:R → S1 be the
covering map p(t) = (cos t, sin t).

Let γ̃ be a lifting of the path γ. Then the map γ is homotopic to the constant
path if and only if γ̃(0) = γ̃(1).
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Proof: Suppose that the map γ is homotopic to the constant path, c. The
constant path, c̃, in R is a lifting of the constant path c. By corollary 6.25, since
the path c̃ is constant

γ̃(1) = c̃(1) = c̃(0) = γ̃(0)

Conversely, suppose that γ̃(0) = γ̃(1). Then γ̃ is a loop in the space R. But
the space R is contractible, so the loop γ̃ is homotopic to a constant loop. It
follows that the loop γ = p ◦ γ̃ is homotopic to a constant loop. 2

To compute the fundamental group of the circle S1, we will assume that our
loops are based at the point x0 = (1, 0).

Given an integer k ∈ Z, we can define a loop γk: [0, 1]→ S1 by the formula

γk(t) = (cos 2kπt, sin 2kπt)

Theorem 6.27 There is an isomorphism θ:Z→ π1(S1, x0) defined by the for-
mula

θ(k) = [γk]

Proof: We leave it as an exercise to prove that the map θ is a group homo-
morphism.

Let p:R → S1 be the above covering map. Then the map γk has lifting
γ̃k: [0, 1]→ R defined by the formula

γ̃k(t) = 2kπt

Observe that γ̃k(1) = 2kπ. Hence, by the above lemma, if k 6= 0, then
[γk] 6= [c]. It follows that the homomorphism θ is injective.

Let γ: [0, 1]→ S1 be a loop based at (1, 0). Let γ̃: [0, 1]→ R be a lifting such
that γ̃(0) = 0. Then

γ̃(1) ∈ p−1(1, 0) = {2nπ | n ∈ Z}

Let γ̃(1) = 2kπ. The loop γk has lifting γ̃k such that γ̃k(1) = 2kπ. Thus, we
can form the concatenation γ̃γ̃k, and

γ̃γ̃k(1) = 0 = γ̃γ̃k(0)

The concatenation γ̃γ̃k is a lifting of the concatenation γγk. By the above
lemma, the loop γγk is therefore homotopic to the constant loop, c.

It follows that
[γγk] = [γ][γk]−1 = [c]

so [γ] = [γk] and have shown that the homomorphism θ is also surjective. 2

We leave the proof of the following as an exercise.

Proposition 6.28 Let X and Y be path-connected topological spaces. Let x0 ∈
X and y0 ∈ Y . Then the groups π1(X,x0) × π1(Y, y0) and π1(X × Y, (x0, y0))
are isomorphic. 2
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Let Cx = C\{0} be the punctured plane. Let x0 = (1, 0). Let γk: [0, 1]→ Cx
be as defined above.

Theorem 6.29 There is an isomorphism θ:Z→ π1(Cx, x0) defined by the for-
mula

θ(k) = [γk]

Proof: We have a homeomorphism h:S1×(0,∞)→ Cx defined by the formula

h((cos t, sin t), r) = (r cos t, r sin t)

The result now follows from the above proposition and theorem, and the fact
that the space (0,∞) is contractible. 2

7 The Monodromy Theorem

7.1 The Integral Covering

Let V and W be finite-dimensional vector spaces. Let R ⊆ V be an open subset.
Recall that we call a differential form ω ∈ Ω1(R;W ) locally exact or closed if for
all x ∈ R there is an open set U 3 x such that the restriction ω|U ∈ Ω1(U ;W )
is exact.

Suppose that we have a locally exact differential form ω ∈ Ω1(R;W ). Con-
sider the set Rω = R × W along with the projection p:Rω → R defined by
the formula p(x,w) = x. We want to define a topology on the set Rω, ie: a
collection of sets that we define to be open and satisfy a few of axioms. This
topology should reflect the local exactness of the differential form ω and turn
the space Rω into a covering space of the space R. Note that the topology we
define on the space Rω is not the same as the topology on the product R×W .

Let U ⊆ R be an open subset such that the restriction ω|U is exact. Let
F :U →W be a primitive function of the differential form ω|U . Then we define
a set

Γ(U,F ) = {(x, F (x)) | x ∈ U} ⊆ Rω

Proposition 7.1 Call a subset of the set Rω open if it is a union of sets of the
above form. Then the set Rω is a topological space.

Proof: We need to check the topological space axioms.

• By definition of an open set in the space Rω, any union of open sets is an
open set.

• Note that the empty set, ∅ ⊆ R is open. There is a unique well-defined
function F : ∅ →W ; this function is a primitive function for the restriction
ω|∅. Observe that ∅ = Γ(∅, F ); hence the empty set ∅ ⊆ Gω is open.
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• Let x0 ∈ R, and w ∈ W . Since the form ω is locally exact, there is an
open set U ⊆ X where x0 ∈ U and the restriction ω|U is exact.

Consider a primitive function F :U → W such that F (x0) = w. Then
our chosen point (x0, w) ∈ Rω belongs to the open set Γ(U,F ). Thus the
union of all such sets, which is by definition open, is the entire space Rω.

• Let U1, U2 ⊆ R be open sets such that the restrictions ω|U1
and ω|U2

are
open. Let F1 and F2 be primitive functions for the restrictions ω|U1

and
ω|U2

respectively.

If the intersection Γ(U1, F1) ∩ Γ(U2, F2) is the empty set, then it is open.
Otherwise, let (x,w) ∈ Γ(U1, F1) ∩ Γ(U2, F2).

The set U1 ∩ U2 ⊆ R is open. We therefore have an open ball B = B ⊆
U1 ∩ U2 such that x ∈ B, and B ⊆ U1 ∩ U2. The primitive functions F1

and F2 restrict to primitive functions on the ball B.

We know that F1(x) = F2(x) = w. By corollary 4.8, the primitive func-
tion of an exact form on a connected open set is determined uniquely
determined by its value at a point. The open ball B is connected. Hence,
F1|B = F2|B . We see that

(x,w) ∈ Γ(B,F1|B) ⊆ Γ(U1, F1) ∩ Γ(U2, F2)

Thus our chosen point (x,w) ∈ Γ(U1, F1) ∩ Γ(U2, F2) belongs to an open
subset. Hence the intersection Γ(U1, F1) ∩ Γ(U2, F2) is a union of open
subsets.

More generally, we see that any intersection of two open sets is open, and
we are done.

2

Proposition 7.2 The topological space Rω is a covering space of the space R,
with covering map p:Rω → R.

Proof: It is straightforward to check that the map p:Rω → R is continuous.
The map p is obviously surjective.

Let x0 ∈ R. Since the form ω is locally exact, we have an open set U such
that x0 ∈ U and the restriction ω|U is exact. By taking a subset if necessary
(for instance, an open ball containing the point x0), we can assume that the set
U is connected.

Define S to be the set of primitive functions of the differential form ω|U . Let
x ∈ U and w ∈ W . Then by corollary 4.8, we have a unique primitive function
F ∈ S such that F (x) = w. The same argument tells us that Γ(U,F )∩Γ(U,G) =
∅ if F 6= G.

Hence
p−1[U ] = qF∈SΓ(U,F )
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The restriction p|Γ(U,F ): Γ(U,F )→ U is defined by the formula p((x, F (x)) =
x. It is straightforward to check that this map is a homeomorphism. 2

Definition 7.3 We call the space Rω the integral covering for the locally exact
differential form ω.

7.2 Homotopy and Path Integrals

Let R be an open subset of a finite-dimensional vector space. In the previous
section, we only talked about homotopy for paths γ: [0, 1]→ R

We can generalise the definition to talk about homotopy between paths
γ: [a, b]→ R. The following result is called the monodromy theorem.

Theorem 7.4 Let V and W be finite-dimensional vector spaces, and let R ⊆ V
be an open subset. Let ω ∈ Ω1(R;W ) be a continuous locally exact differential
form. Let γ1, γ2: [a, b]→ R be homotopic piecewise differentiable paths.

Then ∫
γ1

ω =

∫
γ2

ω

Proof: Let γ: [a, b]→ R be a piecewise differentiable path. Then be theorem
6.23 we have a lifting γ̃: [a, b] → Rω, where Rω is the integral cover defined in
the previous section. We can write γ̃(t) = (γ(t), γ̃W (t)).

We claim that ∫
γ

ω = γ̃W (b)− γ̃W (a)

Since the interval [a, b] is compact, we can find points

a = c0 < c1 < · · · < ck−1 < ck = b

and open sets Ui such that the restriction ω|Ui is exact, the restriction γ|[ci,ci+1]

is differentiable, and γ[ci, ci+1] ⊆ Ui; we leave the proof of this fact as an
exercise. Choose a primitive function, Fi, of the differential form ω|Ui such that
Fi(γ(ci)) = γ̃W (ci).

The map s(t) = (γ(t), F (γ(t)) is a lifting of the path γ restricted to the
interval [ci, ci+1], and s(ci) = γ̃(ci). Hence, by theorem 6.23, s = γ̃ on the
interval [ci, ci+1]. In particular, γ̃W = Fi ◦ γ on the interval [ci, ci+1].

It follows that∫
γi

ω = Fi(γ(ci+1))− Fi(γ(ci+1)) = γ̃W (ci+1)− γ̃W (ci)

where γi is the restriction of the path γ to the interval [ci, ci+1]. Adding the
integrals of the restrictions together, we see∫

γ

ω = γ̃W (b)− γ̃W (a)
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as claimed.
Now, let γ1, γ2: [a, b]→ R be two homotopic paths. Then by corollary 6.25,

any two liftings γ̃1, γ̃2: [a, b]→ Rω with the same start point have the same end
point. It follows that∫

γ1

ω = γ̃1W (b)− γ̃2W (a) = γ̃2W (b)− γ̃1W (a) =

∫
γ2

ω

and we are done. 2

Since the path integral of a differential form over a constant path is always
zero, we have the following corollary.

Corollary 7.5 Let ω ∈ Ω1(R;W ) be a locally exact continuous differential
form. Let γ: [a, b] → W be a closed path that is homotopic to the constant
path. Then ∮

γ

ω = 0

The first part of the following result also follows from the above; the second
part is immediate by theorem 5.14.

Theorem 7.6 Let V and W be finite-dimensional vector spaces, and let R ⊆ V
be simply-connected. Let ω ∈ Ω1(R;W ) be a locally exact continuous differential
form. Then ω is exact.

Further, if we pick a point x0 ∈ R, we can define a primitive function for
the differential form ω by writing

ϕ(x) =

∫
γ

ω

where γ is any piecewise-differentiable path in the region R with start point x0

and end point x. 2

We can use the above to show that certain paths are not homotopic to
constant loops. For instance, the function f(z) = 1

z is complex-differentiable in
the space Cx. Therefore the form f(z) = 1

z dz is symmetric as a real differential
form by theorem 4.18, and hence locally exact by theorem 5.21.

Let γ: [0, 2π]→ Cx be the unit circle defined by the formula γ(t) = cos(it) +
i sin(it). Using the Euler formula, we can write γ(t) = eit, and∫

γ

1

z
dz =

∫ 2π

0

e−it · ieit dt = 2πi 6= 0

Thus the circle is not homotopic to the constant path. In particular, the
space π1(Cx) is not simply-connected; the fundamental group is not trivial.
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Proposition 7.7 We have an isomorphism φ:π1(Cx) → Z defined by the for-
mula

φ([γ]) =
1

2πi

∮
γ

1

z
dz

Proof: Let k ∈ Z, and define a loop γk: [0, 1] → Cx by the formula γk(t) =
e2πit. By theorem 6.29,we have an isomorphism θ:Z → π1(S1, x0) defined by
the formula

θ(k) = [γk]

Choose a loop γ in the space Cx. Since the map θ is surjective, the map γ
is homotopic to the loop γk for some k. Hence, by the monodromy theorem

1

2πi

∮
γ

1

z
dz =

1

2πi

∮
γk

1

z
dz

and ∫
γk

1

z
dz =

∫ 1

0

e−2πkt · ike2πkt dt = 2πik

Therefore φ([γ]) = φ([γk]) = k. The map φ is thus a well-defined inverse to
the isomorphism θ, and therefore itself an isomorphism. 2

Definition 7.8 Let a ∈ C. Let γ: [0, 1] → C\{a} be a piecewise-differentiable
loop. Then we define the winding number of γ around a:

w(γ, a) =
1

2πi

∮
γ

1

z − a
dz

By the above, the winding number is an integer. Observe that w(γk, 0) = k
for all k ∈ Z. The winding number is a rigorous way to define the number
of times the loop γ winds around a in an anticlockwise direction. Further
properties of the winding number can be found in the exercises.

8 Complex Analysis

8.1 Holomorphic Functions

Let R ⊆ C be an open set, and let f :R→ C be a complex function. We call the
function f holomorphic if it is continuously differentiable as a complex function.
If R = C, we call the function f entire

In fact it is a theorem that any complex-differentiable function is holo-
morphic; continuity of the derivative follows automatically from complex-
differentiability. Many of our results on differential forms can be applied imme-
diately to holomorphic functions. Note in particular the following.
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• Write
f(x+ iy) = g(x, y) + ih(x, y)

where x and y are real numbers, and g and h are functions such that the
partial derivatives all exist and are continuous.

Then by theorem 3.19, the function f is real-differentiable.

• By corollary 3.25, the function f is holomorphic if and only if the Cauchy-
Riemann equations

∂g

∂y
(x) = −∂h

∂x
(x)

∂h

∂y
(x) =

∂g

∂x
(x)

are satisfied.

• By theorem 4.18, the differential form ω = f dz is symmetric, as a real
differential form, if and only if the function f is holomorphic.

• By theorem 5.23, the form ω = f dz is locally exact if and only if it is
symmetric.

Putting the above together, we have the following.

Theorem 8.1 Let f :R→ C be a holomorphic function. Then f is locally exact.
2

The Cauchy-Riemann equations, noted above, provide a means to check
whether a complex function is holomorphic.

The following result, which is usually called Cauchy’s theorem, follows im-
mediately from theorem 7.6.

Theorem 8.2 Let f :R → C be a holomorphic function, where the region R is
simply-connected. Then f is exact.

In particular, for any closed loop, γ, in the region R, we have∮
γ

f(z) dz = 0

2

The following result is called Goursat’s lemma; it is a generalisation of
Cauchy’s theorem to complex-differentiable functions where the derivative need
not be continuous. We do not prove it here.

Theorem 8.3 Let f :R → C be a complex-differentiable function, where the
region R is simply-connected. Then f is exact.

In particular, for any closed loop, γ, in the region R, we have∮
γ

f(z) dz = 0

2

In fact, Goursat’s lemma is the key to showing that any complex-
differentiable function is holomorphic, and hence has continuous derivative.
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8.2 Residue Calculus and the Integral Formula

Let a ∈ C, and δ > 0. Consider the punctured disk B′(a, δ), and let γ: [0, 1]→
B′(a, δ) be a loop that winds once anticlockwise around the point a.

It is geometrically clear that all such paths are homotopic. The following is
therefore well-defined by the monodromy theorem.

Definition 8.4 Let ω be a continuous complex-valued locally exact differential
form defined on the punctured disk B′(a, δ). Then we define the residue of the
form ω at the point w by the formula

Res(ω, a) =
1

2πi

∮
γ

ω

More generally, given an open set R ⊆ C, a point a ∈ R, a continuous
complex-valued locally exact differential form ω defined on the set R\{a}, we
define the residue Res(ω, a) as above, by restricting to some ball B(a, δ) ⊆ R.

Proposition 8.5 Let R ⊆ C be open, and a ∈ R. Let ω be a continuous
complex-valued locally exact form defined on the set R\{a}. Then the following
hold.

1. Let ω′ be another continuous complex-valued locally exact form defined on
the set R\{a}, and let α, α′ ∈ C. Then

Res(αω + α′ω′, a) = αRes(ω, a) + α′Res(ω′, a)

2. Let ω be exact on some punctured open ball B′(a, δ) ⊆ R. Then
Res(ω, a) = 0.

3. Suppose that ω extends to a continuous locally exact differential form, ω̃
on the set R. Then Res(ω, a) = 0.

4. Res( dz
z−w , w) = 1

5. Let k ∈ Z\{−1}. Then Res((z − w)k dz, w) = 0

Proof:

1. The result follows by definition of the residue and linearity of path-
integrals.

2. Let γ be a loop in the neighbourhood B′(a, δ) that winds once anticlock-
wise around a. Then

Res(ω, a) =

∮
γ

ω = 0

by exactness.
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3. By definition, we have Res(ω, a) = Res(ω̃, a). The differential form ω̃ is
continuous and locally exact on some disk B(a, δ) ⊆ R.

The ball B(a, δ) is contractible, and therefore simply-connected. Hence
the differential form ω̃ is exact on B(a, δ) by theorem 7.6. The result now
follows by the previous part.

4. Define a loop γ: [0, 2π] → C\{w} by writing γ(t) = w + eit. Then γ is a
closed loop that winds around the point w once anticlockwise, so

Res(
dz

z − w
,w) =

1

2πi

∮
γ

dz

z − w
=

1

2πi

∫ 2π

0

1

eit
ieit dt = 1

5. Let γ be the above loop. Then

Res((z−w)k dz, w) =
1

2πi

∮
γ

(z−w)k dz =
1

2πi

∫ 2π

0

ekitieit dt =
k

2π
e(k+1)it dt

Now k 6= −1, and we know that eit = cos t+i sin t. So the function e(k+1)it

is periodic, with period a factor of 2π. It follows that the above integral
is zero.

2

The following result is called the Cauchy integral formula.

Theorem 8.6 Let R ⊆ C be an open subset. Let f :R → C be a holomorphic
function. Then, for each point w ∈ R:

f(w) = Res

(
f(z)

z − w
dz,w

)
Proof: Since the function f is holomorphic, the function z 7→ f(z)

z−w is holo-

morphic on the set R\{w}. Hence the differential form f(z)
z−w dz is continuous

and locally exact.
Write

f(z)

z − w
dz =

f(z)− f(w)

z − w
dz +

f(w)

z − w
dz

Then by the above proposition

Res(
f(z)

z − w
dz,w) = Res(

f(z)− f(w)

z − w
dz,w)+f(w)Res(

dz

z − w
,w) = Res(

f(z)− f(w)

z − w
dz,w)+f(w)

So we need to show that Res( f(z)−f(w)
z−w dz, w) = 0. Define a path

γε: [0, 2π]→ R by the formula γε(t) = w+ εeit. Then, for ε sufficiently small, γ
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is a path in the open set R that winds once anticlockwise around the point w.
Hence

Res(
f(z)− f(w)

z − w
dz,w) =

1

2πi

∮
γε

f(z)− f(w)

z − w
dz =

1

2πi

∫ 2π

0

f(w + εeit) = f(εeit)

εeit
iεeit dt

By the mean value inequality

|Res(f(z)− f(w)

z − w
dz,w)| ≤ sup

t∈[0,2π]

|f(w + εeit)− f(w)|

Since the function f is holomorphic, it is continuous at the point
w. Hence supt∈[0,2π] |f(w + εeit) − f(w)| as ε → 0. But the residue

Res( f(z)−f(w)
z−w dz, w) is independent of the value ε. We are forced to conclude

that Res( f(z)−f(w)
z−w dz, w) = 0, and we are done. 2

Cauchy’s theorem and Cauchy’s integral formula together allow us to com-
pute many path integrals.

For example, let R ⊆ C be an open subset, let f :R→ C be holomorphic on
R, let w ∈ R, and let γ be a loop in R.

Suppose that the loop γ lies within a simply connected subset S ⊆ R, and
w 6∈ S. This is the case if the region R contains everything ”inside” the loop γ,
and the point w is not inside γ. Anyway, by Cauchy’s theorem, we have∮

γ

f(z)

z − w
dz = 0

On the other hand, let R ⊆ C be a simply-connected open subset, let w ∈ C,
and let γ be a loop in R that winds once anticlockwise around the point w.
Since the region R is simply-connected, the loop γ is homotopic to another loop
γ̃ that winds once around w anticlockwise, and lies within some punctured disk
B(w, δ). By the monodromy theorem∮

γ

f(z)

z − w
dz =

∮
γ̃

f(z)

z − w
dz = 2πiRes(

f(z)

z − w
dz,w)

Hence, by Cauchy’s integral formula∮
γ

f(z)

z − w
dz = 2πif(w)

Corollary 8.7 Let R ⊆ C be an open subset. Let f :R → C be a holomorphic
function. Let w ∈ C and δ > 0, and suppose that B(w, δ) ⊆ R.

Then
|f(w)| ≤ sup{|f(z)| | z ∈ S(w, δ)}
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Proof: Applying the above to the path γ: [0, 2π]→ R defined by the formula
γ(t) = eit, we have

f(w) =
1

2πi

∫ 2π

0

f(w + eit)

reit
ireit dt =

1

2π

∫ 2π

0

f(w + reit) dt

Let M = sup{|f(z)| | z ∈ S(w, δ)}. Then

|f(w)| ≤ 1

2π

∫ 2π

0

M dt = M

and we are done. 2

8.3 Power Series and Analytic Functions

Let a ∈ C. Recall that a power series is an expression of the form

∞∑
n=0

an(z − a)n

where an ∈ C.
Recall the following results on power series.

Theorem 8.8 • There is a number r ≥ 0, called the radius of convergence,
such that the series

∑∞
n=0 an(z−a)n converges whenever z ∈ B(w, r), and

diverges whenever |z − a| > r.

Here we allow the possibility ”r = ∞”, which means that the series con-
verges for all z ∈ C.

• The power series
∑∞
n=0 nan(z−a)n−1 has the same radius of convergence

as the above power series.

• Let R > 0. Then we can define a holomorphic function f :B(a,R) → C
by the formula f(z) =

∑∞
n=0 an(z − a)n. The derivative is given by the

formula f ′(z) =
∑∞
n=0 nan(z − a)n−1, ie: we can differentiate ”term-by-

term”.
2

Example 8.9 The geometric series
∑∞
n=0 z

n has radius of convergence 1. In
fact, if |z| < 1, then

∑∞
n=0 z

n = 1
1−z .

Example 8.10 The exponential series
∑∞
n=0

1
n!z

n has radius of convergence
∞. The exponential function is defined by the formula

ez =

∞∑
n=0

1

n!
zn

for all z ∈ C.
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Two fundamental properties of the exponential function are the formulae

ew+z = ewez
d

dz
ez = ez

Example 8.11 The cos and sin functions are defined by writing

cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!

Both of these functions are defined for all z ∈ C, since the relevant series
have radius of convergence ∞.

Let θ ∈ R. Then, using the above series we immediately obtain the Euler
formula

eiθ = cos θ + i sin θ

Definition 8.12 Let R ⊆ C be an open subset. A function f :R→ C is called
analytic if given a point a ∈ R, we can find r > 0, and a power series that
converges to the value f(z) for all z ∈ B(a, r).

Thus, given a point a ∈ R, we can find r > 0 and an ∈ C such that

f(z) =

∞∑
n=0

an(z − a)n

for all z ∈ B(a, r).

Proposition 8.13 Let f :R→ C be an analytic function. Then the function f
is differentiable of arbitrary order. If on a disk B(a, r), the function f is defined
by the power series

f(z) =

∞∑
n=0

an(z − w)n

then

ak =
f (k)(a)

k!

Proof: Let

f(z) =

∞∑
n=0

an(z − a)n

when z ∈ B(a, r). Then by theorem 8.8, the function f is holomorphic on the
disk B(a, r), and

f ′(z) =

∞∑
n=0

nan(z − a)n−1

We see that the derivative f ′ is again analytic. Repeating the above, we see
that derivatives of all orders exist.
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Now, observe that the formula f (k)(w) = k!ak certainly holds when k = 0.
Fix k ∈ N. Suppose, given a function g defined on B(w, r) by a power series∑∞
n=0 bn(z − a)n, we have g(k)(a) = k!bk.
By theorem 8.8, we have

f ′(z) =

∞∑
n=0

nan(z − a)n−1 =

∞∑
n=0

(n+ 1)an+1(z − a)n

Applying the above to this series, we see that

f (k+1)(a) = (f ′)(k)(a) = k!(k + 1)ak+1 = (k + 1)!ak+1

and the desired formula is true by induction. 2

The following result is easy to check; we leave the proof as an exercise.
Note that the first part of the proposition already follows from the fact that an
analytic function is holomorphic.

Proposition 8.14 Let f :R → C be an analytic function. Then the differ-
ential form f(z) dz is locally exact. If, on the disk B(a, r), we have f(z) =∑∞
n=0 an(z − a)n, then we have a primitive function on the same disk defined

by the formula

F (z) =

∞∑
n=0

an
n+ 1

(z − a)n+1

2

8.4 Taylor’s Theorem

The concept of uniform convergence turns out to be very useful when dealing
with power series.

Definition 8.15 Let A be any set, and let
∑∞
n=0 fn be a series of functions

fn:A→ C. We say the series
∑∞
n=0 fn converges uniformly to a function f :A→

C on the set A if for all ε > 0 there exists N ∈ N such that | (
∑m
n=0 fn(x)) −

f(x)| < ε for all m ≥ N and all x ∈ A.

Another way to phrase the above definition is to say that the series of func-
tions

∑∞
n=0 fn converges uniformly to the function f on the set A is to say

lim
N→∞

sup{

∣∣∣∣∣
N∑
n=0

fn(x)− f(x)

∣∣∣∣∣ = 0 | x ∈ A}

One use of uniform convergence is in swapping limits and integrals.
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Theorem 8.16 Let
∑∞
n=0 fn be a uniformly convergent series of continuous

functions fn: [a, b]→ C. Then the function, f , defined as the limit of the series
is continuous, and ∫ b

a

f =

∞∑
n=0

∫ b

a

f

In particular, the sum on the right converges. 2

The following is straightforward, and left as an exercise.

Corollary 8.17 Let R ⊆ C be an open subset, and let
∑∞
n=0 fn be a series of

continuous functions fn:R→ C that converges to a function f :R→ C.
Let γ: [a, b]→ R be a piecewise-differentiable path, and suppose that the above

series converges uniformly on the image of the path γ. Then∫
γ

f(z) dz =

∞∑
n=0

∫
γ

fn(z) dz

In particular, the sum on the right converges. 2

Power series uniformly converge in the following sense.

Theorem 8.18 Let a ∈ C, and let
∑∞
n=0 an(z − a)n be a power series with

radius of convergence r > 0. Let K ⊆ B(a, r) be a closed subset. Then the
series converges uniformly on the set K. 2

The following result is called Taylor’s theorem.

Theorem 8.19 Let R ⊆ C be an open subset, and let f :R→ C be holomorphic.
Then the function f is analytic.

Further, given a point a ∈ R, in any disk B(a, δ) ⊆ R, we have

f(z) =

∞∑
n=0

an(z − a)n an = Res

(
f(z)

(z − a)n+1
dz, a

)
Proof: It suffices to prove the second part of the result; the first part than
follows by definition of a function being analytic. For convenience, suppose
a = 0.

Let w ∈ B(a, δ). Choose r between |w| and δ, and define a loop γ: [0, 2π]→
B(0, δ) by the formula γ(t) = reit. Then by Cauchy’s integral formula

f(w) =
1

2πi

∮
γ

f(z)

z − w
dz

Let z be lie on the loop γ. Then |z| > |w|, so

f(z)

z − w
=

f(z)

z(1− w/z)
=

∞∑
n=0

f(z)

z

(w
z

)n
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In fact, we can check that the above series converges uniformly on the loop
γ, so by corollary 8.17, we have

f(w) =

∞∑
n=0

1

2πi

∮
γ

f(z)

z

(w
z

)n
dz =

∞∑
n=0

Res

(
f(z)

zn+1
dz

)
wn

The result now follows. 2

The following is called Cauchy’s formula for derivatives. It is immediate by
the above and proposition 8.13.

Corollary 8.20 Let R ⊆ C be an open subset, and let f :R→ C be a holomor-
phic function. Let a ∈ R. Then the n-th order partial derivative of the function
f exists, and is given by the formula

f (n)(a) = Res

(
n!f(z)

(z − a)n+1
dz, a

)
Hence, if B(z, δ) ⊆ R, and γ is a loop in the disk B(z, δ) that winds once

anticlockwise around z, then we have the formula

f (n)(a) =
n!

2πi

∮
γ

f(z)

(z − a)n+1
dz

We call the following the Cauchy inequality.

Corollary 8.21 let 0 < r < R, let a ∈ C, and let f :B(a,R) → C be a holo-
morphic function. Let M = sup{|f(z)| | |z − a| = r}. Then

|f (n)(w)| ≤ n!Mr

(r − |w − a|)n+1

for all w ∈ B(w, r).

Proof: Let γ: [0, 2π] → C be the loop γ(t) = a + reit. Since w ∈ B(a, r),
the loop γ winds once anticlockwise around the point w. Hence, by Cauchy’s
formula for derivatives

|f (n)(w)| =
∣∣∣∣ n!

2πi

∮
γ

f(z)

(z − w)n+1
dz

∣∣∣∣
Hence

|f (n)(w)| ≤ n!

2π

∫ 2π

0

|f(a+ reit)|
|a+ reit − w|n+1

|ireit| dt

Now, |f(w + reit)| ≤ M , and |a + reit − w| ≥ r − |w − a|. Hence, since
|w − a| < r, we have

|f (n)(z)| ≤ n!

2π

∫ 2π

0

Mr

(r − |w − a|)n+1
dt =

n!Mr

(r − |w − a|)n+1

and we are done. 2
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8.5 Liouville’s Theorem

The following result is called Liouville’s theorem.

Theorem 8.22 Let f :C → C be a bounded holomorphic function. Then f is
constant.

Proof: Since the function f is bounded, we have a constant K ≥ 0 such that
|f(z)| ≤ K for all z ∈ C. Choose w ∈ C, and let r > |w|. then by the Cauchy
inequality

|f ′(w)| ≤ Mr

(r − |w|)2

let r → ∞. Then Mr/(r − |w|)2 → 0. It follows that f ′(w) = 0. Hence,
since the domain C is certainly connected, the function f is constant. 2

Definition 8.23 Let R1, R2 ⊆ C be open. We call R1 and R2 biholomorphic if
there is a bijective holomorphic mapping f :R1 → R2 with holomorphic inverse.

Certainly, if two open sets are biholomorphic, then they are homeomorphic,
since a holomorphic function is also continuous.

Example 8.24 Let

R1 = {z ∈ C | <(z) > 0 and =(z) > 0}

and
R2 = {z ∈ C | =(z) > 0}

Then we can write

R1 = {reiθ | r ≥ 0, 0 < θ <
π

2
}

and
R2 = {reiθ | r ≥ 0, 0 < θ < π}

Let f(z) = z2. Then f(reiθ) = r2e2iθ. It follows that the map f :R1 → R2

is a holomorphic bijection. The inverse g(z) =
√
z is also holomorphic. Thus

the sets R1 and R2 are biholomorphic.

Proposition 8.25 The sets B(0, 1) ⊆ C and C are homeomorphic, but not
biholomorphic.

Proof: We can define a continuous map f :B(0, 1)→ C by the formula

f(z) =
z

1− |z|
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This map is a homeomorphism, since we have a continuous inverse given by
the formula

f−1(w) =
w

1 + |w|
Now, let g:C→ B(0, 1) be a holomorphic map. Then the map g is bounded.

Hence, by Liouville’s theorem, g is constant. Thus the map g is not bijective,
and the sets C and B(0, 1) cannot be biholomorphic. 2

Definition 8.26 Let f :C → C be a function. Then we say that f(z) → a as
z →∞, or

lim
z→∞

f(z) = a

if for all ε > 0 we can find R ≥ 0 such that |f(z)− a| < ε whenever |z| ≥ R.

We have a version of the above definition in any normed vector space.

Definition 8.27 Let f :C → C be a function. Then we say that f(z) → ∞ as
z →∞ or

lim
z→∞

f(z) =∞

if for all s > 0 we can find R ≥ 0 such that |f(z)| > s whenever |z| ≥ R.

Proposition 8.28 Let f :C → C be a continuous function such that
limz→∞ f(z) exists. Then f is bounded.

Proof: Let
lim
z→∞

f(z) = a

Taking ‘ε = 1’ in the definition of the limit, we can find R ≥ 0 such that
|f(z)− a| < 1 whenever |z| ≥ R. Hence |f(z)| < 1 + |a| whenever |z| ≥ R.

On the other hand, the set B(0, R) is a closed bounded subset, and hence
compact by the Heine-Borel theorem. Thus there is a constant M ≥ 0 such that
|f(z)| ≤M whenever z ∈ B(0, R).

Take K = max(M, 1 + |a|). For any complex number z ∈ C, either z ∈
B(0, R) or |z| > R. It follows that |f(z)| ≤ K for all z ∈ C. Thus the function
f is bounded, and we are done. 2

The following example and proposition are left as exercises.

Example 8.29 Let p:C → C be a non-constant polynomial (with complex
coefficients). Then p(z)→∞ as z →∞.

Proposition 8.30 Let f :C→ C be a function. Then limz→∞ f(z) =∞ if and
only if limz→∞

1
f(z) = 0. 2

Our last consequence of Liouville’s theorem is called the fundamantal theo-
rem of algebra.
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Theorem 8.31 Let p:C → C be a polynomial with complex coefficients. Sup-
pose that p is not constant (ie: n ≥ 1 and an 6= 0). Then there is at least one
point z ∈ C such that p(z) = 0.

Proof: Suppose that p(z) 6= 0 for all z ∈ C. Then the function z 7→ 1
p(z) is a

holomorphic function defined on the entire complex plane.
Since p is non-constant, by the above example and proposition, 1

p(z) → 0 as
z →∞.

Hence, by proposition 8.28, the function 1
p is bounded, and therefore con-

stant by Liouville’s theorem. Thus the polynomial p is constant, which is a
contradiction.

It follows that there exists z ∈ C such that p(z) = 0. 2

8.6 The Identity Theorem

Let X be a metric space, and let A ⊆ X. Recall that a point x0 ∈ X is called
an accumulation point of the subset Z if and only if for all ε > 0, we can find a
point x ∈ A ∩B(x0, ε), where x 6= x0.

We leave the following results on accumulation points and closed sets as
exercises.

Proposition 8.32 Let X be a metric space, and let A ⊆ X be a subset. Then
A is closed if and only if it contains all of its accumulation points. 2

Let us write A to denote the union of a subset A with its accumulation
points. By the above, if the subset A is already closed, then A = A.

Proposition 8.33 Let X be a metric space, and let A be a subset. Then the
set A is the smallest closed subset of the space X which contains A. 2

We call the subset A the closure of the set A. Our notation is consistent
with the earlier notation used for closed balls, as the following example (again
left as an exercise) shows.

Example 8.34 Let x ∈ X and δ > 0. Then the closure of the open ball B(x, δ)
is the closed ball

B(x, δ) = {y ∈ X | d(x, y) ≤ δ}

Now, the following result in complex analysis is called the identity theorem.

Theorem 8.35 Let R ⊆ C be an open connected subset, and let f :R→ C be a
holomorphic function. Then the following are equivalent.

1. f = 0.
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2. The set of zeroes
Z(f) = {z ∈ R | f(z) = 0}

has an accumulation point lying in the domain R.

3. There is a point w ∈ R such that f (n)(w) = 0 for all n ∈ N.

Proof:

• (1)⇒ (2).

This is trivial.

• (2)⇒ (3).

Let w ∈ R be an accumulation point of the set of zeroes Z(f). We want
to show that f (n)(w) = 0 for all n.

Suppose this is not true. Then we have a minimal k ∈ N such that
f (k)(w) 6= 0. By Taylor’s theorem, we have r > 0 such that

f(z) =

∞∑
n=k

an(z − w)n = (z − w)kf̃(z) f̃(z) =

∞∑
n=k

an(z − w)n−k

for all z ∈ B(w, r).

Since f (k)(w) 6= 0, we have f̃(w) = ak 6= 0. The function f̃ :B(w, r) → C
is holomorphic, and therefore continuous, so we can find ε > 0 such that
f̃(z) 6= 0 whenever z ∈ B(w, ε).

Hence, f(z) 6= 0 for all z ∈ B′(w, ε). Thus the point w is not an accumu-
lation point of the set of zeroes Z(f).

• (3)⇒ (1).

Since the function f is holomorphic, it is also analytic by Taylor’s theorem,
and the n-th derivative f (n):R→ C is continuous. Thus the set

Wn = {z ∈ R | f (n)(z) = 0}

is closed.

It follows that the intersection W = ∪∞n=0Wn is also closed. If we assume
(3), then W 6= ∅.
Let w ∈W . Then by Taylor’s theorem, the function f is zero in open ball
B(w, δ). Hence B(w, δ) ⊆W , and the set W is open.

Thus W 6= ∅, and W is both open and closed. Since the domain R is
connected, we therefore have W = R, and f = 0.

2

The identity theorem has a number of immediate consequences.
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Corollary 8.36 Let R ⊆ C be an open connected subset, and let f, g:R → C
be holomorphic functions. Then the following are equivalent.

1. f = g.

2. The set
{z ∈ R | f(z) = g(z)}

has an accumulation point lying in the domain R.

3. There is a point w ∈ R such that f (n)(w) = g(n)(w) for all n ∈ N.

Proof: Apply the identity theorem to the function h = f − g. 2

Corollary 8.37 Let R ⊆ C be an open connected set. Then a holomorphic
function f :R → C is determined by its values on an arbitrarily small local ball
lying in R.

Proof: Let w ∈ R, and ε > 0. Let g:R → C be a holomorphic function such
that g(z) = f(z) for all z ∈ B(w, ε).

The point w ∈ R is an accumulation point of the set

B(w, ε) ⊆ {z ∈ R | f(z) = g(z)}

Hence, by the above, f = g. 2

Let f :R→ R be a function. A holomorphic extension of f is a holomorphic
function f :C→ C such that f(x) = f(x) whenever x ∈ R.

Holomorphic extensions do not always exist. For example, by Taylor’s the-
orem, for a function to have a holomorphic extension it must be infinitely dif-
ferentiable.

Corollary 8.38 Let f :R→ R be a function. Then f has at most one holomor-
phic extension.

Proof: Let f = g be holomorphic extensions of the function f . Let S = {z ∈
C | f(z) = g(z)}.

Then R ⊆ S, since the functions are both equal to the function f for real
numbers. But the set of real numbers, R, certainly has an accumulation point.
Hence f = g. 2

The above corollary can be used to deduce certain properties of complex
functions from the corresponding properties of real functions.

For instance, for all θ ∈ R, we have the Euler formula

eiθ = cos θ + i sin θ
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Let f(z) = eiz, and g(z) = cos z+i sin z. Then f and g are both holomorphic
functions, and f(x) = g(x) for all x ∈ R. Hence f(z) = g(z) for all z ∈ C, that
is

eiz = cos z + i sin z

for all z ∈ C.

8.7 Open Mappings

Definition 8.39 Let X and Y be topological spaces, and let ϕ:X → Y be a
map. We call the map ϕ open if for any open subset U ⊆ X, the image f [U ] ⊆ Y
is open.

The above is different to the definition of a continuous map, which is that
the inverse image of an open set is open.

Observe that an open continuous bijection is a homeomorphism.
We want to show that any non-constant holomorphic map is open.

Lemma 8.40 Let R ⊆ C be an open connected set, and let f :R → C be a
non-constant holomorphic function. Choose w ∈ C. Then there exists δ > 0
such that f(z) 6= f(w) for all z ∈ S(w, δ).

Proof: Suppose that for all δ > 0 where B(w, δ) ⊆ R, we can find z ∈ S(w, δ)
such that f(z) = f(w).

Let c:R → C be the constant function, with c(z) = f(w) for all z ∈ R.
Then, by our assumption, the set

S = {z ∈ C | f(z) = c(z)}

has an accumulation point, w.
It follows by the identity theorem that f = c, that is to say the function f

is constant, which is a contradiction. 2

Lemma 8.41 Let R ⊆ C be an open set, and let f :R → C be a holomorphic
function. Let w ∈ R, and choose δ > 0 such that B(w, δ) ⊆ R.

Suppose that
|f(w)| < inf{|f(z)| | z ∈ S(w, δ)}

Then the function f has a zero in the ball B(w, δ).

Proof: Suppose that f(z) 6= 0 for all z ∈ B(w, δ). By the above inequality,
f(z) 6= 0 for all z ∈ B(w, δ).

Now the set of points z ∈ R such that f(z) 6= 0 is the inverse image of the
open set C\{0}. Hence, there is an open set U ⊆ R such that f(z) 6= 0 for all
z ∈ U , and B(w, δ) ⊆ U .

The function g:U → C defined by the formula g(z)/1/f(z) is holomorphic.
By corollary 8.7 to Cauchy’s integral formula, we have

|g(w)| ≤ sup{|g(z)| z ∈ S(w, δ)}
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Taking the reciprocal, we see

|f(w)| ≥ inf{|f(z)| z ∈ S(w, δ)}

which contradicts our original inequality.
Thus the function f has at least one zero in the ball B(w, δ). 2

Lemma 8.42 Let R ⊆ C be an open set, and let f :R→ C be holomorphic. Let
w ∈ C, and choose r > 0 such that B(w, r) ⊆ R.

Let

δ =
1

2
inf{|f(z)− f(w)| | z ∈ S(w, r)}

Suppose δ > 0. Then B(f(w), δ) ⊆ f [B(w, r)].

Proof: Let u ∈ B(f(w), δ). We want to show that u ∈ f [B(w, r)]. So we need
to find a point v ∈ B(w, r) such that f(v) = u.

Let z ∈ S(w, r). By definition of the constant δ, we know that |f(z)−f(w)| ≤
2δ. Since u ∈ B(f(w), δ), we know that |f(w) − u| < δ. Hence by the triangle
inequality

|f(z)− u| ≥ |f(z)− f(w)| − |f(w)− u| > 2δ − δ = δ

Therefore |f(w)−u| < |f(z)−u| for all z ∈ S(w, r). Since the sphere S(w, r)
is compact, we see that

|f(w)− u| < inf{|f(z)− u| | z ∈ S(w, δ)}

By the previous lemma, we can find v ∈ B(w, r) such that f(v) − u = 0,
that is to say f(v) = u, and we are done. 2

Theorem 8.43 Let R ⊆ C be an open connected subset, and let f :R→ C be a
non-constant holomorphic mapping. Then f is open.

Proof: Let U ⊆ R be open. Let w ∈ U . Then by lemma 8.40, there exists
δ > 0 such that B(w, r) ⊆ U , and f(z) 6= f(w) for all z ∈ S(w, δ).

Since the sphere S(w, δ) is compact, if we define

δ =
1

2
inf{|f(z)− f(w)| | z ∈ S(w, r)}

then δ > 0.
By the above lemma, B(f(w), δ) ⊆ f [B(w, r)] ⊆ f [U ]. Hence the image f [U ]

is open, and we are done. 2

Since it is impossible for an injective map defined an a non-empty open
subset of C to be constant, we immediately obtain the following.

Corollary 8.44 Let R ⊆ C be a connected open subset. Let f :R → S be a
bijective holomorphic map. Then f is a homeomorphism. 2
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