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Preface

This book represents a substantial revision of the first edition which was published in
1971. Most of the topics of the original edition have been retained, but in a number of
instances the material has been reworked so as to incorporate alternative approaches to
these topics that have appeared in the mathematical literature in recent years.

The book is intended as a text, appropriate for use by advanced undergraduates or gradu-
ate students who have taken a course in introductory real analysis, or as it is often called,
advanced calculus. No background in complex variables is assumed, thus making the text
suitable for those encountering the subject for the first time. It should be possible to
cover the entire book in two semesters.

The list below enumerates many of the major changes and/or additions to the first edition.

1. The relationship between real-differentiability and the Cauchy-Riemann equations.

2. J.D. Dixon’s proof of the homology version of Cauchy’s theorem.

3. The use of hexagons in tiling the plane, instead of squares, to characterize simple
connectedness in terms of winding numbers of cycles. This avoids troublesome details
that appear in the proofs where the tiling is done with squares.

4. Sandy Grabiner’s simplified proof of Runge’s theorem.

5. A self-contained approach to the problem of extending Riemann maps of the unit disk
to the boundary. In particular, no use is made of the Jordan curve theorem, a difficult
theorem which we believe to be peripheral to a course in complex analysis. Several
applications of the result on extending maps are given.

6. D.J. Newman’s proof of the prime number theorem, as modified by J. Korevaar, is
presented in the last chapter as a means of collecting and applying many of the ideas and
results appearing in earlier chapters, while at the same time providing an introduction to
several topics from analytic number theory.

For the most part, each section is dependent on the previous ones, and we recommend
that the material be covered in the order in which it appears. Problem sets follow most
sections, with solutions provided (in a separate section).
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We have attempted to provide careful and complete explanations of the material, while
at the same time maintaining a writing style which is succinct and to the point.
c© Copyright 2004 by R.B. Ash and W.P. Novinger. Paper or electronic copies for non-
commercial use may be made freely without explicit permission of the authors. All other
rights are reserved.
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Chapter 1

Introduction

The reader is assumed to be familiar with the complex plane C to the extent found in
most college algebra texts, and to have had the equivalent of a standard introductory
course in real analysis (advanced calculus). Such a course normally includes a discussion
of continuity, differentiation, and Riemann-Stieltjes integration of functions from the real
line to itself. In addition, there is usually an introductory study of metric spaces and the
associated ideas of open and closed sets, connectedness, convergence, compactness, and
continuity of functions from one metric space to another. For the purpose of review and
to establish notation, some of these concepts are discussed in the following sections.

1.1 Basic Definitions

The complex plane C is the set of all ordered pairs (a, b) of real numbers, with addition
and multiplication defined by

(a, b) + (c, d) = (a + c, b + d) and (a, b)(c, d) = (ac− bd, ad + bc).

If i = (0, 1) and the real number a is identified with (a, 0), then (a, b) = a + bi. The
expression a + bi can be manipulated as if it were an ordinary binomial expression of real
numbers, subject to the relation i2 = −1. With the above definitions of addition and
multiplication, C is a field.

If z = a + bi, then a is called the real part of z, written a = Re z, and b is called the
imaginary part of z, written b = Im z. The absolute value or magnitude or modulus of z
is defined as (a2 + b2)1/2. A complex number with magnitude 1 is said to be unimodular.
An argument of z (written arg z) is defined as the angle which the line segment from (0, 0)
to (a, b) makes with the positive real axis. The argument is not unique, but is determined
up to a multiple of 2π.

If r is the magnitude of z and θ is an argument of z, we may write

z = r(cos θ + i sin θ)

and it follows from trigonometric identities that

|z1z2| = |z1||z2| and arg(z1z2) = arg z1 + arg z2
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2 CHAPTER 1. INTRODUCTION

(that is, if θk is an argument of zk, k = 1, 2, then θ1 + θ2 is an argument of z1z2). If
z2 �= 0, then arg(z1/z2) = arg(z1)− arg(z2). If z = a + bi, the conjugate of z is defined as
z = a− bi, and we have the following properties:

|z| = |z|, arg z = − arg z, z1 + z2 = z1 + z2, z1 − z2 = z1 − z2,

z1z2 = z1z2, Re z = (z + z)/2, Im z = (z − z)/2i, zz = |z|2.
The distance between two complex numbers z1 and z2 is defined as d(z1, z2) = |z1 − z2|.
So d(z1, z2) is simply the Euclidean distance between z1 and z2 regarded as points in
the plane. Thus d defines a metric on C, and furthermore, d is complete, that is, every
Cauchy sequence converges. If z1, z2, . . . is sequence of complex numbers, then zn → z if
and only if Re zn → Re z and Im zn → Im z. We say that zn →∞ if the sequence of real
numbers |zn| approaches +∞.

Many of the above results are illustrated in the following analytical proof of the triangle
inequality:

|z1 + z2| ≤ |z1|+ |z2| for all z1, z2 ∈ C.

The geometric interpretation is that the length of a side of a triangle cannot exceed the
sum of the lengths of the other two sides. See Figure 1.1.1, which illustrates the familiar
representation of complex numbers as vectors in the plane.

z1
��

z1+z2

���������������
z2

���������

Figure 1.1.1

The proof is as follows:

|z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + |z2|2 + z1z2 + z1z2

= |z1|2 + |z2|2 + z1z2 + z1z2 = |z1|2 + |z2|2 + 2 Re(z1z2)

≤ |z1|2 + |z2|2 + 2|z1z2| = (|z1|+ |z2|)2.
The proof is completed by taking the square root of both sides.

If a and b are complex numbers, [a, b] denotes the closed line segment with endpoints
a and b. If t1 and t2 are arbitrary real numbers with t1 < t2, then we may write

[a, b] = {a +
t− t1
t2 − t1

(b− a) : t1 ≤ t ≤ t2}.

The notation is extended as follows. If a1, a2, . . . , an+1 are points in C, a polygon from
a1 to an+1 (or a polygon joining a1 to an+1) is defined as

n⋃
j=1

[aj , aj+1],

often abbreviated as [a1, . . . , an+1].
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1.2 Further Topology of the Plane

Recall that two subsets S1 and S2 of a metric space are separated if there are open sets
G1 ⊇ S1 and G2 ⊇ S2 such that G1 ∩ S2 = G2 ∩ S1 = ∅, the empty set. A set is
connected iff it cannot be written as the union of two nonempty separated sets. An open
(respectively closed) set is connected iff it is not the union of two nonempty disjoint open
(respectively closed) sets.

1.2.1 Definition

A set S ⊆ C is said to be polygonally connected if each pair of points in S can be joined
by a polygon that lies in S.

Polygonal connectedness is a special case of path (or arcwise) connectedness, and it
follows that a polygonally connected set, in particular a polygon itself, is connected. We
will prove in Theorem 1.2.3 that any open connected set is polygonally connected.

1.2.2 Definitions

If a ∈ C and r > 0, then D(a, r) is the open disk with center a and radius r; thus
D(a, r) = {z : |z − a| < r}. The closed disk {z : |z − a| ≤ r} is denoted by D(a, r), and
C(a, r) is the circle with center a and radius r.

1.2.3 Theorem

If Ω is an open subset of C, then Ω is connected iff Ω is polygonally connected.

Proof. If Ω is connected and a ∈ Ω, let Ω1 be the set of all z in Ω such that there is a
polygon in Ω from a to z, and let Ω2 = Ω\Ω1. If z ∈ Ω1, there is an open disk D(z, r) ⊆ Ω
(because Ω is open). If w ∈ D(z, r), a polygon from a to z can be extended to w, and
it follows that D(z, r) ⊆ Ω1, proving that Ω1 is open. Similarly, Ω2 is open. (Suppose
z ∈ Ω2, and choose D(z, r) ⊆ Ω. Then D(z, r) ⊆ Ω2 as before.)

Thus Ω1 and Ω2 are disjoint open sets, and Ω1 �= ∅ because a ∈ Ω1. Since Ω is
connected we must have Ω2 = ∅, so that Ω1 = Ω. Therefore Ω is polygonally connected.
The converse assertion follows because any polygonally connected set is connected. ♣

1.2.4 Definitions

A region in C is an open connected subset of C. A set E ⊆ C is convex if for each pair
of points a, b ∈ E, we have [a, b] ⊆ E; E is starlike if there is a point a ∈ E (called a
star center) such that [a, z] ⊆ E for each z ∈ E. Note that any nonempty convex set is
starlike and that starlike sets are polygonally connected.



4 CHAPTER 1. INTRODUCTION

1.3 Analytic Functions

1.3.1 Definition

Let f : Ω → C, where Ω is a subset of C. We say that f is complex-differentiable at the
point z0 ∈ Ω if for some λ ∈ C we have

lim
h→0

f(z0 + h)− f(z0)
h

= λ (1)

or equivalently,

lim
z→z0

f(z)− f(z0)
z − z0

= λ. (2)

Conditions (3), (4) and (5) below are also equivalent to (1), and are sometimes easier to
apply.

lim
n→∞

f(z0 + hn)− f(z0)
hn

= λ (3)

for each sequence {hn} such that z0 + hn ∈ Ω \ {z0} and hn → 0 as n→∞.

lim
n→∞

f(zn)− f(z0)
zn − z0

= λ (4)

for each sequence {zn} such that zn ∈ Ω \ {z0} and zn → z0 as n→∞.

f(z) = f(z0) + (z − z0)(λ + ε(z)) (5)

for all z ∈ Ω, where ε : Ω→ C is continuous at z0 and ε(z0) = 0.
To show that (1) and (5) are equivalent, just note that ε may be written in terms of

f as follows:

ε(z) =

{
f(z)−f(z0)

z−z0
− λ if z �= z0

0 if z = z0.

The number λ is unique. It is usually written as f ′(z0), and is called the derivative of f
at z0.

If f is complex-differentiable at every point of Ω, f is said to be analytic or holomorphic
on Ω. Analytic functions are the basic objects of study in complex variables.

Analyticity on a nonopen set S ⊆ C means analyticity on an open set Ω ⊇ S. In
particular, f is analytic at a point z0 iff f is analytic on an open set Ω with z0 ∈ Ω. If f1

and f2 are analytic on Ω, so are f1 + f2, f1 − f2, kf1 for k ∈ C, f1f2, and f1/f2 (provided
that f2 is never 0 on Ω). Furthermore,

(f1 + f2)′ = f ′1 + f ′2, (f1 − f2)′ = f ′1 − f ′2, (kf1)′ = kf ′1

(f1f2)′ = f1f
′
2 + f ′1f2,

(
f1

f2

)′
=

f2f
′
1 − f1f

′
2

f2
2

.
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The proofs are identical to the corresponding proofs for functions from R to R.
Since d

dz (z) = 1 by direct computation, we may use the rule for differentiating a
product (just as in the real case) to obtain

d

dz
(zn) = nzn−1, n = 0, 1, . . .

This extends to n = −1,−2, . . . using the quotient rule.
If f is analytic on Ω and g is analytic on f(Ω) = {f(z) : z ∈ Ω}, then the composition

g ◦ f is analytic on Ω and

d

dz
g(f(z)) = g′(f(z)f ′(z)

just as in the real variable case.
As an example of the use of Condition (4) of (1.3.1), we now prove a result that will

be useful later in studying certain inverse functions.

1.3.2 Theorem

Let g be analytic on the open set Ω1, and let f be a continuous complex-valued function
on the open set Ω. Assume
(i) f(Ω) ⊆ Ω1,
(ii) g′ is never 0,
(iii) g(f(z)) = z for all z ∈ Ω (thus f is 1-1).
Then f is analytic on Ω and f ′ = 1/(g′ ◦ f).
Proof. Let z0 ∈ Ω, and let {zn} be a sequence in Ω \ {z0} with zn → z0. Then

f(zn)− f(z0)
zn − z0

=
f(zn)− f(z0)

g(f(zn))− g(f(z0))
=

[
g(f(zn))− g(f(z0))

f(zn)− f(z0)

]−1

.

(Note that f(zn) �= f(z0) since f is 1-1 and zn �= z0.) By continuity of f at z0, the
expression in brackets approaches g′(f(z0)) as n → ∞. Since g′(f(z0)) �= 0, the result
follows. ♣

1.4 Real-Differentiability and the Cauchy-Riemann Equa-
tions

Let f : Ω→ C, and set u = Re f, v = Im f . Then u and v are real-valued functions on Ω
and f = u + iv. In this section we are interested in the relation between f and its real
and imaginary parts u and v. For example, f is continuous at a point z0 iff both u and v
are continuous at z0. Relations involving derivatives will be more significant for us, and
for this it is convenient to be able to express the idea of differentiability of real-valued
function of two real variables by means of a single formula, without having to consider
partial derivatives separately. We do this by means of a condition analogous to (5) of
(1.3.1).
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Convention

From now on, Ω will denote an open subset of C, unless otherwise specified.

1.4.1 Definition

Let g : Ω → R. We say that g is real-differentiable at z0 = x0 + iy0 ∈ Ω if there exist
real numbers A and B, and real functions ε1 and ε2 defined on a neighborhood of (x0, y0),
such that ε1 and ε2 are continuous at (x0, y0), ε1(x0, y0) = ε2(x0, y0) = 0, and

g(x, y) = g(x0, y0) + (x− x0)[A + ε1(x, y)] + (y − y0)[B + ε2(x, y)]

for all (x, y) in the above neighborhood of (x0, y0).
It follows from the definition that if g is real-differentiable at (x0, y0), then the partial

derivatives of g exist at (x0, y0) and

∂g

∂x
(x0, y0) = A,

∂g

∂y
(x0, y0) = B.

If, on the other hand, ∂g
∂x and ∂g

∂y exist at (x0, y0) and one of these exists in a neighborhood
of (x0, y0) and is continuous at (x0, y0), then g is real-differentiable at (x0, y0). To verify
this, assume that ∂g

∂x is continuous at (x0, y0), and write

g(x, y)− g(x0, y0) = g(x, y)− g(x0, y) + g(x0, y)− g(x0, y0).

Now apply the mean value theorem and the definition of partial derivative respectively
(Problem 4).

1.4.2 Theorem

Let f : Ω → C, u = Re f, v = Im f . Then f is complex-differentiable at (x0, y0) iff u and
v are real-differentiable at (x0, y0) and the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y

are satisfied at (x0, y0). Furthermore, if z0 = x0 + iy0, we have

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0).

Proof. Assume f complex-differentiable at z0, and let ε be the function supplied by (5)
of (1.3.1). Define ε1(x, , y) = Re ε(x, y), ε2(x, y) = Im ε(x, y). If we take real parts of both
sides of the equation

f(x) = f(z0) + (z − z0)(f ′(z0) + ε(z)) (1)

we obtain

u(x, y) = u(x0, y0) + (x− x0)[Re f ′(z0) + ε1(x, y)]
+ (y − y0)[− Im f ′(z0)− ε2(x, y)].
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It follows that u is real-differentiable at (x0, y0) with

∂u

∂x
(x0, y0) = Re f ′(z0),

∂u

∂y
(x0, y0) = − Im f ′(z0). (2)

Similarly, take imaginary parts of both sides of (1) to obtain

v(x, y) = v(x0, y0) + (x− x0)[Im f ′(z0) + ε2(x, y)]
+ (y − y0)[Re f ′(z0) + ε1(x, y)]

and conclude that

∂v

∂x
(x0, y0) = Im f ′(z0),

∂v

∂y
(x0, y0) = Re f ′(z0). (3)

The Cauchy-Riemann equations and the desired formulas for f ′(z0) follow from (2) and
(3).

Conversely, suppose that u and v are real-differentiable at (x0, y0) and satisfy the
Cauchy-Riemann equations there. Then we may write equations of the form

u(x, y) = u(x0, y0) + (x− x0)[
∂u

∂x
(x0, y0) + ε1(x, y)]

+ (y − y0)[
∂u

∂y
(x0, y0) + ε2(x, y)], (4)

v(x, y) = v(x0, y0) + (x− x0)[
∂v

∂x
(x0, y0) + ε3(x, y)]

+ (y − y0)[
∂v

∂y
(x0, y0) + ε4(x, y)]. (5)

Since f = u + iv, (4) and (5) along with the Cauchy-Riemann equations yield

f(z) = f(z0) + (z − z0)[
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) + ε(z)]

where, at least in a neighborhood of z0,

ε(z) =
[
x− x0

z − z0

]
[ε1(x, y) + iε3(x, y)] +

[
y − y0

z − z0

]
[ε2(x, y) + iε4(x, y)] if z �= z0; ε(z0) = 0.

It follows that f is complex-differentiable at z0. ♣

1.5 The Exponential Function

In this section we extend the domain of definition of the exponential function (as normally
encountered in calculus) from the real line to the entire complex plane. If we require that
the basic rules for manipulating exponentials carry over to the extended function, there is
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only one possible way to define exp(z) for z = x+iy ∈ C. Consider the following sequence
of “equations” that exp should satisfy:

exp(z) = exp(x + iy)
“ = ” exp(x) exp(iy)

“ = ” ex

(
1 + iy +

(iy)2

2!
+ · · ·

)

“ = ” ex

[(
1− y2

2!
+

y4

4!
− · · ·

)
+ i

(
y − y3

3!
+

y5

5!
− · · ·

)]
“ = ” ex(cos y + i sin y).

Thus we have only one candidate for the role of exp on C.

1.5.1 Definition

If z = x+ iy ∈ C, let exp(z) = ex(cos y+ i sin y). Note that if z = x ∈ R, then exp(z) = ex

so exp is indeed a extension of the real exponential function.

1.5.2 Theorem

The exponential function is analytic on C and d
dz exp(z) = exp(z) for all z.

Proof. The real and imaginary parts of exp(x + iy) are, respectively, u(x, y) = ex cos y
and v(x, y) = ex sin y. At any point (x0, y0), u and v are real-differentiable (see Problem
4) and satisfy the Cauchy-Riemann equations there. The result follows from (1.4.2). ♣

Functions such as exp and the polynomials that are analytic on C are called entire
functions.

The exponential function is of fundamental importance in mathematics, and the in-
vestigation of its properties will be continued in Section 2.3.

1.6 Harmonic Functions

1.6.1 Definition

A function g : Ω → R is said to be harmonic on Ω if g has continuous first and second
order partial derivatives on Ω and satisfies Laplace’s equation

∂2g

∂x2
+

∂2g

∂y2
= 0

on all of Ω.

After some additional properties of analytic functions have been developed, we will be
able to prove that the real and imaginary parts of an analytic function on Ω are harmonic
on Ω. The following theorem is a partial converse to that result, namely that a harmonic
on Ω is locally the real part of an analytic function.
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1.6.2 Theorem

Suppose u : Ω→ R is harmonic on Ω, and D is any open disk contained in Ω. Then there
exists a function v : D → R such that u + iv is analytic on D.

The function v is called a harmonic conjugate of u.
Proof. Consider the differential Pdx + Qdy, where P = −∂u

∂y , Q = ∂u
∂x . Since u is

harmonic, P and Q have continuous partial derivatives on Ω and ∂P
∂y = ∂Q

∂x . It follows
(from calculus) that Pdx + Qdy is a locally exact differential. In other words, there is a
function v : D → R such that dv = Pdx + Qdy. But this just means that on D we have

∂v

∂x
= P = −∂u

∂y
and

∂v

∂y
= Q =

∂u

∂x
.

Hence by (1.4.2) (and Problem 4), u + iv is analytic on D.

Problems

1. Prove the parallelogram law |z1 + z2|2 + |z1 − z2|2 = 2[|z1|2 + |z2|2] and give a
geometric interpretation.

2. Show that |z1 + z2| = |z1|+ |z2| iff z1 and z2 lie on a common ray from 0 iff one of
z1 or z2 is a nonnegative multiple of the other.

3. Let z1 and z2 be nonzero complex numbers, and let θ, 0 ≤ θ ≤ π, be the angle
between them. Show that
(a) Re z1z2 = |z1||z2| cos θ, Im z1z2 = ±|z1||z2| sin θ, and consequently
(b) The area of the triangle formed by z1, z2 and z2 − z1 is | Im z1z2|/2.

4. Let g : Ω → R be such that ∂g
∂x and ∂g

∂y exist at (x0, y0) ∈ Ω, and suppose that one
of these partials exists in a neighborhood of (x0, y0) and is continuous at (x0, y0).
Show that g is real-differentiable at (x0, y0).

5. Let f(x) = z, z ∈ C. Show that although f is continuous everywhere, it is nowhere
differentiable.

6. Let f(z) = |z|2, z ∈ C. Show that f is complex-differentiable at z = 0, but nowhere
else.

7. Let u(x, y) =
√
|xy|, (x, y) ∈ C. Show that ∂u

∂x and ∂u
∂y both exist at (0,0), but u is

not real-differentiable at (0,0).
8. Show that the field of complex numbers is isomorphic to the set of matrices of the

form [
a b
−b a

]

with a, b ∈ R.
9. Show that the complex field cannot be ordered. That is, there is no subset P ⊆ C

of “positive elements” such that
(a) P is closed under addition and multiplication.
(b) If z ∈ P , then exactly one of the relations z ∈ P, z = 0, −z ∈ P holds.
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10. (A characterization of absolute value) Show that there is a unique function α : C→ R

such that
(i) α(x) = x for all real x ≥ 0;
(ii) α(zw) = α(z)α(w), z, w ∈ C;
(iii) α is bounded on the unit circle C(0, 1).

Hint: First show that α(z) = 1 for |z| = 1.

11. (Another characterization of absolute value) Show that there is a unique function
α : C→ R such that
(i) α(x) = x for all real x ≥ 0;
(ii) α(zw) = α(z)α(w), z, w ∈ C;
(iii) α(z + w) ≤ α(z) + α(w), z, w ∈ C.

12. Let α be a complex number with |α| < 1. Prove that∣∣∣∣ z − α

1− αz

∣∣∣∣ = 1 iff |z| = 1.

13. Suppose z ∈ C, z �= 0. Show that z + 1
z is real iff Im z = 0 or |z| = 1.

14. In each case show that u is harmonic and find the harmonic conjugate v such that
v(0, 0) = 0.
(i) u(x, y) = ey cos x;
(ii) u(x, y) = 2x− x3 + 3xy2.

15. Let a, b ∈ C with a �= 0, and let T (z) = az + b, z ∈ C.
(i) Show that T maps the circle C(z0, r) onto the circle C(T (z0), r|a|).
(ii) For which choices of a and b will T map C(0, 1) onto C(1 + i, 2)?
(iii) In (ii), is it possible to choose a and b so that T (1) = −1 + 3i?

16. Show that f(z) = eRe z is nowhere complex-differentiable.

17. Let f be a complex-valued function defined on an open set Ω that is symmetric with
respect to the real line, that is, z ∈ Ω implies z ∈ Ω. (Examples are C and D(x, r)
where x ∈ R.) Set g(z) = f(z), and show that g is analytic on Ω if and only if f is
analytic on Ω.

18. Show that an equation for the circle C(z0, r) is zz − z0z − z0z + z0z0 = r2.

19. (Enestrom’s theorem) Suppose that P (z) = a0 + a1z + · · ·+ anzn, where n ≥ 1 and
a0 ≥ a1 ≥ a2 ≥ · · · ≥ an > 0. Prove that the zeros of the polynomial P (z) all lie
outside the open unit disk D(0, 1).

Hint: Look at (1 − z)P (z), and show that (1 − z)P (z) = 0 implies that a0 =
(a0 − a1)z + (a1 − a2)z2 + · · · + (an−1 − an)zn + anzn+1, which is impossible for
|z| < 1.

20. Continuing Problem 19, show that if aj−1 > aj for all j, then all the zeros of P (z)
must be outside the closed unit disk D(0, 1).

Hint: If the last equation of Problem 19 holds for some z with |z| ≤ 1, then z = 1.



Chapter 2

The Elementary Theory

2.1 Integration on Paths

The integral of a complex-valued function on a path in the complex plane will be intro-
duced via the integral of a complex-valued function of a real variable, which in turn is
expressed in terms of an ordinary Riemann integral.

2.1.1 Definition

Let ϕ : [a, b]→ C be a piecewise continuous function on the closed interval [a, b] of reals.
The Riemann integral of ϕ is defined in terms of the real and imaginary parts of ϕ by

∫ b

a

ϕ(t) dt =
∫ b

a

Re ϕ(t) dt + i

∫ b

a

Im ϕ(t) dt.

2.1.2 Basic Properties of the Integral

The following linearity property is immediate from the above definition and the corre-
sponding result for real-valued functions:

∫ b

a

(λϕ(t) + µψ(t)) dt = λ

∫ b

a

ϕ(t) dt + µ

∫ b

a

ψ(t) dt

for any complex numbers λ and µ. A slightly more subtle property is∣∣∣∣∣
∫ b

a

ϕ(t) dt

∣∣∣∣∣ ≤
∫ b

a

|ϕ(t)| dt.

This may be proved by approximating the integral on the left by Riemann sums and
using the triangle inequality. A somewhat more elegant argument uses a technique called
polarization, which occurs quite frequently in analysis. Define λ =

∣∣∣∫ b

a
ϕ(t)d t

∣∣∣ /
∫ b

a
ϕ(t) dt;

then |λ| = 1. (If the denominator is zero, take λ to be any complex number of absolute

1
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value 1.) Then |
∫ b

a
ϕ(t) dt| = λ

∫ b

a
ϕ(t) dt =

∫ b

a
λϕ(t)dt by linearity. Since the absolute

value of a complex number is real,∣∣∣∣∣
∫ b

a

ϕ(t) dt

∣∣∣∣∣ = Re
∫ b

a

λϕ(t) dt =
∫ b

a

Re λϕ(t) dt

by definition of the integral. But Re |z| ≤ |z|, so∫ b

a

Re λϕ(t) dt ≤
∫ b

a

|λϕ(t)| dt =
∫ b

a

|ϕ(t)| dt

because |λ| = 1. ♣
The fundamental theorem of calculus carries over to complex-valued functions. Ex-

plicitly, if ϕ has a continuous derivative on [a, b], then

ϕ(x) = ϕ(a) +
∫ x

a

ϕ′(t) dt

for a ≤ x ≤ b. If ϕ is continuous on [a, b] and F (x) =
∫ x

a
ϕ(t) dt, a ≤ x ≤ b, then

F ′(x) = ϕ(x) for all x in [a, b]. These assertions are proved directly from the corresponding
results for real-valued functions.

2.1.3 Definition

A curve in C is a continuous mapping γ of a closed interval [a, b] into C. If in addition,
γ is piecewise continuously differentiable, then γ is called a path. A curve (or path) with
γ(a) = γ(b) is called a closed curve (or path). The range (or image or trace) of γ will be
denoted by γ∗. If γ∗ is contained in a set S, γ is said to be a curve (or path) in S.

Intuitively, if z = γ(t) and t changes by a small amount dt, then z changes by dz =
γ′(t) dt. This motivates the definition of the length L of a path γ:

L =
∫ b

a

|γ′(t)| dt

and also motivates the following definition of the path integral
∫

γ
f(z)dz.

2.1.4 Definition

Let γ : [a, b] → C be a path, and let f be continuous on γ, that is, f : γ∗ → C is
continuous. We define the integral of f on (or along) γ by∫

γ

f(z) dz =
∫ b

a

f(γ(t))γ′(t) dt.

It is convenient to define
∫

γ
f(z) dz with γ replaced by certain point sets in the plane.

Specifically, if [z1, z2] is a line segment in C, we define∫
[z1,z2]

f(z) dz =
∫

γ

f(z) dz
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where γ(t) = (1 − t)z1 + tz2, 0 ≤ t ≤ 1. More generally, if [z1, . . . , zn+1] is a polygon
joining z1 to zn+1, we define

∫
[z1,z2,... ,zn+1]

f(z) dz =
n∑

j=1

∫
[zj ,zj+1]

f(z) dz.

The next estimate will be referred to as the M-L theorem.

2.1.5 Theorem

Suppose that f is continuous on the path γ and |f(z)| ≤ M for all z ∈ γ∗. If L is the
length of the path γ, then ∣∣∣∣

∫
γ

f(z) dz

∣∣∣∣ ≤ML.

Proof. Recall from (2.1.2) that the absolute value of an integral is less than or equal to
the integral of the absolute value. Then apply the definition of the path integral in (2.1.4)
and the definition of length in (2.1.3). ♣

The familiar process of evaluating integrals by anti-differentiation extends to integra-
tion on paths.

2.1.6 Fundamental Theorem for Integrals on Paths

Suppose f : Ω → C is continuous and f has a primitive F on Ω, that is, F ′ = f on Ω.
Then for any path γ : [a, b]→ Ω we have∫

γ

f(z) dz = F (γ(b))− F (γ(a)).

In particular, if γ is a closed path in Ω, then
∫

γ
f(z) dz = 0.

Proof.
∫

γ
f(z)dz =

∫ b

a
F ′(γ(t))γ′(t) dt =

∫ b

a
d
dtF (γ(t)) dt = F (γ(b)) − F (γ(a)) by the

fundamental theorem of calculus [see (2.1.2)]. ♣

2.1.7 Applications

(a) Let z1, z2 ∈ C and let γ be any path from z1 to z2, that is, γ : [a, b] → C is any path
such that γ(a) = z1 and γ(b) = z2. Then for n = 0, 1, 2, 3, . . . we have∫

γ

zn dz = (zn+1
2 − zn+1

1 )/(n + 1).

This follows from (2.1.6) and the fact that zn+1/(n+1) is a primitive of zn. The preceding
remains true for n = −2,−3,−4, . . . provided that 0 /∈ γ∗ and the proof is the same:
zn+1/(n + 1) is a primitive for zn on C \ {0}. But if n = −1, then the conclusion may
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fail as the following important computation shows. Take γ(t) = eit, 0 ≤ t ≤ 2π (the unit
circle, traversed once in the positive sense). Then

∫
γ

1
z

dz =
∫ 2π

0

ieit

eit
dt = 2πi 
= 0.

This also shows that f(z) = 1/z, although analytic on C \ {0}, does not have a primitive
on C \ {0}.
(b) Suppose f is analytic on the open connected set Ω and f ′(z) = 0 for all z ∈ Ω. Then
f is constant on Ω.

Proof. Let z1, z2 ∈ Ω. Since Ω is polygonally connected, there is a (polygonal) path
γ : [a, b] → Ω such that γ(a) = z1 and γ(b) = z2. by (2.1.6),

∫
γ

f ′(z) dz = f(z2)− f(z1).
But the left side is zero by hypothesis, and the result follows. ♣

Remark

If we do not assume that Ω is connected, we can prove only that f restricted to any
component of Ω is constant.

Suppose that a continuous function f on Ω is given. Theorem 2.1.6 and the applications
following it suggest that we should attempt to find conditions on f and/or Ω that are
sufficient to guarantee that f has a primitive. Let us attempt to imitate the procedure
used in calculus when f is a real-valued continuous function on an open interval in R. We
begin by assuming Ω is starlike with star center z0, say. Define F on Ω by

F (z) =
∫

[z0,z]

f(w) dw.

If z1 ∈ Ω, let us try to show that F ′(z1) = f(z1). If z is near but unequal to z1, we have

F (z)− F (z1)
z − z1

=
1

z − z1

(∫
[z0,z]

f(w) dw −
∫

[z0,z1]

f(w) dw

)

and we would like to say, as in the real variables case, that∫
[z0,z]

f(w) dw −
∫

[z0,z1]

f(w) dw =
∫

[z1,z]

f(w) dw, (1)

from which it would follow quickly that (F (z) − F (z1))/(z − z1) → f(z1) as z → z1.
Now if T is the triangle [z0, z1, z, z0], equation (1) is equivalent to the statement that∫

T
f(w) dw = 0, but as the example at the end of (2.1.7(a)) suggests, this need not be

true, even for analytic functions f . However, in the present setting, we can make the
key observation that if T̂ is the union of T and its interior (the convex hull of T ), then
T̂ ⊆ Ω. If f is analytic on Ω, it must be analytic on T̂ , and in this case, it turns out
that

∫
T

f(w) dw does equal 0. This is the content of Theorem 2.1.8; a somewhat different
version of this result was first proved by Augustin-Louis Cauchy in 1825.
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2.1.8 Cauchy’s Theorem for Triangles

Suppose that f is analytic on Ω and T = [z1, z2, z3, z1] is any triangle such that T̂ ⊆ Ω.
Then

∫
T

f(z) dz = 0.

Proof. Let a, b, c be the midpoints of [z1, z2], [z2, z3] and [z3, z1] respectively. Consider
the triangles [z1, a, c, z1], [z2, b, a, z2], [z3, c, b, z3] and [a, b, c, a] (see Figure 2.1.1). Now the
integral of f on T is the sum of the integrals on the four triangles, and it follows from the
triangle inequality that if T1 is one of these four triangles chosen so that |

∫
T1

f(z) dz| is
as large as possible, then

|
∫

T

f(z) dz| ≤ 4|
∫

T1

f(z) dz|.

Also, if L measures length, then L(T1) = 1
2L(T ), because a line joining two midpoints of a

triangle is half as long as the opposite side. Proceeding inductively, we obtain a sequence
{Tn : n = 1, 2, . . . } of triangles such that L(Tn) = 2−nL(T ), T̂n+1 ⊆ T̂n, and

|
∫

T

f(z) dz| ≤ 4n|
∫

Tn

f(z) dz|. (1)

Now the T̂n form a decreasing sequence of nonempty closed and bounded (hence compact)
sets in C whose diameters approach 0 as n→∞. Thus there is a point z0 ∈ ∩∞n=1T̂n. (If
the intersection is empty, then by compactness, some finite collection of T̂i’s would have
empty intersection.) Since f is analytic at z0, there is a continuous function ε : Ω → C

with ε(z0) = 0 [see (5) of (1.3.1)] and such that

f(z) = f(z0) + (z − z0)[f ′(z0) + ε(z)], z ∈ Ω. (2)

By (2) and (2.1.7a), we have

∫
Tn

f(z) dz =
∫

Tn

(z − z0)ε(z) dz, n = 1, 2, 3, . . . . (3)
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But by the M-L theorem (2.1.5),

|
∫

Tn

(z − z0)ε(z) dz| ≤ sup
z∈Tn

[|ε(z)| |z − z0|]L(Tn)

≤ sup
z∈Tn

|ε(z)|(L(Tn))2 since z ∈ T̂n

≤ sup
z∈Tn

|ε(z)|4−n(L(T ))2

→ 0 as n→∞.

Thus by (1) and (3),

|
∫

T

f(z) dz| ≤ sup
z∈Tn

|ε(z)|(L(T ))2 → 0

as n→∞, because ε(z0) = 0. We conclude that
∫

T
f(z) dz = 0. ♣

We may now state formally the result developed in the discussion preceding Cauchy’s
theorem.

2.1.9 Cauchy’s Theorem for Starlike Regions

Let f be analytic on the starlike region Ω. Then f has a primitive on Ω, and consequently,
by (2.1.6),

∫
γ

f(z) dz = 0 for every closed path γ in Ω.

Proof. Let z0 be a star center for Ω, and define F on Ω by F (z) =
∫
[z0,z]

f(w) dw. It
follows from (2.1.8) and discussion preceding it that F is a primitive for f . ♣

We may also prove the following converse to Theorem (2.1.6).

2.1.10 Theorem

If f : Ω→ C is continuous and
∫

γ
f(z) dz = 0 for every closed path γ in Ω, then f has a

primitive on Ω.

Proof. We may assume that Ω is connected (if not we can construct a primitive of f on
each component of Ω, and take the union of these to obtain a primitive of f on Ω). So fix
z0 ∈ Ω, and for each z ∈ Ω, let γz be a polygonal path in Ω from z0 to z. Now define F on
Ω by F (z) =

∫
γz

f(w) dw, z ∈ Ω. Then the discussion preceding (2.1.8) may be repeated
without essential change to show that F ′ = f on Ω. (In Equation (1) in that discussion,
[z0, z] and [z0, z1] are replaced by the polygonal paths γz and γz1 , but the line segment
[z1, z] can be retained for all z sufficiently close to z1.) ♣

2.1.11 Remarks

(a) If γ : [a, b] → C is a path, we may traverse γ backwards by considering the path λ
defined by λ(t) = γ(a+ b− t), a ≤ t ≤ b. Then λ∗ = γ∗ and for every continuous function
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f : γ∗ → C, it follows from the definition of the integral and a brief change of variable
argument that ∫

λ

f(z) dz = −
∫

γ

f(z) dz.

(b) Similarly, if γ1 : [a, b] → C and γ2 : [c, d] → C are paths with γ1(b) = γ2(c), we may
attach γ2 to γ1 via the path

γ(t) =

{
γ1((1− 2t)a + 2tb), 0 ≤ t ≤ 1/2
γ2((2− 2t)c + (2t− 1)d), 1/2 ≤ t ≤ 1.

Then γ∗ = γ∗1 ∪ γ∗2 and for every continuous function f : γ∗ → C,∫
γ

f(z) dz =
∫

γ1

f(z) dz +
∫

γ2

f(z) dz.

There is a technical point that should be mentioned. The path γ1(t), a ≤ t ≤ b, is strictly
speaking not the same as the path γ1((1 − 2t)a + 2tb), 0 ≤ t ≤ 1/2, since they have
different domains of definition. Given the path γ1 : [a, b]→ C, we are forming a new path
δ = γ1 ◦ h, where h(t) = (1− 2t)a + 2tb, 0 ≤ t ≤ 1/2. It is true then that δ∗ = γ∗1 and for
every continuous function f on γ∗1 ,

∫
γ1

f(z) dz =
∫

δ
f(z) dz. Problem 4 is a general result

of this type.
(c) If γ1 and γ2 are paths with the same initial point and the same terminal point, we
may form a closed path γ by first traversing γ1 and then traversing γ2 backwards. If f is
continuous on γ∗, then

∫
γ

f(z) dz = 0 iff
∫

γ1
f(z) dz =

∫
γ2

f(z) dz (see Figure 2.1.2).

An Application of 2.1.9

Let Γ = [z1, z2, z3, z4, z1] be a rectangle with center at 0 (see Figure 2.1.3); let us calculate∫
Γ

1
z dz. Let γ be a circle that circumscribes the rectangle Γ, and let γ1, γ2, γ3, γ4 be the

arcs of γ joining z1 to z2, z2 to z3, z3 to z4 and z4 to z1 respectively. There is an open
half plane (a starlike region) excluding 0 but containing both [z1, z2] and γ∗1 . By (2.1.9)
and Remark (2.1.11c), the integral of 1/z on [z1, z2] equals the integral of 1/z on γ1. By
considering the other segments of Γ and the corresponding arcs of γ, we obtain∫

Γ

1
z

dz =
∫

γ

1
z

dz = ±2πi
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by a direct calculation, as in (2.1.7a).

The reader who feels that the machinery used to obtain such a simple result is excessive
is urged to attempt to compute

∫
Γ

1
z dz directly.

The following strengthened form of Cauchy’s Theorem for triangles and for starlike
regions will be useful in the next section.

2.1.12 Extended Cauchy Theorem for Triangles

Let f be continuous on Ω and analytic on Ω \ {z0}. If T is any triangle such that T̂ ⊆ Ω,
then

∫
T

f(z) dz = 0.

Proof. Let T = [z1, z2, z3, z1]. If z0 /∈ T̂ , the result follows from (2.1.8), Cauchy’s theorem
for triangles. Also, if z1, z2 and z3 are collinear, then

∫
T

f(z) dz = 0 for any continuous
(not necessarily analytic) function. Thus assume that z1, z2 and z3 are non-collinear and
that z0 ∈ T̂ . Suppose first that z0 is a vertex, say z0 = z1. Choose points a ∈ [z1, z2] and
b ∈ [z1, z3]; see Figure 2.1.4. By (2.1.9),

∫
T

f(z) dz =
∫

[z1,a]

f(z) dz +
∫

[a,b]

f(z) dz +
∫

[b,z1]

f(z). dz
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Since f is continuous at z0 = z1, each of the integrals on the right approaches zero as
a, b→ z1, by the M-L theorem. Therefore

∫
T

f(z) dz = 0.

If z0 ∈ T̂ is not a vertex, join z0 to each vertex of T by straight line segments (see
Figure 2.1.5), and write

∫
T

f(z) dz as a sum of integrals, each of which is zero by the
above argument. ♣

2.1.13 Extended Cauchy Theorem for Starlike Regions

Let f be continuous on the starlike region Ω and analytic on Ω \ {z0}. Then f has a
primitive on Ω, and consequently

∫
γ

f(z) dz = 0 for every closed path γ in Ω.

Proof. Exactly as in (2.1.9), using (2.1.12) instead of (2.1.8). ♣

Problems

1. Evaluate
∫
[−i,1+2i]

Im z dz.

2. Evaluate
∫

γ
z dz where γ traces the arc of the parabola y = x2 from (1,1) to (2,4).

3. Evaluate
∫
[z1,z2,z3]

f(z) dz where z1 = −i, z2 = 2 + 5i, z3 = 5i and f(x + iy) = x2 + iy.

4. Show that
∫

γ
f(z) dz is independent of the parametrization of γ∗ in the following sense.

Let h : [c, d] → [a, b] be one-to-one and continuously differentiable, with h(c) = a and
h(d) = b (γ is assumed to be defined on [a, b]). Let γ1 = γ ◦ h. Show that γ1 is a path,
and prove that if f is continuous on γ∗, then

∫
γ1

f(z) dz =
∫

γ
f(z) dz.

5. In the next section it will be shown that if f is analytic on Ω, then f ′ is also analytic, in
particular continuous, on Ω. Anticipating this result, we can use (2.1.6), the fundamen-
tal theorem for integration along paths, to show that

∫
γ

f ′(z) dz = f(γ(b))− f(γ(a)).
Prove the following.
(a) If Ω is convex and Re f ′ > 0 on Ω, then f is one-to-one. (Hint: z1, z2 ∈ Ω with
z1 
= z2 implies that Re[(f(z2)− f(z1))/(z2 − z1)] > 0.)
(b) Show that (a) does not generalize to starlike regions. (Consider z + 1/z on a suit-
able region.)
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(c) Suppose z0 ∈ Ω and f ′(z0) 
= 0. Show that there exists r > 0 such that f is one-
to-one on D(z0, r). Consequently, if f ′ has no zeros in Ω, then f is locally one-to-one.

2.2 Power Series

In this section we develop the basic facts about complex series, especially complex power
series. The main result is that f is analytic at z0 iff f can be represented as a convergent
power series throughout some neighborhood of z0. We first recall some elementary facts
about complex series in general.

2.2.1 Definition

Given a sequence w0, w1, w2, . . . of complex numbers, consider the series
∑∞

n=0 wn. If
limn→∞

∑n
k=0 wk exists and is the complex number w, we say that the series converges

to w and write w =
∑∞

n=0 wn. Otherwise, the series is said to diverge.
A useful observation is that a series is convergent iff the partial sums

∑n
k=0 wk form

a Cauchy sequence, that is,
∑n

k=m wk → 0 as m, n→∞.
The series

∑∞
n=0 wn is said to converge absolutely if the series

∑∞
n=0 |wn| is convergent.

As in the real variables case, an absolutely convergent series is convergent. A necessary
and sufficient condition for absolute convergence is that the sequence of partial sums∑n

k=0 |wk| be bounded. The two most useful tests for absolute convergence of complex
series are the ratio and root tests.

2.2.2 The Ratio Test

If
∑

wn is a series of nonzero terms and if lim supn→∞ |wn+1
wn
| < 1, then the series converges

absolutely. If lim infn→∞ |wn+1
wn
| > 1, the series diverges.

2.2.3 The Root Test

Let
∑

wn be any complex series. If lim supn→∞ |wn|1/n < 1, the series converges abso-
lutely, while if lim supn→∞ |wn|1/n > 1, the series diverges.

The ratio test is usually (but not always) easier to apply in explicit examples, but the
root test has a somewhat wider range of applicability and, in fact, is the test that we are
going to use to obtain some basic properties of power series. Proofs and a discussion of
the relative utility of the tests can be found in most texts on real analysis.

We now consider sequences and series of complex-valued functions.

2.2.4 Theorem

Let {fn} be sequence of complex-valued functions on a set S. Then {fn} converges
pointwise on S (that is, for each z ∈ S, the sequence {fn(z)} is convergent in C) iff {fn}
is pointwise Cauchy (that is, for each z ∈ S, the sequence {fn(z)} is a Cauchy sequence
in C). Also, {fn} converges uniformly iff {fn} is uniformly Cauchy on S, in other words,
|fn(z)− fm(z)| → 0 as m, n→∞, uniformly for z ∈ S.
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(The above result holds just as well if the fn take their values in an arbitrary complete
metric space.)
Proof. As in the real variables case; see Problem 2.2.1. ♣

The next result gives the most useful test for uniform convergence of infinite series of
functions.

2.2.5 The Weierstrass M-Test

Let g1, g2, . . . be complex-valued functions on a set S, and assume that |gn(z)| ≤Mn for
all z ∈ S. If

∑∞
n=1 Mn < +∞, then the series

∑∞
n=1 gn(z) converges uniformly on S.

Proof. Let fn =
∑n

k=1 gk; it follows from the given hypothesis that {fn} is uniformly
Cauchy on S. The result now follows from (2.2.4). ♣

We now consider power series, which are series of the form
∑∞

n=0 an(z − z0)n, where
z0 and the an are complex numbers. Thus we are dealing with series of functions

∑∞
n=0 fn

of a very special type, namely fn(z) = an(z − z0)n. Our first task is to describe the sets
S ⊆ C on which such a series will converge.

2.2.6 Theorem

If
∑∞

n=0 an(z − z0)n converges at the point z with |z − z0| = r, then the series converges
absolutely on D(z0, r), uniformly on each closed subdisk of D(z0, r), hence uniformly on
each compact subset of D(z0, r).

Proof. We have |an(z′− z0)n| = |an(z− z0)n|
∣∣∣ z′−z0

z−z0

∣∣∣n. The convergence at z implies that
an(z− z0)n → 0, hence the sequence {an(z− z0)n} is bounded. If |z′ − z0| ≤ r′ < r, then∣∣∣∣z′ − z0

z − z0

∣∣∣∣ ≤ r′

r
< 1

proving absolute convergence at z′ (by comparison with a geometric series). The Weier-
strass M -test shows that the series converges uniformly on D(z0, r

′). ♣
We now describe convergence in terms of the coefficients an.

2.2.7 Theorem

Let
∑∞

n=0 an(z − z0)n be a power series. Let r = [lim supn→∞(|an|1/n)]−1, the radius of
convergence of the series. (Adopt the convention that 1/0 = ∞, 1/∞ = 0.) The series
converges absolutely on D(z0, r), uniformly on compact subsets. The series diverges for
|z − z0| > r.
Proof. We have lim supn→∞ |an(z − z0)n|1/n = (|z − z0|)/r, which will be less than 1 if
|z− z0| < r. By (2.2.3), the series converges absolutely on D(z0, r). Uniform convergence
on compact subsets follows from (2.2.6). (We do not necessarily have convergence for
|z − z0| = r, but we do have convergence for |z − z0| = r′, where r′ < r can be chosen
arbitrarily close to r.) If the series converges at some point z with |z − z0| > r, then by
(2.2.6) it converges absolutely at points z′ such that r < |z′ − z0| < |z − z0|. But then
(|z − z0|)/r > 1, contradicting (2.2.3). ♣
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2.2.8 Definition

Let C(z0, r) denote the circle with center z0 and radius r. then
∫

C(z0,r)
f(z) dz is defined

as
∫

γ
f(z) dz where γ(t) = z0 + reit, 0 ≤ t ≤ 2π.

The following result provides the essential equipment needed for the theory of power
series. In addition, it illustrates the striking difference between the concept of differen-
tiability of complex functions and the analogous idea in the real case. We are going to
show that if f is analytic on a closed disk, then the value of f at any interior point is
completely determined by its values on the boundary, and furthermore there is an explicit
formula describing the dependence.

2.2.9 Cauchy’s Integral Formula for a Circle

Let f be analytic on Ω and let D(z0, r) be a disk such that D(z0, r) ⊆ Ω. Then

f(z) =
1

2πi

∫
C(z0,r)

f(w)
w − z

dw, z ∈ D(z0, r).

Proof. Let D(z0, ρ) be a disk such that D(z0, r) ⊆ D(z0, ρ) ⊆ Ω. Fix z ∈ D(z0, r) and
define a function g on D(z0, ρ) by

g(w) =

{
f(w)−f(z)

w−z if w 
= z

f ′(z) if w = z.

Then g is continuous on D(z0, ρ) and analytic on D(z0, ρ) \ {z}, so we may apply (2.1.13)
to get

∫
C(z0,r)

g(w) dw = 0. Therefore

1
2πi

∫
C(z0,r)

f(w)
w − z

dw =
f(z)
2πi

∫
C(z0,r)

1
w − z

dw.

Now∫
C(z0,r)

1
w − z

dw =
∫

C(z0,r)

1
(w − z0)− (z − z0)

dw =
∫

C(z0,r)

∞∑
n=0

(z − z0)n

(w − z0)n+1
dw

The series converges uniformly on C(z0, r) by the Weierstrass M -test, and hence we may
integrate term by term to obtain

∞∑
n=0

(z − z0)n

∫
C(z0,r)

1
(w − z0)n+1

dw.

But on C(z0, r) we have w = z0 + reit, 0 ≤ t ≤ 2π, so the integral on the right is, by
(2.2.8),

∫ 2π

0

r−(n+1)e−i(n+1)tireit dt =

{
0 if n = 1, 2, . . .

2πi if n = 0.
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We conclude that
∫

C(z0,r)
1

w−z dw = 2πi, and the result follows. ♣
The integral appearing in Cauchy’s formula is an example of what is known as an

integral of the Cauchy type. The next result, which will be useful later, deals with these
integrals.

2.2.10 Theorem

Let γ be a path (not necessarily closed) and let g be a complex-valued continuous function
on γ∗. Define a function F on the open set Ω = C \ γ∗ by

F (z) =
∫

γ

g(w)
w − z

dw.

Then F has derivatives of all orders on Ω, and

F (n)(z) = n!
∫

γ

g(w)
(w − z)n+1

dw

for all z ∈ Ω and all n = 0, 1, 2, . . . (take F (0) = F ). Furthermore, F (n)(z) → 0 as
|z| → ∞.

Proof. We use an induction argument. The formula for F (n)(z) is valid for n = 0, by
hypothesis. Assume that the formula holds for a given n and all z ∈ Ω; fix z1 ∈ Ω and
choose r > 0 small enough that D(z1, r) ⊆ Ω. For any point z ∈ D(z1, r) with z 
= z1 we
have

F (n)(z)− F (n)(z1)
z − z1

− (n + 1)!
∫

γ

g(w)
(w − z1)n+2

dw

=
n!

z − z1

∫
γ

(w − z1)n+1 − (w − z)n+1

(w − z)n+1(w − z1)n+1
g(w) dw − (n + 1)!

∫
γ

g(w)
(w − z1)n+2

(1)

=
n!

z − z1

∫
γ

(z − z1)
∑n

k=0(w − z1)n−k(w − z)k

(w − z)n+1(w − z1)n+1
g(w) dw − (n + 1)!

∫
γ

g(w)
(w − z1)n+2

dw (2)

where the numerator of the first integral in (2) is obtained from that in (1) by applying
the algebraic identity an+1− bn+1 = (a− b)

∑n
k=0 an−kbk with a = w− z1 and b = w− z.

Thus ∣∣∣∣F (n)(z)− F (n)(z1)
z − z1

− (n + 1)!
∫

γ

g(w)
(w − z1)n+2

dw

∣∣∣∣

= n!
∣∣∣∣
∫

γ

∑n
k=0(w − z1)n−k+1(w − z)k − (n + 1)(w − z)n+1

(w − z)n+1(w − z1)n+2
g(w) dw

∣∣∣∣
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≤ n!
[
max
w∈γ∗

∣∣∣∣
∑n

k=0(w − z1)n−k+1(w − z)k − (n + 1)(w − z)n+1

(w − z)n+1(w − z1)n+2
g(w)

∣∣∣∣
]

L(γ)

by the M-L theorem. But the max that appears in brackets approaches 0 as z → z1, since∑n
k=0(w − z1)n−k+1(w − z)k →

∑n
k=0(w − z1)n+1 = (n + 1)(w − z1)n+1. Hence

F (n)(z)− F (n)(z1)
z − z1

→ (n + 1)!
∫

γ

g(w)
(w − z1)n+2

dw

as z → z1, and the statement of the theorem follows by induction. The fact that
|F (n)(z)| → 0 as |z| → ∞ is a consequence of the M-L theorem; specifically,

F (n)(z)| ≤ n!
[
max
w∈γ∗

|g(w)|
|w − z|n+1

]
L(γ). ♣

Theorems 2.2.9 and 2.2.10 now yield some useful corollaries.

2.2.11 Corollary

If f is analytic on Ω, then f has derivatives of all orders on Ω. Moreover, if D(z0, r) ⊆ Ω,
then

f (n)(z) =
n!
2πi

∫
C(z0,r)

f(w)
(w − z)n+1

dw, z ∈ D(z0, r).

Proof. Apply (2.2.10) to the Cauchy integral formula (2.2.9). ♣

2.2.12 Corollary

If f has a primitive on Ω, then f is analytic on Ω.
Proof. Apply (2.2.11) to any primitive for f . ♣

2.2.13 Corollary

If f is continuous on Ω and analytic on Ω \ {z0}, then f is analytic on Ω.
Proof. Choose any disk D such that D ⊆ Ω. By (2.1.13), f has a primitive on D, hence
by (2.2.12), f is analytic on D. It follows that f is analytic on Ω. ♣

The next result is a converse to Cauchy’s theorem for triangles.

2.2.14 Morera’s Theorem

Suppose f is continuous on Ω and
∫

T
f(z) dz = 0 for each triangle T such that T̂ ⊆ Ω.

Then f is analytic on Ω.
Proof. Let D be any disk contained in Ω. The hypothesis implies that f has a primitive
on D [see the discussion preceding (2.1.8)]. Thus by (2.2.12), f is analytic on D. Since
D is an arbitrary disk in Ω, f is analytic on Ω. ♣

One of many applications of Morera’s theorem is the Schwarz reflection principle,
which deals with the problem of extending an analytic function to a larger domain.
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2.2.15 The Schwarz Reflection Principle

Suppose that f is analytic on the open upper half plane C+ = {z : Im z > 0}, f is
continuous on the closure C+ ∪ R of C+, and Im f(z) = 0 for z ∈ R. Then f has an
analytic extension to all of C.
Proof. We will give an outline of the argument, leaving the details to the problems at the
end of the section. Extend f to a function f∗ defined on C by

f∗(z) =




f(z), z ∈ C+ ∪ R

f(z), z /∈ C+ ∪ R.

Then f∗ is analytic on C \ R and continuous on C (Problem 10). One can then use
Morera’s theorem to show that f∗ is analytic on C (Problem 11). ♣

We now complete the discussion of the connection between analytic functions and
power series, showing in essence that the two notions are equivalent. We say that a
function f : Ω→ C is representable in Ω by power series if given D(z0, r) ⊆ Ω, there is a
sequence {an} of complex numbers such that f(z) =

∑∞
n=0 an(z − z0)n, z ∈ D(z0, r).

2.2.16 Theorem

If f is analytic on Ω, then f is representable in Ω by power series. In fact, if D(z0, r) ⊆ Ω,
then

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n, z ∈ D(z0, r).

As is the usual practice, we will call this series the Taylor expansion of f about z0.
Proof. Let D(z0, r) ⊆ Ω, fix any z ∈ D(z0, r), and choose r1 such that |z − z0| < r1 < r.
By (2.2.9), Cauchy’s formula for a circle,

f(z) =
1

2πi

∫
C(z0,r1)

f(w)
w − z

dw.

Now for w ∈ C(z0, r1),

f(w)
w − z

=
f(w)

(w − z0)− (z − z0)
=

f(w)
w − z0

· 1
1− z−z0

w−z0

=
∞∑

n=0

f(w)
(z − z0)n

(w − z0)n+1
.

The n-th term of the series has absolute value at most

max
w∈C(z0,r1)

|f(w)| · |z − z0|n
rn+1
1

=
1
r1

max
w∈C(z0,r1)

|f(w)|
[ |z − z0|

r1

]n

.

Since |z−z0|
r1

< 1, the Weierstrass M -test shows that the series converges uniformly on
C(z0, r1). Hence we may integrate term by term, obtaining

f(z) =
∞∑

n=0

[
1

2πi

∫
C(z0,r1)

f(w)
(w − z0)n+1

dw

]
(z − z0)n =

∞∑
n=0

f (n)(z0)
n!

(z − z0)n
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by (2.2.11). ♣
In order to prove the converse of (2.2.16), namely that a function representable in Ω

by power series is analytic on Ω, we need the following basic result.

2.2.17 Theorem

Let {fn} be a sequence of analytic functions on Ω such that fn → f uniformly on compact
subsets of Ω. Then f is analytic on Ω, and furthermore, f

(k)
n → f (k) uniformly on compact

subsets of Ω for each k = 1, 2, . . . .
Proof. First let D(z0, r) be any closed disk contained in Ω. Then we can choose ρ > r
such that D(z0, ρ) ⊆ Ω also. For each z ∈ D(z0, ρ) and n = 1, 2, . . . , we have, by (2.2.9),

fn(z) =
1

2πi

∫
C(z0,ρ)

f(w)
w − z

dw.

By (2.2.10), f is analytic on D(z0, ρ). It follows that f is analytic on Ω. Now by (2.2.11),

f (k)
n (z)− f (k)(z) =

k!
2πi

∫
C(z0,ρ)

fn(w)− f(w)
(w − z)k+1

dw

and if z is restricted to D(z0, r), then by the M-L theorem,

|f (k)
n (z)− f (k)(z)| ≤ k!

2π

[
max

w∈C(z0,ρ)
|fn(w)− f(w)|

]
2πρ

(ρ− r)k+1
→ 0 as n→∞.

Thus we have shown that f is analytic on Ω and that f
(k)
n → f (k) uniformly on closed

subdisks of Ω. Since any compact subset of Ω can be covered by finitely many closed
subdisks, the statement of the theorem follows. ♣

The converse of (2.2.16) can now be readily obtained.

2.2.18 Theorem

If f is representable in Ω by power series, then f is analytic on Ω.
Proof. Let D(z0, r) ⊆ Ω, and let {an} be such that f(z) =

∑∞
n=0 an(z − z0)n, z ∈

D(z0, r). By (2.2.7), the series converges uniformly on compact subsets of D(z0, r), hence
by (2.2.17), f is analytic on Ω. ♣

Remark

Since the above series converges uniformly on compact subsets of D(z0, r), Theorem 2.2.17
also allows us to derive the power series expansion of f (k) from that of f , and to show
that the coefficients {an} are uniquely determined by z0 and f . For if f(z) is given by∑∞

n=0 an(z − z0)n, z ∈ D(z0, r), we may differentiate term by term to obtain

f (k)(z) =
∞∑

n=k

n(n− 1) · · · (n− k + 1)an(z − z0)n−k,
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and if we set z = z0, we find that

ak =
f (k)(z0)

k!
.

We conclude this section with a result promised in Chapter 1 [see (1.6.1)].

2.2.19 Theorem

If f = u + iv is analytic on Ω, then u and v are harmonic on Ω.
Proof. By (1.4.2), f ′ = ∂u

∂x + i ∂v
∂x = ∂v

∂y − i∂u
∂y . But by (2.2.11), f ′ is also analytic on Ω,

and thus the Cauchy-Riemann equations for f ′ are also satisfied. Consequently,

∂

∂x

(
∂u

∂x

)
=

∂

∂y

(
−∂u

∂y

)
,

∂

∂x

(
∂v

∂x

)
= − ∂

∂y

(
∂v

∂y

)
.

These partials are all continuous because f ′′ is also analytic on Ω. ♣

Problems

1. Prove Theorem 2.2.4.

2. If
∑

n zn has radius of convergence r, show that the differentiated series
∑

nanzn−1

also has radius of convergence r.

3. Let f(x) = e−1/x2
, x 
= 0; f(0) = 0. Show that f is infinitely differentiable on

(−∞,∞) and f (n)(0) = 0 for all n. Thus the Taylor series for f is identically 0,
hence does not converge to f . Conclude that if r > 0, there is no function g analytic
on D(0, r) such that g = f on (−r, r).

4. Let {an : n = 0, 1, 2 . . . } be an arbitrary sequence of complex numbers.
(a) If lim supn→∞ |an+1/an| = α, what conclusions can be drawn about the radius of
convergence of the power series

∑∞
n=0 anzn?

(b) If |an+1/an| approaches a limit α, what conclusions can be drawn?

5. If f is analytic at z0, show that it is not possible that |f (n)(z0)| > n!bn for all
n = 1, 2, . . . , where (bn)1/n →∞ as n→∞.

6. Let Rn(z) be the remainder after the term of degree n in the Taylor expansion of a
function f about z0.
(a) Show that

Rn(z) =
(z − z0)n+1

2πi

∫
Γ

f(w)
(w − z)(w − z0)n+1

dw,

where Γ = C(z0, r1) as in (2.2.16).
(b) If |z − z0| ≤ s < r1, show that

|Rn(z)| ≤ A(s/r1)n+1, where A = Mf (Γ)r1/(r1 − s)

and Mf (Γ) = max{|f(w)| : w ∈ Γ}.
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7. (Summation by parts). Let {an} and {bn} be sequences of complex numbers. If
∆bk = bk+1 − bk, show that

s∑
k=r

ak∆bk = as+1bs+1 − arbr −
s∑

k=r

bk+1∆ak.

8. (a) If {bn} is bounded and the an are real and greater than 0, with a1 ≥ a2 ≥ · · · → 0,
show that

∑∞
n=1 an∆bn converges.

(b) If bn = bn(z), that is, the bn are functions from a set S to C, the bn are uni-
formly bounded on S, and the an are real and decrease to 0 as in (a), show that∑∞

n=1 an(bn+1(z)− bn(z)) converges uniformly on S.
9. (a) Show that

∑∞
n=1 zn/n converges when |z| = 1, except at the single point z = 1.

(b) Show that
∑∞

n=1(sinnx)/n converges for real x, uniformly on
{x : 2kπ + δ ≤ x ≤ 2(k + 1)π − δ}, δ > 0, k an integer.
(c) Show that

∑∞
n=1(sinnz)/n diverges if x is not real. (The complex sine function

will be discussed in the next chapter. It is defined by sinw = (eiw − e−iw)/2i.
10. Show that the function f∗ occurring in the proof of the Schwarz reflection principle

is analytic on C \ R and continuous on C.
11. Show that f∗ is analytic on C.
12. Use the following outline to give an alternative proof of the Cauchy integral formula

for a circle.
(a) Let

F (z) =
∫

C(z0,r)

1
w − z

dw, z /∈ C(z0, r).

Use (2.2.10), (2.1.6) and (2.1.7b) to show that F is constant on D(z0, r).
(b) F (z0) = 2πi by direct computation.
Theorem 2.2.9 now follows, thus avoiding the series expansion argument that appears
in the text.

13. (a) Suppose f is analytic on D(a, r). Prove that for 0 ≤ r < R,

|f (n)(a)| ≤ n!
2πrn

∫ π

−π

|f(a + reit)| dt.

(b) Prove that if f is an entire function such that for some M > 0 and some natural
number k, |f(z)| ≤ M |z|k for |z| sufficiently large, then f is a polynomial of degree
at most k.
(c) Let f be an entire function such that |f(z)| ≤ 1+ |z|3/2 for all z. Prove that there
are complex numbers a0, a1 such that f(z) = a0 + a1z.

14. Let {an : n = 0, 1, . . . } be a sequence of complex numbers such that
∑∞

n=0 |an| <∞
but

∑∞
n=0 n|an| =∞. Prove that the radius of convergence of the power series

∑
anzn

is equal to 1.
15. Let {fn} be a sequence of analytic functions on Ω such that {fn} converges to f

uniformly on compact subsets of Ω. Give a proof that f is analytic on Ω, based on
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Morera’s theorem [rather than (2.2.10), which was the main ingredient in the proof
of (2.2.17)]. Note that in the present problem we need not prove that f

(k)
n → f (k)

uniformly on compact subsets of Ω.

2.3 The Exponential and Complex Trigonometric Func-
tions

In this section, we use our results on power series to complete the discussion of the
exponential function and to introduce some of the other elementary functions.

Recall (Section 1.5) that exp is defined on C by exp(x + iy) = ex(cos y + i sin y); thus
exp has magnitude ex and argument y. The function exp satisfies a long list of properties;
for the reader’s convenience, we give the justification of each item immediately after the
statement.

2.3.1 Theorem

(a) exp is an entire function [this was proved in (1.5.2)].
(b) exp(z) =

∑∞
n=0 zn/n!, z ∈ C.

Apply (a) and (2.2.16), using the fact [see (1.5.2)] that exp is its own derivative.
(c) exp(z1 + z2) = exp(z1) exp(z2).
Fix z0 ∈ C; for each z ∈ C, we have, by (2.2.16),

exp(z) =
∞∑

n=0

exp(z0)
n!

(z − z0)n = exp(z0)
∞∑

n=0

(z − z0)n

n!
= exp(z0) exp(z − z0) by (b).

Now set z0 = z1 and z = z1 + z2.
(d) exp has no zeros in C.
By (c), exp(z − z) = exp(z) exp(−z). But exp(z − z) = exp(0) = 1, hence exp(z) 
= 0.
(e) exp(−z) = 1/ exp(z) (the argument of (d) proves this also).
(f) exp(z) = 1 iff z is an integer multiple of 2πi.
exp(x + iy) = 1 iff ex cos y = 1 and ex sin y = 0 iff ex cos y = 1 and sin y = 0 iff x = 0 and
y = 2nπ for some n.
(g) | exp(z)| = eRe z (by definition of exp).
(h) exp has 2πi as a period, and any other period is an integer multiple of 2πi.
exp(z + w) = exp(z) iff exp(w) = 1 by (c), and the result follows from (f).
(i) exp maps an arbitrary vertical line {z : Re z = x0} onto the circle with center 0 and
radius ex0 , and exp maps an arbitrary horizontal line {z : Im z = y0} one-to-one onto the
open ray from 0 through exp(iy0).
{exp(z) : Re z = x0} = {ex0(cos y + i sin y) : y ∈ R}, which is the circle with center 0
and radius ex0 (covered infinitely many times). Similarly, we have {exp(z) : Im z = y0} =
{exeiy0 : x ∈ R}, which is the desired ray.
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(j) For each real number α, exp restricted to the horizontal strip {x+iy : α ≤ y < α+2π},
is a one-to-one map onto C \ {0}.
This follows from (i) and the observation that as y0 ranges over [α, α+2π), the open rays
from 0 through eiy0 sweep out C \ {0}. ♣

Notation

We will often write ez for exp(z). We now define sin z and cos z by

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
.

These definitions are consistent with, and are motivated by, the fact that eiy = cos y +
i sin y, y ∈ R.

Since exp is an entire function, it follows from the chain rule that sin and cos are
also entire functions and the usual formulas sin′ = cos and cos′ = − sin hold. Also, it
follows from property (f) of exp that sin and cos have no additional zeros in the complex
plane, other than those on the real line. (Note that sin z = 0 iff eiz = e−iz iff e2iz = 1.)
However, unlike sin z and cos z for real z, sin and cos are not bounded functions. This can
be deduced directly from the above definitions, or from Liouville’s theorem, to be proved
in the next section.

The familiar power series representations of sin and cos hold [and may be derived using
(2.2.16)]:

sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
, cos z =

∞∑
n=0

(−1)n z2n

(2n)!
.

Other standard trigonometric functions can be defined in the usual way; for example,
tan z = sin z/ cos z. Usual trigonometric identities and differentiation formulas hold, for
instance, sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,

d
dz tan z = sec2 z, and so on.

Hyperbolic functions are defined by

cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
.

The following identities can be derived from the definitions:

cos iz = cosh z, sin iz = i sinh z

sin(x + iy) = sinx cosh y + i cos x sinh y, cos(x + iy) = cos x cosh y − i sinx sinh y.

Also, sinh z = 0 iff z = inπ, n an integer; cosh z = 0 iff z = i(2n + 1)π/2, n an integer.
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Problems

1. Show that for any integer k, sin z maps the strip {x+iy : (2k−1)π/2 < x < (2k+1)π/2}
one-to-one onto C \ {u + iv : v = 0, |u| ≥ 1}, and maps {x + iy : x = (2k + 1)π/2, y ≥
0} ∪ {x + iy : x = (2k − 1)π/2, y ≤ 0} one-to-one onto {u + iv : v = 0, |u| ≥ 1}.

2. Find all solutions of the equation sin z = 3.

3. Calculate
∫

C(0,1)
sin z
z4 dz.

4. Prove that given r > 0, there exists n0 such that if n ≥ n0, then 1+z+z2/2!+· · ·+zn/n!
has all its zeros in |z| > r.

5. Let f be an entire function such that f ′′ + f = 0, f(0) = 0, and f ′(0) = 1. Prove that
f(z) = sin z for all z ∈ C.

6. Let f be an entire function such that f ′ = f and f(0) = 1. What follows and why?

2.4 Further Applications

In this section, we apply the preceding results in a variety of ways. The first two of these
are consequences of the Cauchy integral formula for derivatives (2.2.11).

2.4.1 Cauchy’s Estimate

Let f be analytic on Ω, and let D(z0, r) ⊆ Ω. Then

|f (n)(z0)| ≤
n!
rn

max
z∈C(z0,r)

|f(z)|.

Proof. This is immediate from (2.2.11) and the M-L theorem. ♣

Remark

If f(z) = zn and z0 = 0, we have f (n)(z0) = n! = (n!/rn) maxz∈C(z0,r) |f(z)|, so the above
inequality is sharp.

2.4.2 Liouville’s Theorem

If f is a bounded entire function, then f is constant.

Proof. Assume that |f(z)| ≤ M < ∞ for all z ∈ C, and fix z0 ∈ C. By (2.4.1),
|f ′(z0)| ≤ M/r for all r > 0. Let r → ∞ to conclude that f ′(z0) = 0. Since z0 is
arbitrary, f ′ ≡ 0, hence f is constant on C by (2.1.7b). ♣

2.4.3 The Fundamental Theorem of Algebra

Suppose P (z) = a0 + a1z + · · · + anzn is polynomial of degree n ≥ 1. Then there exists
z0 ∈ C such that P (z0) = 0.
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Proof. Since

|P (z)| = |z|n
∣∣∣an +

an−1

z
+ · · ·+ a0

zn

∣∣∣ ≥ |z|n ∣∣∣an

2

∣∣∣
for all sufficiently large |z|, it follows that |P (z)| → ∞ as z| → ∞. If P (z) is never 0,
then 1/P is an entire function. Moreover, |1/P (z)| → 0 as |z| → ∞, and therefore 1/P is
bounded. By (2.4.2), 1/P is constant, contradicting deg P ≥ 1. ♣

Recall that if P is a polynomial of degree n ≥ 1 and P (z0) = 0, we may write
P (z) = (z − z0)mQ(z) where m is a positive integer and Q(z) is a polynomial (possibly
constant) such that Q(z0) 
= 0. In this case P is said to have a zero of order m at z0. The
next definition extends the notion of the order of a zero to analytic functions in general.

2.4.4 Definition

Let f be analytic on Ω and z0 ∈ Ω. We say that f has a zero of order m at z0 if there is
an analytic function g on Ω such that g(z0) 
= 0 and f(z) = (z − z0)mg(z) for all z ∈ Ω.

2.4.5 Remark

In terms of the Taylor expansion f(z) =
∑∞

n=0 an(z−z0)n, f has a zero of order m at z0 iff
a0 = a1 = · · · = am−1 = 0, while am 
= 0. Equivalently, f (n)(z0) = 0 for n = 0, . . . , m−1,
while f (m)(z0) 
= 0 (see Problem 2).

2.4.6 Definition

If f : Ω→ C, the zero set of f is defined as Z(f) = {z ∈ Ω : f(z) = 0}.
Our next major result, the identity theorem for analytic functions, is a consequence

of a topological property of Z(f).

2.4.7 Lemma

Let f be analytic on Ω, and let L be the set of limit points (also called accumulation
points or cluster points) of Z(f) in Ω. Then L is both open and closed in Ω.

Proof. First note that L ⊆ Z(f) by continuity of f . Also, L is closed in Ω because the
set of limit points of any subset of Ω is closed in Ω. (If {zn} is a sequence in L such
that zn → z, then given r > 0, zn ∈ D(z, r) for n sufficiently large. Since zn is a limit
point of Z(f), D(z, r) contains infinitely many points of Z(f) different from zn, and hence
infinitely many points of Z(f) different from z. Thus z ∈ L also.) It remains to show
that L is open in Ω. Let z0 ∈ L, and write f(z) =

∑∞
n=0 an(z − z0)n, z ∈ D(z0, r) ⊆ Ω.

Now f(z0) = 0, and hence either f has a zero of order m at z0 (for some m), or else
an = 0 for all n. In the former case, there is a function g analytic on Ω such that
f(z) = (z − z0)mg(z), z ∈ Ω, with g(z0) 
= 0. By continuity of g, g(z) 
= 0 for all z
sufficiently close to z0, and consequently z0 is an isolated point of Z(f). But then z0 /∈ L,
contradicting out assumption. Thus, it must be the case that an = 0 for all n, so that
f ≡ 0 on D(z0, r). Consequently, D(z0, r) ⊆ L, proving that L is open in Ω. ♣



2.4. FURTHER APPLICATIONS 23

2.4.8 The Identity Theorem

Suppose f is analytic on the open connected set Ω. Then either f is identically zero on
Ω or else Z(f) has no limit point in Ω. Equivalently, if Z(f) has a limit point in Ω, then
f is identically 0 on Ω.
Proof. By (2.4.7), the set L of limit points of Z(f) is both open and closed in Ω. Since
Ω is connected, either L = Ω, in which case f ≡ 0 on Ω, or L = ∅, so that Z(f) has no
limit point in Ω. ♣

2.4.9 Corollary

If f and g are analytic on Ω and {z ∈ Ω : f(z) = g(z)} has a limit point in Ω, then f ≡ g.
Proof. Apply the identity theorem to f − g. ♣

Our next application will be to show (roughly) that the absolute value of a function
analytic on a set S cannot attain a maximum at an interior point of S. As a preliminary
we show that the value of an analytic function at the center of a circle is the average of
its values on the circumference.

2.4.10 Theorem

Suppose f is analytic on Ω and D(z0, r) ⊆ Ω. Then

f(z0) =
1
2π

∫ 2π

0

f(z0 + reit) dt.

Proof. Use (2.2.9), Cauchy’s integral formula for a circle, with z = z0. ♣
The other preliminary to the proof of the maximum principle is the following fact

about integrals.

2.4.11 Lemma

Suppose ϕ : [a, b] → R is continuous, ϕ(t) ≤ k for all t, while the average of ϕ, namely
1

b−a

∫ b

a
ϕ(t) dt, is at least k. Then ϕ(t) = k for all t.

Proof. Observe that

0 ≤
∫ b

a

[k − ϕ(t)] dt = k(b− a)−
∫ b

a

ϕ(t) dt ≤ 0. ♣

We now consider the maximum principle, which is actually a collection of closely
related results rather than a single theorem. We will prove four versions of the principle,
arranged in order of decreasing strength.

2.4.12 Maximum Principle

Let f be analytic on the open connected set Ω.
(a) If |f | assumes a local maximum at some point in Ω, then f is constant on Ω.
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(b) If λ = sup{|f(z)| : z ∈ Ω}, then either |f(z)| < λ for all z ∈ Ω or f is constant on Ω.
(c) If Ω is a bounded region and M ≥ 0 is such that lim supn→∞ |f(zn)| ≤ M for each
sequence {zn} in Ω that converges to a boundary point of Ω, then |f(z)| < M for all
z ∈ Ω or f is constant on Ω.
(d) Let Ω be a bounded region, with f continuous on the closure Ω of Ω. Denote the
boundary of Ω by ∂Ω, and let M0 = max{|f(z)| : z ∈ ∂Ω}. Then either |f(z)| < M0 for all
z ∈ Ω or f is constant on Ω. Consequently, max{|f(z)| : z ∈ Ω} = max{|f(z)| : z ∈ ∂Ω}.
Proof.
(a) If |f | assumes a local maximum at z0 ∈ Ω, then for some δ > 0, |f(z)| ≤ |f(z0)| for
|z − z0| < δ. If f(z0) = 0, then f(z) = 0 for all z ∈ D(z0, δ), so f ≡ 0 by the identity
theorem. So assume that f(z0) 
= 0. If 0 < r < δ, then (2.4.10) with both sides divided
by f(z0) yields

1 =
1
2π

∫ 2π

0

f(z0 + reit)
f(z0)

dt.

Taking the magnitude of both sides, we obtain

1 ≤ 1
2π

∫ 2π

0

∣∣∣∣f(z0 + reit)
f(z0)

∣∣∣∣ dt ≤ 1

because |f(z0 + reit)| ≤ |f(z0)| for all t ∈ [0, 2π]. Since this holds for all r ∈ (0, δ), the
preceding lemma (2.4.11) gives |f(z)/f(z0)| = 1, z ∈ D(z0, δ). Now take the real part
(rather than the magnitude) of both sides of the above integral, and use the fact that for
any complex number w, we have |Re w| ≤ |w|. We conclude that Re(f(z)/f(z0)) = 1 on
D(z0, δ). But if |w| = Re w = c, then w = c, hence f(z) = f(z0) on D(z0, δ). By the
identity theorem, f is constant on Ω.
(b) If λ = +∞ there is nothing to prove, so assume λ < +∞. If |f(z0)| = λ for some
z0 ∈ Ω, then f is constant on Ω by (a).
(c) If λ is defined as in (b), then there is a sequence {zn} in Ω such that |f(zn)| → λ. But
since Ω is bounded, there is a subsequence {znj

} that converges to a limit z0. If z0 ∈ Ω,
then |f(z0)| = λ, hence f is constant by (b). On the other hand, if z0 belongs to the
boundary of Ω, then λ ≤ M by hypothesis. Again by (b), either |f(z)| < λ ≤ M for all
z ∈ Ω or f is constant on Ω.
(d) Let {zn} be any sequence in Ω converging to a point z0 ∈ ∂Ω. Then |f(zn)| →
|f(z0)| ≤M0. By (c), |f | < M0 on Ω or f is constant on Ω. In either case, the maximum
of |f | on Ω is equal to the maximum of |f | on ∂Ω. ♣

The absolute value of an analytic function may attain its minimum modulus on an
open connected set without being constant (consider f(z) = z on C). However, if the
function is never zero, we do have a minimum principle.

2.4.13 Minimum Principle

Let f be analytic and never 0 on the region Ω.
(a) If |f | assumes a local minimum at some point in Ω, then f is constant on Ω.
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(b) Let µ = inf{|f(z)| : z ∈ Ω}; then either |f(z)| > µ for all z ∈ Ω or f is constant on Ω.
(c) If Ω is a bounded region and m ≥ 0 is such that lim infn→∞ |f(zn)| ≥ m for each
sequence {zn} that converges to a boundary point of Ω, then |f(z)| > m for all z ∈ Ω or
f is constant on Ω.
(d) Let Ω be a bounded region, with f is continuous on Ω and m0 = min{|f(z)| : z ∈ ∂Ω}.
Then either |f(z)| > m0 for all z ∈ Ω or f is constant on Ω. As a consequence, we have
min{|f(z)| : z ∈ Ω} = min{|f(z)| : z ∈ ∂Ω}.
Proof. Apply the maximum principle to 1/f . ♣

Suppose f is analytic on the region Ω, and we put g = ef . Then |g| = eRe f , and hence
|g| assumes a local maximum at z0 ∈ Ω iff Re f has a local maximum at z0. A similar
statement holds for a local minimum. Furthermore, by (2.1.7b), f is constant iff f ′ ≡ 0
iff f ′ef ≡ 0 iff g′ ≡ 0 iff g is constant on Ω. Thus Re f satisfies part (a) of both the
maximum and minimum principles (note that |g| is never 0). A similar argument can be
given for Im f (put g = e−if ). Since the real and imaginary parts of an analytic function
are, in particular, harmonic functions [see (2.2.19)], the question arises as to whether
the maximum and minimum principles are valid for harmonic functions in general. The
answer is yes, as we now proceed to show. We will need to establish one preliminary result
which is a weak version of the identity theorem (2.4.8) for harmonic functions.

2.4.14 Identity Theorem for Harmonic Functions

If u is harmonic on the region Ω, and u restricted to some subdisk of Ω is constant, then
u is constant on Ω.
Proof. Let A = {a ∈ Ω : u is constant on some disk with center at a}. It follows from
the definition of A that A is an open subset of Ω. But Ω \ A is also open; to see this,
let z0 ∈ Ω \ A and D(z0, r) ⊆ Ω. By (1.6.2), u has a harmonic conjugate v on D(z0, r),
so that u is the real part of an analytic function on D(z0, r). If u is constant on any
subdisk of D(z0, r), then [since u satisfies (a) of the maximum (or minimum) principle,
as indicated in the remarks following (2.4.13)] u is constant on D(z0, r), contradicting
z0 ∈ Ω \A. Thus D(z0, r) ⊆ Ω \A, proving that Ω \A is also open. Since Ω is connected
and A 
= ∅ by hypothesis, we have A = Ω.

Finally, fix z1 ∈ Ω and let B = {z ∈ Ω : u(z) = u(z1)}. By continuity of u, B is closed
in Ω, and since A = Ω, B is also open in Ω. But B is not empty (it contains z1), hence
B = Ω, proving that u is constant on Ω. ♣

2.4.15 Maximum and Minimum Principle for Harmonic Func-
tions

If u is harmonic on a region Ω and u has either a local maximum or a local minimum at
some point of Ω, then u is constant on Ω.
Proof. Say u has a local minimum at z0 ∈ Ω (the argument for a maximum is similar).
Then for some r > 0 we have D(z0, r) ⊆ Ω and u(z) ≥ u(z0) on D(z0, r). By (1.6.2) again,
u is the real part of an analytic function on D(z0, r), and we may invoke the minimum
principle [as we did in proving (2.4.14)] to conclude that u is constant on D(z0, r) and
hence by (2.4.14), constant on Ω. ♣
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Remark

The proof of (2.4.12) shows that part (a) of the maximum principle implies part (b), (b)
implies (c), and (c) implies (d), and similarly for the minimum principle. Thus harmonic
functions satisfy statements (b), (c) and (d) of the maximum and minimum principles.

We conclude this chapter with one of the most important applications of the maximum
principle.

2.4.16 Schwarz’s Lemma

Let f be analytic on the unit disk D = D(0, 1), and assume that f(0) = 0 and |f(z)| ≤ 1
for all z ∈ D. Then (a) |f(z)| ≤ |z| on D, and (b) |f ′(0)| ≤ 1. Furthermore, if equality
holds in (a) for some z 
= 0, or if equality holds in (b), then f is a rotation of D. That is,
there is a constant λ with |λ| = 1 such that f(z) = λz for all z ∈ D.
Proof. Define

g(z) =

{
f(z)/z if z ∈ D \ {0}
f ′(0) if z = 0.

By (2.2.13), g is analytic on D. We claim that |g(z)| ≤ 1. For if |z| < r < 1, part (d) of
the maximum principle yields

|g(z)| ≤ max{|g(w)| : |w| = r} ≤ 1
r

sup{|f(w)| : w ∈ D} ≤ 1
r
.

Since r may be chosen arbitrarily close to 1, we have |g| ≤ 1 on D, proving both (a) and
(b). If equality holds in (a) for some z 
= 0, or if equality holds in (b), then g assumes
its maximum modulus at a point of D, and hence g is a constant λ on D (necessarily
|λ| = 1). Thus f(z) = λz for all z ∈ D. ♣

Schwarz’s lemma will be generalized and applied in Chapter 4 (see also Problem 24).

Problems

1. Give an example of a nonconstant analytic function f on a region Ω such that f has
a limit point of zeros at a point outside of Ω.

2. Verify the statements made in (2.4.5).
3. Consider the four forms of the maximum principle (2.4.12), for continuous rather than

analytic functions. What can be said about the relative strengths of the statements?
The proof in the text shows that (a) implies (b) implies (c) implies (d), but for
example, does (b) imply (a)? (The region Ω is assumed to be one particular fixed
open connected set, that is, the statement of the theorem does not have “for all Ω”
in it.)

4. (L’Hospital’s rule). Let f and g be analytic at z0, and not identically zero in any neigh-
borhood of z0. If limz→z0 f(z) = limz→z0 g(z) = 0, show that f(z)/g(z) approaches a
limit (possibly ∞) as z → z0, and limz→z0 f(z)/g(z) = limz→z0 f ′(z)/g′(z).

5. If f is analytic on a region Ω and |f | is constant on Ω, show that f is constant on Ω.
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6. Let f be continuous on the closed unit disk D, analytic on D, and real-valued on ∂D.
Prove that f is constant.

7. Let f(z) = sin z. Find max{|f(z)| : z ∈ K} where K = {x + iy : 0 ≤ x, y ≤ 2π}.
8. (A generalization of part (d) of the maximum principle). Suppose K is compact, f is

continuous on K, and f is analytic on K◦, the interior of K. Show that

max
z∈K
|f(z)| = max

z∈∂K
|f(z)|.

Moreover, if |f(z0)| = maxz∈K |f(z)| for some z0 ∈ K◦, then f is constant on the
component of K◦ that contains z0.

9. Suppose that Ω is a bounded open set (not necessarily connected), f is continuous on
Ω and analytic on Ω. Show that max{|f(z)| : z ∈ Ω} = max{|f(z)| : z ∈ ∂Ω}.

10. Give an example of a nonconstant harmonic function u on C such that u(z) = 0 for
each real z. Thus the disk that appears in the statement of Theorem 2.4.14 cannot
be replaced by just any subset of C having a limit point in C.

11. Prove that an open set Ω is connected iff for all f, g analytic on Ω, the following holds:
If f(z)g(z) = 0 for every z ∈ Ω, then either f or g is identically zero on Ω. (This says
that the ring of analytic functions on Ω is an integral domain iff Ω is connected.)

12. Suppose that f is analytic on C+ = {z : Im z > 0} and continuous on S = C+∪ (0, 1).
Assume that f(x) = x4 − 2x2 for all x ∈ (0, 1). Show that f(i) = 3.

13. Let f be an entire function such that |f(z)| ≥ 1 for all z. Prove that f is constant.

14. Does there exist an entire function f , not identically zero, for which f(z) = 0 for
every z in an uncountable set of complex numbers?

15. Explain why knowing that the trigonometric identity sin(α + β) = sinα cos β +
cos α sinβ for all real α and β implies that the same identity holds for all complex α
and β.

16. Suppose f is an entire function and Im(f(z)) ≥ 0 for all z. Prove that f is constant.
(Consider exp(if).)

17. Suppose f and g are analytic and nonzero on D(0, 1), and f ′(1/n)
f(1/n) = g′(1/n)

g(1/n) , n =
2, 3, . . . . Prove that f/g is constant on D(0, 1).

18. Suppose that f is an entire function, f(0) = 0 and |f(z)− ez sin z| < 4 for all z. Find
a formula for f(z).

19. Let f and g be analytic on D = D(0, 1) and continuous on D. Assume that Re f(z) =
Re g(z) for all z ∈ ∂D. Prove that f − g is constant.

20. Let f be analytic on D = D(0, 1). Prove that either f has a zero in D, or there is a
sequence {zn} in D such that |zn| → 1 and {f(zn)} is bounded.

21. Let u be a nonnegative harmonic function on C. Prove that f is constant.

22. Suppose f is analytic on Ω ⊇ D(0, 1), f(0) = i, and |f(z)| > 1 whenever |z| = 1.
Prove that f has a zero in D(0, 1).

23. Find the maximum value of Re z3 for z in the unit square [0, 1]× [0, 1].
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24. Suppose that f is analytic on D(0, 1), with f(0) = 0. Define fn(z) = f(zn) for
n = 1, 2, . . . , z ∈ D(0, 1). Prove that

∑
fn is uniformly convergent on compact

subsets of D(0, 1). (Use Schwarz’s lemma.)

25. It follows from (2.4.12c) that if f is analytic on D(0, 1) and f(zn) → 0 for each
sequence {zn} in D(0, 1) that converges to a point of C(0, 1), then f ≡ 0. Prove the
following strengthened version for bounded f . Assume only that f(zn) → 0 for each
sequence {zn} that converges to a point in some given arc {eit, α ≤ t ≤ β} where
α < β, and deduce that f ≡ 0. [Hint: Assume without loss of generality that α = 0.
Then for sufficiently large n, the arcs Aj = {eit : (j − 1)β ≤ t ≤ jβ}, j = 1, 2, . . . , n
cover C(0, 1). Now consider F (z) = f(z)f(eiβz)f(ei2βz) · · · f(einβz).]

26. (a) Let Ω be a bounded open set and let {fn} be a sequence of functions that are an-
alytic on Ω and continuous on the closure Ω. Suppose that {fn} is uniformly Cauchy
on the boundary of Ω. Prove that {fn} converges uniformly on Ω. If f is the limit
function, what are some properties of f?
(b) What complex-valued functions on the unit circle C(0, 1) can be uniformly ap-
proximated by polynomials in z?



Chapter 3

The General Cauchy Theorem

In this chapter, we consider two basic questions. First, for a given open set Ω, we try
to determine which closed paths γ in Ω have the property that

∫
γ

f(z) dz = 0 for every
analytic function f on Ω. Then second, we try to characterize those open sets Ω having
the property that

∫
γ

f(z) dz = 0 for all closed paths γ in Ω and all analytic functions f
on Ω. The results, which may be grouped under the name “Cauchy’s theorem”, form the
cornerstone of analytic function theory.

A basic concept in the general Cauchy theory is that of winding number or index of
a point with respect to a closed curve not containing the point. In order to make this
precise, we need several preliminary results on logarithm and argument functions.

3.1 Logarithms and Arguments

In (2.3.1), property (j), we saw that given a real number α, the exponential function when
restricted to the strip {x + iy : α ≤ y < α + 2π} is a one-to-one analytic map of this strip
onto the nonzero complex numbers. With this in mind, we make the following definition.

3.1.1 Definition

We take logα to be the inverse of the exponential function restricted to the strip Sα =
{x + iy : α ≤ y < α + 2π}. We define argα to the the imaginary part of logα.

Consequently, logα(exp z) = z for each z ∈ Sα, and exp(logα z) = z for all z ∈ C\{0}.
Several important properties of logα and argα follow readily from Definition 3.1.1 and

the basic properties of exp.

3.1.2 Theorem

(a) If z �= 0, then logα(z) = ln |z| + i argα(z), and argα(z) is the unique number in
[α, α + 2π) such that z/|z| = ei argα(z), in other words, the unique argument of z in
[α, α + 2π).

1
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(b) Let Rα be the ray [0, eiα,∞) = {reiα : r ≥ 0}. The functions logα and argα are
continuous at each point of the “slit” complex plane C \ Rα, and discontinuous at each
point of Rα.

(c) The function logα is analytic on C \Rα, and its derivative is given by log′α(z) = 1/z.

Proof.

(a) If w = logα(z), z �= 0, then ew = z, hence |z| = eRe w and z/|z| = ei Im w. Thus
Re w = ln |z|, and Imw is an argument of z/|z|. Since Im w is restricted to [α, α + 2π)
by definition of logα, it follows that Imw is the unique argument for z that lies in the
interval [α, α + 2π).

(b) By (a), it suffices to consider argα. If z0 ∈ C \Rα and {zn} is a sequence converging
to z0, then argα(zn) must converge to argα(z0). (Draw a picture.) On the other hand, if
z0 ∈ Rα \ {0}, there is a sequence {zn} converging to z0 such that argα(zn)→ α + 2π �=
argα(z0) = α.

(c) This follows from Theorem 1.3.2 (with g = exp,Ω1 = C, f = logα, and Ω = C \ Rα)
and the fact that exp is its own derivative. ♣

3.1.3 Definition

The principal branches of the logarithm and argument functions, to be denoted by Log
and Arg, are obtained by taking α = −π. Thus, Log = log−π and Arg = arg−π.

Remark

The definition of principal branch is not standardized; an equally common choice for α is
α = 0. Also, having made a choice of principal branch, one can define wz = exp(z Log w)
for z ∈ C and w ∈ C \ {0}. We will not need this concept, however.

3.1.4 Definition

Let S be a subset of C (or more generally any metric space), and let f : S → C \ {0} be
continuous. A function g : S → C is a continuous logarithm of f if g is continuous on S
and f(s) = eg(s) for all s ∈ S. A function θ : S → R is a continuous argument of f if θ is
continuous on S and f(s) = |f(s)|eiθ(s) for all s ∈ S.

3.1.5 Examples

(a) If S = [0, 2π] and f(s) = eis, then f has a continuous argument on S, namely
θ(s) = s + 2kπ for any fixed integer k.

(b) If for some α, f is a continuous mapping of S into C \ Rα, then f has a continuous
argument, namely θ(s) = argα(f(s)).

(c) If S = {z : |z| = 1} and f(z) = z, then f does not have a continuous argument on S.

Part (a) is a consequence of Definition 3.1.4, and (b) follows from (3.1.4) and (3.1.2b).
The intuition underlying (c) is that if we walk entirely around the unit circle, a continuous
argument of z must change by 2π. Thus the argument of z must abruptly jump by 2π
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at the end of the trip, which contradicts continuity. A formal proof will be easier after
further properties of continuous arguments are developed (see Problem 3.2.5).

Continuous logarithms and continuous arguments are closely related, as follows.

3.1.6 Theorem

Let f : S → C be continuous.

(a) If g is a continuous logarithm of f , then Im g is a continuous argument of f .

(b) If θ is a continuous argument of f , then ln |f |+ iθ is a continuous logarithm of f .

Thus f has a continuous logarithm iff f has a continuous argument.

(c) Assume that S is connected, and f has continuous logarithms g1 and g2, and continuous
arguments θ1 and θ2. Then there are integers k and l such that g1(s)− g2(s) = 2πik and
θ1(s)− θ2(s) = 2πl for all s ∈ S. Thus g1 − g2 and θ1 − θ2 are constant on S.

(d) If S is connected and s, t ∈ S, then g(s) − g(t) = ln |f(s)| − ln |f(t)| + i(θ(s) − θ(t))
for all continuous logarithms g and all continuous arguments θ of f .

Proof.

(a) If f(s) = eg(s), then |f(s)| = eRe g(s), hence f(s)/|f(s)| = ei Im g(s) as required.

(b) If f(s) = |f(s)|eiθ(s), then f(s) = eln |f(s)|+iθ(s), so ln |f |+iθ is a continuous logarithm.

(c) We have f(s) = eg1(s) = eg2(s), hence eg1(s)−g2(s) = 1, for all s ∈ S. By (2.3.1f),
g1(s)−g2(s) = 2πik(s) for some integer-valued function k. Since g1 and g2 are continuous
on S, so is k. But S is connected, so k is a constant function. A similar proof applies to
any pair of continuous arguments of f .

(d) If θ is a continuous argument of f , then ln |f |+ iθ is a continuous logarithm of f by
part (b). Thus if g is any continuous logarithm of f , then g = ln |f | + iθ + 2πik by (c).
The result follows. ♣

As Example 3.1.5(c) indicates, a given zero-free continuous function on a set S need
not have a continuous argument. However, a continuous argument must exist when S is
an interval, as we now show.

3.1.7 Theorem

Let γ : [a, b] → C \ {0} be continuous, that is, γ is a curve and 0 /∈ γ∗. Then γ has a
continuous argument, hence by (3.1.6), a continuous logarithm.

Proof. Let ε be the distance from 0 to γ∗, that is, ε = min{|γ(t)| : t ∈ [a, b]}. Then ε > 0
because 0 /∈ γ∗ and γ∗ is a closed set. By the uniform continuity of γ on [a, b], there is
a partition a = t0 < t1 < · · · < tn = b of [a, b] such that if 1 ≤ j ≤ n and t ∈ [tj−1, tj ],
then γ(t) ∈ D(γ(tj), ε). By (3.1.5b), the function γ, restricted to the interval [t0, t1], has
a continuous argument θ1, and γ restricted to [t1, t2] has a continuous argument θ2. Since
θ1(t1) and θ2(t1) differ by an integer multiple of 2π, we may (if necessary) redefine θ2 on
[t1, t2] so that the relation θ1 ∪ θ2 is a continuous argument of γ on [t0, t2]. Proceeding in
this manner, we obtain a continuous argument of γ on the entire interval [a, b]. ♣

For a generalization to other subsets S, see Problem 3.2.6.
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3.1.8 Definition

Let f be analytic on Ω. We say that g is an analytic logarithm of f if g is analytic on Ω
and eg = f .

Our next goal is to show that if Ω satisfies certain conditions, in particular, if Ω is a
starlike region, then every zero-free analytic function f on Ω has an analytic logarithm on
Ω. First, we give necessary and sufficient conditions for f to have an analytic logarithm.

3.1.9 Theorem

Let f be analytic and never zero on the open set Ω. Then f has an analytic logarithm
on Ω iff the “logarithmic derivative” f ′/f has a primitive on Ω. Equivalently, by (2.1.6)
and (2.1.10),

∫
γ

f ′(z)
f(z) dz = 0 for every closed path γ in Ω.

Proof. If g is an analytic logarithm of f , then eg = f , hence f ′/f = g′. Conversely, if
f ′/f has a primitive g, then f ′/f = g′, and therefore

(fe−g)′ = −fe−gg′ + f ′e−g = e−g(f ′ − fg′)

which is identically zero on Ω. Thus fe−g is constant on each component of Ω. If
fe−g = kA on the component A, then kA cannot be zero, so we can write kA = elA for
some constant lA. We then have f = eg+lA , so that g + lA is an analytic logarithm of f
on A. Finally, ∪A(g + lA) is an analytic logarithm of f on Ω. ♣

We may now give a basic sufficient condition on Ω under which every zero-free analytic
function on Ω has an analytic logarithm.

3.1.10 Theorem

If Ω is an open set such that
∫

γ
h(z) dz = 0 for every analytic function h on Ω and every

closed path γ in Ω, in particular if Ω is a starlike region, then every zero-free analytic
function f on Ω has an analytic logarithm.

Proof. The result is a consequence of (3.1.9). If Ω is starlike, then
∫

γ
h(z) dz = 0 by

Cauchy’s theorem for starlike regions (2.1.9). ♣

3.1.11 Remark

If g is an analytic logarithm of f on Ω, then f has an analytic n-th root, namely f1/n =
exp(g/n). If f(z) = z and g = logα, we obtain

z1/n = exp
(

1
n

ln |z|+ i
1
n

argα z

)
= |z|1/n exp

(
i

n
argα z

)
.

More generally, we may define an analytic version of fw for any complex number w, via
fw = ewg.
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3.2 The Index of a Point with Respect to a Closed
Curve

In the introduction to this chapter we raised the question of which closed paths γ in an
open set Ω have the property that

∫
γ

f(z) dz = 0 for every analytic function f on Ω. As
we will see later, a necessary and sufficient condition on γ is that “γ not wind around any
points outside of Ω.” That is to say, if z0 /∈ Ω and γ is defined on [a, b], there is “no net
change in the argument of γ(t)− z0” as t increases from a to b. To make this precise, we
define the notion of the index (or winding number) of a point with respect to a closed
curve. The following observation will be crucial in showing that the index is well-defined.

3.2.1 Theorem

Let γ : [a, b] → C be a closed curve. Fix z0 /∈ γ∗, and let θ be a continuous argument of
γ − z0 [θ exists by (3.1.7)]. Then θ(b)− θ(a) is an integer multiple of 2π. Furthermore, if
θ1 is another continuous argument of γ − z0, then θ1(b)− θ1(a) = θ(b)− θ(a).
Proof. By (3.1.4), we have (γ(t) − z0)/|γ(t) − z0| = eiθ(t), a ≤ t ≤ b. Since γ is a closed
curve, γ(a) = γ(b), hence

1 =
γ(b)− z0

|γ(b)− z0|
· |γ(a)− z0|

γ(a)− z0
= ei(θ(b)−θ(a)).

Consequently, θ(b)−θ(a) is an integer multiple of 2π. If θ1 is another continuous argument
of γ − z0, then by (3.1.6c), θ1 − θ = 2πl for some integer l. Thus θ1(b) = θ(b) + 2πl and
θ1(a) = θ(a) + 2πl, so θ1(b)− θ1(a) = θ(b)− θ(a). ♣

It is now possible to define the index of a point with respect to a closed curve.

3.2.2 Definition

Let γ : [a, b]→ C be a closed curve. If z0 /∈ γ∗, let θz0 be a continuous argument of γ−z0.
The index of z0 with respect to γ, denoted by n(γ, z0), is

n(γ, z0) =
θz0(b)− θz0(a)

2π
.

By (3.2.1), n(γ, z0) is well-defined, that is, n(γ, z0) does not depend on the particular
continuous argument chosen. Intuitively, n(γ, z0) is the net number of revolutions of
γ(t), a ≤ t ≤ b, about the point z0. This is why the term winding number is often used
for the index. Note that by the above definition, for any complex number w we have
n(γ, z0) = n(γ + w, z0 + w).

If γ is sufficiently smooth, an integral representation of the index is available.

3.2.3 Theorem

Let γ be a closed path, and z0 a point not belonging to γ∗. Then

n(γ, z0) =
1

2πi

∫
γ

1
z − z0

dz.



6 CHAPTER 3. THE GENERAL CAUCHY THEOREM

More generally, if f is analytic on an open set Ω containing γ∗, and z0 /∈ (f ◦ γ)∗, then

n(f ◦ γ, z0) =
1

2πi

∫
γ

f ′(z)
f(z)− z0

dz.

Proof. Let ε be the distance from z0 to γ∗. As in the proof of (3.1.7), there is a partition
a = t0 < t1 < · · · < tn = b such that tj−1 ≤ t ≤ tj implies γ(t) ∈ D(γ(tj), ε). For each
j, z0 /∈ D(γ(tj), ε) by definition of ε. Consequently, by (3.1.10), the analytic function
z → z − z0, when restricted to D(γ(tj), ε) has an analytic logarithm gj . Now if g is an
analytic logarithm of f , then g′ = f ′/f [see (3.1.9)]. Therefore g′j(z) = 1/(z − z0) for all
z ∈ D(γ(tj), ε). The path γ restricted to [tj−1, tj ] lies in the disk D(γ(tj), ε), and hence
by (2.1.6), ∫

γ|[tj−1,tj ]

1
z − z0

dz = gj(γ(tj))− gj(γ(tj−1)).

Thus

∫
γ

1
z − z0

dz =
n∑

j=1

[gj(γ(tj))− gj(γ(tj−1))].

If θj = Im gj , then by (3.1.6a), θj is a continuous argument of z → z − z0 on D(γ(tj), ε).
By (3.1.6d), then,

∫
γ

1
z − z0

dz =
n∑

j=1

[θj(γ(tj))− θj(γ(tj−1))].

If θ is any continuous argument of γ − z0, then θ|[tj−1,tj ] is a continuous argument of
(γ − z0)|[tj−1,tj ]. But so is θj ◦ γ|[tj−1,tj ], hence by (3.1.6c),

θj(γ(tj))− θj(γ(tj−1)) = θ(tj)− θ(tj−1).

Therefore,

∫
γ

1
z − z0

dz =
n∑

j=1

[θ(tj)− θ(tj−1)] = θ(b)− θ(a) = 2πn(γ, z0)

completing the proof of the first part of the theorem. Applying this result to the path
f ◦ γ, we get the second statement. Specifically, if z0 /∈ (f ◦ γ)∗, then

n(f ◦ γ, z0) =
1

2πi

∫
f◦γ

1
z − z0

dz =
1

2πi

∫
γ

f ′(z)
f(z)− z0

dz. ♣

The next result contains additional properties of winding numbers that will be useful
later, and which are also interesting (and amusing, in the case of (d)) in their own right.
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3.2.4 Theorem

Let γ, γ1, γ2 : [a, b]→ C be closed curves.
(a) If z /∈ γ∗, then n(γ, z) = n(γ − z, 0).
(b) If 0 /∈ γ∗1∪γ∗2 , then n(γ1γ2, 0) = n(γ1, 0)+n(γ2, 0) and n(γ1/γ2, 0) = n(γ1, 0)−n(γ2, 0).
(c) If γ∗ ⊆ D(z0, r) and z /∈ D(z0, r), then n(γ, z) = 0.
(d) If |γ1(t)− γ2(t)| < |γ1(t)|, a ≤ t ≤ b, then 0 /∈ γ∗1 ∪ γ∗2 and n(γ1, 0) = n(γ2, 0).
Proof.
(a) This follows from Definition 3.2.2.
(b) Since 0 /∈ γ∗1 ∪ γ∗2 , both n(γ1, 0) and γ2, 0) are defined. If θ1 and θ2 are continuous
arguments of γ1 and γ2 respectively, then γj(t) = |γj(t)|eiθj(t), j = 1, 2, so

γ1(t)γ2(t) = |γ1(t)γ2(t)|ei(θ1(t)+θ2(t)), γ1(t)/γ2(t) = |γ1(t)/γ2(t)|ei(θ1(t)−θ2(t)).

Thus

n(γ1γ2, 0) = (θ1(b) + θ2(b))− (θ1(a) + θ2(a)) = (θ1(b)− θ1(a)) + (θ2(b)− θ2(a))
= n(γ1, 0) + n(γ2, 0).

Similarly, n(γ1/γ2, 0) = n(γ1, 0)− n(γ2, 0).
(c) If z /∈ D(z0, r), then by (3.1.10), the function f defined by f(w) = w−z, w ∈ D(z0, r),
has an analytic logarithm g. If θ is the imaginary part of g, then by (3.1.6a), θ ◦ γ is
a continuous argument of γ − z. Consequently, n(γ, z) = (2π)−1[θ(γ(b)) − θ(γ(a))] = 0
since γ(b) = γ(a).
(d) First note that if γ1(t) = 0 or γ2(t) = 0, then |γ1(t) − γ2(t)| < |γ1(t)| is false;
therefore, 0 /∈ γ∗1 ∪ γ∗2 . Let γ be the closed curve defined by γ(t) = γ2(t)/γ1(t). By the
hypothesis, we have |1 − γ(t)| < 1 on [a, b], hence γ∗ ⊆ D(1, 1). But by (c) and (b),
0 = n(γ, 0) = n(γ2, 0)− n(γ1, 0). ♣

Part (d) of (3.2.4) is sometimes called the “dog-walking theorem”. (See the text by
W. Veech,A Second Course in Complex Analysis, page 30.) For if γ1(t) and γ2(t) are
respectively the positions of a man and a dog on a variable length leash, and a tree is
located at the origin, then the hypothesis states that the length of the leash is always
less than the distance from the man to the tree. The conclusion states that the man and
the dog walk around the tree exactly the same number of times. See Problem 4 for a
generalization of (d).

The final theorem of this section deals with n(γ, z0) when viewed as a function of z0.

3.2.5 Theorem

If γ is a closed curve, then the function z → n(γ, z), z /∈ γ∗, is constant on each component
of C \ γ∗, and is 0 on the unbounded component of C \ γ∗.
Proof. Let z0 ∈ C \ γ∗, and choose r > 0 such that D(z0, r) ⊆ C \ γ∗. If z ∈ D(z0, r),
then by parts (a) and (b) of (3.2.4),

n(γ, z)− n(γ, z0) = n(γ − z, 0)− n(γ − z0, 0) = n

(
γ − z

γ − z0
, 0

)
= n

(
1 +

z0 − z

γ − z0
, 0

)
.
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But for each t, ∣∣∣∣ z0 − z

γ(t)− z0

∣∣∣∣ <
r

|γ(t)− z0|
≤ 1

since D(z0, r) ⊆ C\γ∗. Therefore the curve 1+(z0−z)/(γ−z0) lies in D(1, 1). By part (c)
of (3.2.4), n(1+(z0−z)/(γ−z0), 0) = 0, so n(γ, z) = n(γ, z0). This proves that the function
z → n(γ, z) is continuous on the open set C\γ∗ and locally constant. By an argument that
we have seen several times, the function is constant on components of C\γ∗. (If z0 ∈ C\γ∗
and Ω is that component of C \ γ∗ containing z0, let A = {z ∈ Ω : n(γ, z) = n(γ, z0)}.
Then A is a nonempty subset of Ω and A is both open and closed in Ω, so A = Ω.) To
see that n(γ, z) = 0 on the unbounded component of C\γ∗, note that γ∗ ⊆ D(0, R) for R
sufficiently large. By (3.2.4c), n(γ, z) = 0 for z /∈ D(0, R). Since all z outside of D(0, R)
belong to the unbounded component of C \ γ∗, we are finished. ♣

Problems

1. Suppose Ω is a region in C \ {0} such that every ray from 0 meets Ω.
(a) Show that for any α ∈ R, logα is not analytic on Ω.
(b) Show, on the other hand, that there exist regions of this type such that z does have
an analytic logarithm on Ω.

2. Let f(z) = (z − a)(z − b) for z in the region Ω = C \ [a, b], where a and b are distinct
complex numbers. Show that f has an analytic square root, but not an analytic
logarithm, on Ω.

3. Let f be an analytic zero-free function on Ω. Show that the following are equivalent.
(a) f has an analytic logarithm on Ω.
(b) f has an analytic k-th root on Ω (that is, an analytic function h such that hk = f)
for every positive integer k.
(c) f has an analytic k-th root on Ω for infinitely many positive integers k.

4. Prove the following extension of (3.2.4d), the “generalized dog-walking theorem”. Let
γ1, γ2 : [a, b] → C be closed curves such that |γ1(t) − γ2(t)| < |γ1(t)| + |γ2(t)| for all
t ∈ [a, b]. Prove that n(γ1, 0) = n(γ2, 0). (Hint: Define γ as in the proof of (3.2.4d),
and investigate the location of γ∗.) Also, what does the hypothesis imply about the
dog and the man in this case?

5. Prove the result given in Example 3.1.5(c).

6. Let f be a continuous mapping of the rectangle S = {x + iy : a ≤ x ≤ b, c ≤ y ≤ d}
into C \ {0}. Show that f has a continuous logarithm. This can be viewed as a
generalization of Theorem 3.1.7; to obtain (3.1.7) (essentially), take c = d.

7. Let f be analytic and zero-free on Ω, and suppose that g is a continuous logarithm of
f on Ω. Show that g is actually analytic on Ω.

8. Characterize the entire functions f, g such that f2 + g2 = 1. (Hint: 1 = f2 + g2 =
(f + ig)(f − ig), so f + ig is never 0.)

9. Let f and g be continuous mappings of the connected set S into C \ {0}.
(a) If fn = gn for some positive integer n, show that f = g exp(i2πk/n) for some
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k = 0, 1, . . . , n− 1.Hence if f(s0) = g(s0) for some s0 ∈ S, then f ≡ g.
(b) Show that C \ {0} cannot be replaced by C in the hypothesis.

3.3 Cauchy’s Theorem

This section is devoted to a discussion of the global (or homology) version of Cauchy’s
theorem. The elementary proof to be presented below is due to John Dixon, and appeared
in Proc. Amer. Math. Soc. 29 (1971), pp. 625-626, but the theorem as stated is originally
due to E.Artin.

3.3.1 Cauchy’s Theorem

Let γ be closed path in Ω such that n(γ, z) = 0 for all z ∈ C \ Ω.

(i) For all analytic functions f on Ω,
∫

γ
f(w) dw = 0;

(ii) If z ∈ Ω \ γ∗, then

n(γ, z)f(z) =
1

2πi

∫
γ

f(w)
w − z

dw.

A path γ in Ω with n(γ, z) = 0 for all z ∈ C \ Ω is said to be Ω-homologous to zero.
Dixon’s proof requires two preliminary lemmas.

3.3.2 Lemma

Let f be analytic on Ω, and define g on Ω× Ω by

g(w, z) =

{
f(w)−f(z)

w−z , w �= z

f ′(z), w = z.

Then g is continuous, and for each fixed w ∈ Ω, the function given by z → g(w, z) is
analytic on Ω.

Proof. Let {(wn, zn), n = 1, 2, . . . } be any sequence in Ω×Ω converging to (w, z) ∈ Ω×Ω.
If w �= z, then eventually wn �= zn, and by continuity of f , g(wn, zn) = f(wn)−f(zn)

wn−zn
→

f(w)−f(z)
w−z = g(w, z). However, if w = z, then

g(wn, zn) =




1
wn−zn

∫
[zn,wn]

f ′(τ) dτ if wn �= zn

f ′(zn) if wn = zn.

In either case, the continuity of f ′ at z implies that g(wn, zn)→ f ′(z) = g(z, z).

Finally, the function z → g(w, z) is continuous on Ω and analytic on Ω \ {w} (because
f is analytic on Ω). Consequently, z → g(w, z) is analytic on Ω by (2.2.13). ♣
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3.3.3 Lemma

Suppose [a, b] ⊆ R, and let ϕ be a continuous complex-valued function on the product
space Ω× [a, b]. Assume that for each t ∈ [a, b], the function z → ϕ(z, t) is analytic on Ω.
Define F on Ω by F (z) =

∫ b

a
ϕ(z, t) dt, z ∈ Ω. Then F is analytic on Ω and

F ′(z) =
∫ b

a

∂ϕ

∂z
(z, t) dt, z ∈ Ω.

Note that Theorem 2.2.10 on integrals of the Cauchy type is special case of this result.
However, (2.2.10) will itself play a part in the proof of (3.3.3).

Proof. Fix any disk D(z0, r) such that D(z0, r) ⊆ Ω. Then for each z ∈ D(z0, r),

F (z) =
∫ b

a

ϕ(z, t) dt

=
1

2πi

∫ b

a

(∫
C(z0,r)

ϕ(w, t)
w − z

dw

)
dt (by 2.2.9)

=
1

2πi

∫
C(z0,r)

(∫ b

a

ϕ(w, t) dt

)
1

w − z
dw

(Write the path integral as an ordinary definite integral and observe that the interchange
in the order of integration is justified by the result that applies to continuous functions on
rectangles.) Now

∫ b

a
ϕ(w, t) dt is a continuous function of w (to see this use the continuity

of ϕ on Ω× [a, b]), hence by (2.2.10), F is analytic on D(z0, r) and for each z ∈ D(z0, r),

F ′(z) =
1

2πi

∫
C(z0,r)

[∫ b

a

ϕ(w, t) dt

]
1

(w − z)2
dw

=
∫ b

a

[
1

2πi

∫
C(z0,r)

ϕ(w, t)
(w − z)2

dw

]
dt

=
∫ b

a

∂ϕ

∂z
(z, t) dt

by (2.2.10) again. ♣
Proof of Cauchy’s Theorem.

Let γ be a closed path in the open set Ω such that n(γ, z) = 0 for all z ∈ C \ Ω, and let
f be an analytic function on Ω. Define Ω′ = {z ∈ C \ γ∗ : n(γ, z) = 0}. Then C \Ω ⊆ Ω′,
so Ω ∪ Ω′ = C; furthermore, Ω′ is open by (3.2.5). If z ∈ Ω ∩ Ω′ and g is defined as in
(3.3.2), then g(w, z) = (f(w)− f(z))/(w − z) since z /∈ γ∗. Thus

∫
γ

g(w, z) dw =
∫

γ

f(w)
w − z

dw − 2πin(γ, z)f(z) =
∫

γ

f(w)
w − z

dw
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since n(γ, z) = 0 for z ∈ Ω′. The above computation shows that we can define a function
h on C by

h(z) =




∫
γ

g(w, z) dw if z ∈ Ω

∫
γ

f(w)
w−z dw if z ∈ Ω′.

By (2.2.10), h is analytic on Ω′, and by (3.3.2) and (3.3.3), h is analytic on Ω. Thus h
is an entire function. But for |z| sufficiently large, n(γ, z) = 0 by (3.2.5), hence z ∈ Ω′.
Consequently, h(z) =

∫
γ

f(w)
w−z dw → 0 as |z| → ∞. By Liouville’s theorem (2.4.2), h ≡ 0.

Now if z ∈ Ω \ γ∗ we have, as at the beginning of the proof,

0 = h(z) =
∫

γ

g(w, z) dw =
∫

γ

f(w)
w − z

dw − 2πin(γ, z)f(z)

proving (ii). To obtain (i), choose any z ∈ Ω \ γ∗ and apply (ii) to the function w →
(w − z)f(w), w ∈ Ω. ♣

3.3.4 Remarks

Part (i) of (3.3.1) is usually referred to as Cauchy’s theorem, and part (ii) as Cauchy’s
integral formula. In the above proof we derived (i) from (ii); see Problem 1 for the reverse
implication.

Also, there is a converse to part (i): If γ is a closed path in Ω such that
∫

γ
f(w) dw = 0

for every f analytic on Ω, then n(γ, z) = 0 for every z /∈ Ω. To prove this, take f(w) =
1/(w − z) and apply (3.2.3).

It is sometimes convenient to integrate over objects slightly more general than closed
paths.

3.3.5 Definitions

Let γ1, γ2, . . . , γm be closed paths. If k1, k2, . . . , km are integers, then the formal sum
γ = k1γ1 + · · ·+ kmγm is called a cycle. We define γ∗ = ∪m

j=1γ
∗
j , and for any continuous

function f on γ∗, ∫
γ

f(w) dw =
m∑

j=1

kj

∫
γj

f(w) dw.

Finally, for z /∈ γ∗, define

n(γ, z) =
m∑

j=1

kjn(γj , z).

It follows directly from the above definitions that the integral representation (3.2.3) for
winding numbers extends to cover cycles as well. Also, the proof of Cauchy’s theorem
(3.3.1) may be repeated almost verbatim for cycles (Problem 2).

Cauchy’s theorem, along with the remarks and definitions following it combine to yield
the following equivalence.
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3.3.6 Theorem

Let γ be a closed path (or cycle) in the open set Ω. Then
∫

γ
f(z) dz = 0 for every analytic

function f on Ω iff n(γ, z) = 0 for every z /∈ Ω.

Proof. Apply (3.3.1), (3.3.4) and (3.3.5). Note that the proof of the converse of (i) of
(3.3.1) given in (3.3.4) works for cycles, because the integral representation (3.2.3) still
holds. ♣

3.3.7 Corollary

Let γ1 and γ2 be closed paths (or cycles) in the open set Ω. Then
∫

γ1
f(w) dw =∫

γ2
f(w) dw for every analytic function f on Ω iff n(γ1, z) = n(γ2, z) for every z /∈ Ω.

Proof. Apply (3.3.6) to the cycle γ1 − γ2. ♣
Note that Theorem 3.3.6 now provides a solution of the first problem posed at the

beginning of the chapter, namely, a characterization of those closed paths γ in Ω such
that

∫
γ

f(z) dz = 0 for every analytic function f on Ω.

Problems

1. Show that (i) implies (ii) in (3.3.1).

2. Explain briefly how the proof of (3.3.1) is carried out for cycles.

3. Let Ω, γ and f be as in (3.3.1). Show that for each k = 0, 1, 2, . . . and z ∈ Ω \ γ∗, we
have

n(γ, z)f (k)(z) =
k!
2πi

∫
γ

f(w)
(w − z)k+1

dw.

4. Compute
∫

C(0,2)
1

z2−1 dz.

5. Use Problem 3 to calculate each of the integrals
∫

γj

ez+cos z
z4 dz, j = 1, 2, where the γj

are the paths indicated in Figure 3.3.1.

6. Consider γ : [0.2π] → C given by γ(t) = a cos t + ib sin t, where a and b are nonzero
real numbers. Evaluate

∫
γ

dz/z, and using this result, deduce that

∫ 2π

0

dt

a2 cos2 t + b2 sin2 t
=

2π

ab
.

3.4 Another Version of Cauchy’s Theorem

In this section we consider the second question formulated at the beginning of the chapter:
Which open sets Ω have the property that

∫
γ

f(z) dz = 0 for all analytic functions f on
Ω and all closed paths (or cycles) γ in Ω? A concise answer is given by Theorem 3.4.6,
but several preliminaries are needed.
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• • 0
0

Figure 3.3.1

3.4.1 The Extended Complex Plane

Let S = {(x1, x2, x3) ∈ R3 : x2
1+x2

2+(x3−1/2)2 = 1/4}. Thus S is the sphere in R3 (called
the Riemann sphere) with center at (0,0,1/2) and radius 1/2 (Figure 3.4.1). The line
segment joining (0,0,1), the north pole of S, to a point (x, y, 0) is {(tx, ty, 1−t) : 0 ≤ t ≤ 1},
and this segment meets S when and only when

t2(x2 + y2) + (
1
2
− t)2 =

1
4
, or t =

1
1 + x2 + y2

.

Therefore the intersection point is (x1, x2, x3), where

x1 =
x

1 + x2 + y2
, x2 =

y

1 + x2 + y2
, x3 =

x2 + y2

1 + x2 + y2
. (1)

Since 1− x3 = 1/(1 + x2 + y2), it follows from (1) that

x =
x1

1− x3
, y =

x2

1− x3
. (2)

Let h be the mapping that takes (x, y, 0) to the point (x1, x2, x3) of S. Then h maps
R

2 × {0}, which can be identified with C, one-to-one onto S \ {(0, 0, 1)}. Also, by (2),
h−1(x1, x2, x3) = ( x1

1−x3
, x2

1−x3
, 0). Consequently, h is a homeomorphism, that is, h and

h−1 are continuous.
We can identify C and S \ {(0, 0, 1)} formally as follows. Define k : C→ R

2 ×{0}. by
k(x+ iy) = (x, y.0). Then k is an isometry (a one-to-one, onto, distance-preserving map),
hence h ◦ k is a homeomorphism of C onto S \ {(0, 0, 1)}. Next let ∞ denote a point not
belonging to C, and take Ĉ to be C ∪ {∞}. Define g : Ĉ→ S by

g(z) =

{
h(k(z)), z ∈ C
(0, 0, 1), z =∞.

Then g maps C one-to-one onto S. If ρ is the usual Euclidean metric of R3 and d̂ is
defined on Ĉ× Ĉ by

d̂(z, w) = ρ(g(z), g(w)),
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Figure 3.4.1

then d̂ is a metric on Ĉ. (The d̂-distance between points of Ĉ is the Euclidean distance
between the corresponding points on the Riemann sphere.) The metric space (Ĉ, d̂) is
called the extended plane, and d̂ is called the chordal metric on Ĉ. It is a consequence of
the definition of d̂ that (Ĉ, d̂) and (S, ρ) are isometric spaces. The following formulas for
d̂ hold.

3.4.2 Lemma

d̂(z, w) =




|z−w|
(1+|z|2)1/2(1+|w|2)1/2 , z, w ∈ C

1
(1+|z|2)1/2 , z ∈ C, w =∞.

Proof. Suppose z = x + iy, w = u + iv. Then by (1) of (3.4.1),

[d̂(z, w)]2 =
[

x

1 + |z|2 −
u

1 + |w|2
]2

+
[

y

1 + |z|2 −
v

1 + |w|2
]2

+
[ |z|2
1 + |z|2 −

|w|2
1 + |w|2

]2

=
x2 + y2 + |z|4

(1 + |z|2)2 +
u2 + v2 + |w|4

(1 + |w|2)2 − 2
xu + yv + |z|2|w|2
(1 + |z|2)(1 + |w|2)

=
|z|2

1 + |z|2 +
|w|2

1 + |w|2 −
|z|2 + |w|2 − |z − w|2 + 2|z|2|w|2

(1 + |z|2)(1 + |w|2)

=
|z − w|2

(1 + |z|2)(1 + |w|2)
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as desired. Also,

[d̂(z,∞)]2 = [ρ(g(z), (0, 0, 1))]2

=
x2 + y2 + 1

(1 + x2 + y2)2
by (1) of (3.4.1)

=
1

1 + |z|2 . ♣

Here is a list of the most basic properties of Ĉ.

3.4.3 Theorem

(a) The metric space (Ĉ, d̂) is compact, and the identity function on C is a homeomorphism
of C (with the usual metric) onto (C, d̂).

(b) The complex plane is a dense subspace of Ĉ. In fact, a sequence {zn} in C converges
to ∞ iff {|zn|} converges to +∞.

(c) The metric space (Ĉ, d̂) is connected and complete.

(d) Let γ be a closed curve in C, and define n(γ,∞) = 0. Then the function n(γ, ·) is
continuous on Ĉ \ γ∗.

(e) The identity map on Ĉ is a homeomorphism of (Ĉ, d̂) with the one-point compactifi-
cation (C∞, T ) of C. (Readers unfamiliar with the one-point compactification of a locally
compact space may simply ignore this part of the theorem, as it will not be used later.)

Proof. Since the Riemann sphere is compact, connected and complete, so is (Ĉ, d̂). The
formula for d̂ in (3.4.2) shows that the identity map on C is a homeomorphism of C into
Ĉ, and that zn → ∞ iff |zn| → +∞. This proves (a), (b) and (c). Part (d) follows from
(3.2.5). For (e), see Problem 4. ♣

We are now going to make precise, in two equivalent ways, the notion that an open
set has no holes.

3.4.4 Theorem

Let Ω be open in C. Then Ĉ \ Ω is connected iff each closed curve (and each cycle) γ in
Ω is Ω-homologous to 0, that is, n(γ, z) = 0 for all z /∈ Ω.

Proof. Suppose first that Ĉ \ Ω is connected, and let γ be a closed curve in Ω. Since
z → n(γ, z) is a continuous integer-valued function on C \ γ∗ [by (3.2.5) and (3.4.3d)], it
must be constant on the connected set Ĉ \ Ω. But n(γ,∞) = 0, hence n(γ, z) = 0 for all
z ∈ Ĉ \ Ω. The statement for cycles now follows from the result for closed curves.

The converse is considerably more difficult, and is a consequence of what we will call
the hexagon lemma. As we will see, this lemma has several applications in addition to its
use in the proof of the converse.
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3.4.5 The Hexagon Lemma

Let Ω be an open subset of C, and let K be a nonempty compact subset of Ω. Then there
are closed polygonal paths γ1, γ2, . . . , γm in Ω \K such that

m∑
j=1

n(γj , z) =

{
1 if z ∈ K

0 if z /∈ Ω.

The lemma may be expressed by saying there is a (polygonal) cycle in Ω \K which winds
around each point of K exactly once, but does not wind around any point of C \ Ω.

Proof. For each positive integer n, let Pn be the hexagonal partition of C determined by
the hexagon with base [0, 1/n]; see Figure 3.4.2. Since K is a compact subset of the open

0 1/n

H

Figure 3.4.2. A Hexagonal Partition of C.

set Ω, we have dist(K,C \ Ω) > 0, and therefore we can choose n large enough so that if
H ∈ Pn and H ∩K �= ∅, then H ⊆ Ω. Define K = {H ∈ Pn : H ∩K �= ∅}. Since K is
nonempty and bounded, K is a nonempty finite collection and

K ⊆ ∪{H : H ∈ K} ⊆ Ω.

Now assign a positive (that is, counterclockwise) orientation to the sides of each hexagon
(see Figure 3.4.2). Let S denote the collection of all oriented sides of hexagons in K that
are sides of exactly one member of K. Observe that given an oriented side -ab ∈ S, there
are unique oriented sides -ca and -bd in S. (This uniqueness property is the motivation for
tiling with hexagons instead of squares. If we used squares instead, as in Figure 3.4.3,
we have -ab, -bc and -bd ∈ S, so -ab does not have a unique successor, thus complicating the
argument that follows.)

By the above observations, and the fact that S is a finite collection, it follows that
given -a1a2 ∈ S, there is a uniquely defined closed polygonal path γ1 = [a1, a2, . . . , ak, a1]
with all sides in S. If S1 consists of the edges of γ1 and S \ S1 �= ∅, repeat the above
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b

d

K = shaded areas

c

Figure 3.4.3 Nonuniqueness when squares are used.

construction with S replaced by S\S1. Continuing in this manner, we obtain pairwise dis-
joint collections S1, S2, . . . , Sn such that S = ∪m

j=1Sj , and corresponding closed polygonal
paths γ1, γ2, . . . , γm (Figure 3.4.4).

Suppose now that the hexagons in K are H1, H2, . . . , Hp, and let σj denote the bound-
ary of Hj , oriented positively. If z belongs to the interior of some Hr, then n(σr, z) = 1
and n(σj , z) = 0, j �= r. Consequently, n(σ1 + σ2 + · · · + σp, z) = 1 by (3.3.5). But by
construction, n(γ1 + · · · + γm, z) = n(σ1 + · · · + σp, z). (The key point is that if both
hexagons containing a particular side [a, b] belong to K, then -ab /∈ S and -ba /∈ S. Thus
[a, b] will not contribute to either n(γ1 + · · ·+ γm, z) or to n(σ1 + · · ·+ σp, z). If only one
hexagon containing [a, b] belongs to K, then -ab (or -ba) appears in both cycles.) Therefore
n(γ1+· · ·+γm, z) = 1. Similarly, if z /∈ Ω, then n(γ1+· · ·+γm, z) = n(σ1+· · ·+σp, z) = 0.

Finally, assume z ∈ K and z belongs to a side s of some Hr. Then s cannot be in
S, so z /∈ (γ1 + · · · + γm)∗. Let {wk} be a sequence of interior points of Hr with wk

converging to z. We have shown that n(γ1 + · · · + γm, wk) = 1 for all k, so by (3.2.5),
n(γ1 + · · ·+ γm, z) = 1. ♣

Completion of the Proof of (3.4.4)

If Ĉ\Ω is not connected, we must exhibit a cycle in Ω that is not Ω-homologous to 0. Now
since Ĉ is closed and not connected, it can be expressed as the union of two nonempty
disjoint closed sets K and L. One of these two sets must contain ∞; assume that ∞ ∈ L.
Then K must be a compact subset of the complex plane C, and K is contained in the
plane open set Ω1 = C \ L. apply the hexagon lemma (3.4.5) to Ω1 and K to obtain
a cycle σ in Ω1 \ K = C \ (K ∪ L) = Ω such that n(σ, z) = 1 for each z ∈ K (and
n(σ, z) = 0 for z /∈ Ω1). Pick any point z in the nonempty set K ⊆ C \ Ω. Then z /∈ Ω
and n(σ, z) = 1 �= 0. ♣
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γ1

γ
2

Figure 3.4.4. Construction of the closed paths.

Remark

As a consequence of the definition (3.3.5) of the index of a cycle, if Ĉ\Ω is not connected,
there must actually be a closed path γ in Ω such that n(γ, z) �= 0 for some z /∈ Ω.

The list of equivalences below is essentially a compilation of results that have already
been established.

3.4.6 Second Cauchy Theorem

Let Ω be an open subset of C. The following are equivalent.
(1) Ĉ \ Ω is connected.
(2) n(γ, z) = 0 for each closed path (or cycle) γ in Ω and each point z ∈ C \ Ω.
(3)

∫
γ

f(z) dz = 0 for every closed path (or cycle) γ in Ω and every analytic function f
on Ω.
(4) Every analytic function on Ω has a primitive on Ω.
(5) Every zero-free analytic function on Ω has an analytic logarithm.
(6) Every zero-free analytic function on Ω has an analytic n-th root for n = 1, 2, . . . .
Proof.
(1) is equivalent to (2) by Theorem 3.4.4.
(2) is equivalent to (3) by Theorem 3.3.6.
(3) is equivalent to (4) by Theorems 2.1.6 and 2.1.10.
(3) implies (5) by Theorem 3.1.10.
(5) is equivalent to (6) by Problem 3.2.3.
(5) implies (2): If z0 /∈ Ω, let f(z) = z − z0, z ∈ Ω. Then f has an analytic logarithm on
Ω, and hence for each closed path (or cycle) γ in Ω we have, by (3.2.3) and (3.1.9),

n(γ, z0) =
1

2πi

∫
γ

1
z − z0

dz =
1

2πi

∫
γ

f ′(z)
f(z)

dz = 0. ♣
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We will be adding to the above list in later chapters. An open subset of C satisfying any
(and hence all) of the conditions of (3.4.6) is said to be (homologically) simply connected.

It is true that in complex analysis, the implications (1) ⇒ (2) ⇒ (3) are used almost
exclusively. The rather tedious hexagon lemma was required to establish the reverse
implication (2) ⇒ (1). Thus one might wonder why we have gone to the trouble of
obtaining the hexagon lemma at all. One answer is that it has other applications, including
the following global integral representation formula. This formula should be compared
with Cauchy’s integral formula for a circle (2.2.9). It will also be used later in the proof
of Runge’s theorem on rational approximation.

3.4.7 Theorem

Let K be a compact subset of the open set Ω. Then there is a cycle γ in Ω \K such that
γ is a formal sum of closed polygonal paths, and for every analytic function f on Ω,

f(z) =
1

2πi

∫
γ

f(w)
w − z

dw = 0 for all z ∈ K.

Proof. Apply the hexagon lemma and part (ii) of (3.3.1). ♣

Problems

1. (a) Give an example of an open connected set that is not simply connected. For this set,
describe explicitly an analytic function f and a closed path γ such that

∫
γ

f(z) dz �= 0.
(b) Give an example of an open, simply connected set that is not connected.

2. Suppose that in the hexagon lemma, Ω is assumed to be connected. Can a cycle that
satisfies the conclusion be taken to be a closed path?

3. Let Γ1 be the ray [1, i/2,∞) = {1 − t + ti/2 : 0 ≤ t < ∞} and let Γ2 be the ray
[1, 2,∞).
(a) Show that 1−z has analytic square roots f and g on C\Γ1 and C\Γ2 respectively,
such that f(0) = g(0) = 1.
(b) Show that f = g below Γ = Γ1 ∪ Γ2 and f = −g above Γ. (Compare Problem
3.2.9.)
(c) Let h(z) be given by the binomial expansion of (1− z)1/2, that is,

h(z) =
∞∑

n=0

(
1/2
n

)
(−z)n, |z| < 1,

where
(
w
n

)
= w(w−1)···(w−n+1)

n! . What is the relationship between h and f?

4. Prove Theorem 3.4.3(e).



Chapter 4

Applications Of The Cauchy
Theory

This chapter contains several applications of the material developed in Chapter 3. In
the first section, we will describe the possible behavior of an analytic function near a
singularity of that function.

4.1 Singularities

We will say that f has an isolated singularity at z0 if f is analytic on D(z0, r) \ {z0} for
some r. What, if anything, can be said about the behavior of f near z0? The basic tool
needed to answer this question is the Laurent series, an expansion of f(z) in powers of
z − z0 in which negative as well as positive powers of z − z0 may appear. In fact, the
number of negative powers in this expansion is the key to determining how f behaves
near z0.

From now on, the punctured disk D(z0, r) \ {z0} will be denoted by D′(z0, r). We will
need a consequence of Cauchy’s integral formula.

4.1.1 Theorem

Let f be analytic on an open set Ω containing the annulus {z : r1 ≤ |z − z0| ≤ r2},
0 < r1 < r2 < ∞, and let γ1 and γ2 denote the positively oriented inner and outer
boundaries of the annulus. Then for r1 < |z − z0| < r2, we have

f(z) =
1

2πi

∫
γ2

f(w)
w − z

dw − 1
2πi

∫
γ1

f(w)
w − z

dw.

Proof. Apply Cauchy’s integral formula [part (ii) of (3.3.1)] to the cycle γ2 − γ1. ♣

1
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4.1.2 Definition

For 0 ≤ s1 < s2 ≤ +∞ and z0 ∈ C, we will denote the open annulus {z : s1 < |z−z0| < s2}
by A(z0, s1, s2).

4.1.3 Laurent Series Representation

If f is analytic on Ω = A(z0, s1, s2), then there is a unique two-tailed sequence {an}∞n=−∞
such that

f(z) =
∞∑

n=−∞
an(z − z0)n, z ∈ Ω.

In fact, if r is such that s1 < r < s2, then the coefficients an are given by

an =
1

2πi

∫
C(z0,r)

f(w)
(w − z0)n+1

dw, n = 0,±1,±2, . . . .

Also, the above series converges absolutely on Ω and uniformly on compact subsets of Ω.
Proof. Choose r1 and r2 such that s1 < r1 < r2 < s2 and consider the Cauchy type
integral

1
2πi

∫
C(z0,r2)

f(w)
w − z

dw, z ∈ D(z0, r2).

Then proceeding just as we did in the proof of Theorem 2.2.16, we obtain

1
2πi

∫
C(z0,r2)

f(w)
w − z

dw =
∞∑

n=0

an(z − z0)n

where

an =
1

2πi

∫
C(z0,r2)

f(w)
(w − z0)n+1

dw.

The series converges absolutely on D(z0, r2), and uniformly on compact subsets of D(z0, r).
Next, consider the Cauchy type integral

− 1
2πi

∫
C(z0,r1)

f(w)
w − z

dw, |z − z0| > r1.

This can be written as

1
2πi

∫
C(z0,r1)

f(w)
(z − z0)[1− w−z0

z−z0
]
dw =

1
2πi

∫
C(z0,r1)

[ ∞∑
n=1

f(w)
(w − z0)n−1

(z − z0)n

]
dw.

By the Weierstrass M -test, the series converges absolutely and uniformly for w ∈ C(z0, r1).
Consequently, we may integrate term by term to obtain the series

∞∑
n=1

bn(z − z0)−n, where bn =
1

2πi

∫
C(z0,r1)

f(w)
(w − z0)−n+1

dw.
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This is a power series in 1/(z−z0), and it converges for |z−z0| > r1, and hence uniformly
on sets of the form {z : |z − z0| ≥ 1/ρ} where (1/ρ) > r1. It follows that the convergence
is uniform on compact (indeed on closed) subsets of {z : z − z0| > r1.

The existence part of the theorem now follows from (4.1.1) and the above computa-
tions, if we note two facts. First, if s1 < r < s2 and k = 0,±1,±2, . . . ,∫

C(z0,r)

f(w)
(w − z0)k+1

dw =
∫

C(z0,r1)

f(w)
(w − z0)k+1

dw =
∫

C(z0,r2)

f(w)
(w − z0)k+1

dw.

Second, any compact subset of A(z0, s1, s2) is contained in {z : ρ1 ≤ |z − z0| ≤ ρ2} for
some ρ1 and ρ2 with s1 < ρ1 < ρ2 < s2.

We turn now to the question of uniqueness. Let {bn} be a sequence such that f(z) =∑∞
n=−∞ bn(z − z0)n for z ∈ A(z0, s1, s2). As in the above argument, this series must

converge uniformly on compact subsets of A(z0, s1, s2). Therefore if k is any integer and
s1 < r < s2, then

1
2πi

∫
C(z0,r)

f(w)
(w − z0)k+1

dw =
1

2πi

∫
C(z0,r)

[ ∞∑
n=−∞

bn(w − z0)n−k−1

]
dw

=
∞∑

n=−∞
bn

1
2πi

∫
C(z0,r)

(w − z0)n−k−1 dw

= bk,

because

1
2πi

∫
C(z0,r)

(w − z0)n−k−1 dw =

{
1 if n− k − 1 = −1
0 otherwise.

The theorem is completely proved. ♣
We are now in a position to analyze the behavior of f near an isolated singularity.

As the preceding discussion shows, if f has an isolated singularity at z0, then f can be
represented uniquely by

f(z) =
∞∑

n=−∞
an(z − z0)n

in some deleted neighborhood of z0.

4.1.4 Definition

Suppose f has an isolated singularity at z0, and let
∑∞

n=−∞ an(z − z0)n be the Laurent
expansion of f about z0, that is, the series given in (4.1.3). We say that f has a removable
singularity at z0 if an = 0 for all n < 0; f has a pole of order m at z0 if m is the largest
positive integer such that a−m �= 0. (A pole of order 1 is called a simple pole.) Finally, if
an �= 0 for infinitely many n < 0, we say that f has an essential singularity at z0.

The next theorem relates the behavior of f(z) for z near z0 to the type of singularity
that f has at z0.
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4.1.5 Theorem

Suppose that f has an isolated singularity at z0. Then
(a) f has a removable singularity at z0 iff f(z) approaches a finite limit as z → z0 iff f(z)
is bounded on the punctured disk D′(z0, δ) for some δ > 0.
(b) For a given positive integer m, f has a pole of order m at z0 iff (z−z0)mf(z) approaches
a finite nonzero limit as z → z0. Also, f has a pole at z0 iff |f(z)| → +∞ as z → z0.
(c) f has an essential singularity at z0 iff f(z) does not approach a finite or infinite limit
as z → z0, that is, f(z) has no limit in Ĉ as z → z0.
Proof. Let {an}∞n=−∞ and r > 0 be such that f(z) =

∑∞
−∞ an(z−z0)n for 0 < |z−z0| < r.

(a) If an = 0 for all n < 0, then limz→z0 f(z) = a0. Conversely, if limz→z0 f(z) exists (in
C), then f can be defined (or redefined) at z0 so that f is analytic on D(z0, r). It follows
that there is a sequence {bn}∞n=0 such that f(z) =

∑∞
n=0 bn(z− z0)n for z ∈ D′(z0, r). By

uniqueness of the Laurent expansion, we conclude that an = 0 for n < 0 and an = bn for
n ≥ 0. (Thus in this case, the Laurent and Taylor expansions coincide.) The remaining
equivalence stated in (a) is left as an exercise (Problem 1).
(b) If f has a pole of order m at z0, then for 0 < |z − z0| < r,

f(z) = a−m(z − z0)−m + · · ·+ a−1(z − z0)−1 +
∞∑

n=0

an(z − z0)n

where a−m �= 0. Consequently, (z − z0)mf(z) → a−m �= 0 as z → z0. Conversely, if
limz→z0(z − z0)mf(z) �= 0, then by (a) applied to (z − z0)mf(z), there is a sequence
{bn}∞n=0 such that

(z − z0)mf(z) =
∞∑

n=0

bn(z − z0)n, z ∈ D′(z0, r).

Let z → z0 to obtain b0 = limz→z0(z − z0)mf(z) �= 0. Thus f(z) can be written as
b0(z − z0)−m + b1(z − z0)−m+1 + · · · , showing that f has a pole of order m at z0. The
remaining equivalence in (b) is also left as an exercise (Problem 1).

(c) If f(z) does not have a limit in Ĉ as z → z0, then by (a) and (b), f must have an
essential singularity at z0. Conversely, if f has an essential singularity at z0, then (a) and
(b) again imply that limz→z0 f(z) cannot exist in Ĉ. ♣

The behavior of a function near an essential singularity is much more pathological
even than (4.1.5c) suggests, as the next theorem shows.

4.1.6 Casorati-Weierstrass Theorem

Let f have an isolated essential singularity at z0. Then for any complex number w,
f(z) comes arbitrarily close to w in every deleted neighborhood of z0. That is, for any
δ > 0, f(D′(z0, δ)) is a dense subset of C.
Proof. Suppose that for some δ > 0, f(D′(z0, δ)) is not dense in C. Then for some w ∈ C,
there exists ε > 0 such that D(w, ε) does not meet f(D′(z0, δ)). For z ∈ D′(z0, δ), put
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g(z) = 1/(f(z)−w)). Then g is bounded and analytic on D′(z0, δ), and hence by (4.1.5a),
g has a removable singularity at z0. Let m be the order of the zero of g at z0 (set m = 0 if
g(z0) �= 0) and write g(z) = (z−z0)mg1(z) where g1 is analytic on D(z0, δ) and g1(z0) �= 0
[see (2.4.4)]. Then (z − z0)mg1(z) = 1/(f(z)− w), so as z approaches z0,

(z − z0)mf(z) = (z − z0)mw +
1

g1(z)
−→

{
w + 1/g1(z0) if m = 0
1/g1(z0) if m �= 0.

Thus f has a removable singularity or a pole at z0. ♣

4.1.7 Remark

The Casorati-Weierstrass theorem is actually a weak version of a much deeper result called
the “big Picard theorem”, which asserts that if f has an isolated essential singularity at
z0, then for any δ > 0, f(D′(z0, δ)) is either the complex plane C or C minus one point.
We will not prove this result.

The behavior of a complex function f at ∞ may be studied by considering g(z) =
f(1/z) for z near 0. This allows us to talk about isolated singularities at∞. Here are the
formal statements.

4.1.8 Definition

We say that f has an isolated singularity at ∞ if f is analytic on {z : |z| > r} for some r;
thus the function g(z) = f(1/z) has an isolated singularity at 0. The type of singularity
of f at ∞ is then defined as that of g at 0.

4.1.9 Remark

Liouville’s theorem implies that if an entire function f has a removable singularity at ∞,
then f is constant. (By (4.1.5a), f is bounded on C.)

Problems

1. Complete the proofs of (a) and (b) of (4.1.5). (Hint for (a): If f is bounded on
D′(z0, δ), consider g(z) = (z − z0)f(z).)

2. Classify the singularities of each of the following functions (include the point at ∞).
(a) z/ sin z (b) exp(1/z) (c) z cos 1/z (d) 1/[z(ez − 1)] (e) cot z

3. Obtain three different Laurent expansions of (7z − 2)/z(z + 1)(z − 2) about z = −1.
(Use partial fractions.)

4. Obtain all Laurent expansions of f(z) = z−1 + (z − 1)−2 + (z + 2)−1 about z = 0,
and indicate where each is valid.

5. Find the first few terms in the Laurent expansion of 1
z2(ez−e−z) valid for 0 < |z| < π.

6. Without carrying out the computation in detail, indicate a relatively easy procedure
for finding the Laurent expansion of 1/ sin z valid for π < |z| < 2π.
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7. (Partial Fraction Expansion). Let R(z) = P (z)/Q(z), where P and Q are polynomials
and deg P < deg Q. (If this is not the case, then by long division we may write
P (z)/Q(z) = anzn + · · · + a1z + a0 + P1(z)/Q(z) where deg P1 < deg Q.) Suppose
that the zeros of Q are at z1, . . . , zk with respective orders n1, . . . , nk. Show that
R(z) =

∑k
j=1 Bj(z), where Bj(z) is of the form

Aj,0

(z − zj)nj
+ · · ·+

Aj,(nj−1)

(z − zj)
,

with

Aj,r = lim
z→zj

1
r!

dr

dzr
[(z − zj)nj R(z)]

( dr

dzr f(z) is interpreted as f(z) when r = 0).

Apply this result to R(z) = 1/[z(z + i)3].

8. Find the sum of the series
∑∞

n=0 e−n sinnz (in closed form), and indicate where
the series converges. Make an appropriate statement about uniform convergence.
(Suggestion: Consider

∑∞
n=0 e−neinz and

∑∞
n=0 e−ne−inz.)

9. (a) Show that if f is analytic on Ĉ, then f is constant.
(b) Suppose f is entire and there exists M > 0 and k > 0 such that |f(z)| ≤ M |z|k
for |z| sufficiently large. Show that f(z) is a polynomial of degree at most k. (This
can also be done without series; see Problem 2.2.13.)
(c) Prove that if f is entire and has a nonessential singularity at ∞, then f is a
polynomial.
(d) Prove that if f is meromorphic on Ĉ (that is, any singularity of f in Ĉ is a pole),
then f is a rational function.

10. Classify the singularities of the following functions (include the point at ∞).

(a)
sin2 z

z4
(b)

1
z2(z + 1)

+ sin
1
z

(c) csc z − k

z
(d) exp(tan

1
z
) (e)

1
sin(sin z)

.

11. Suppose that a and b are distinct complex numbers. Show that (z−a)/(z− b) has an
analytic logarithm on C \ [a, b], call it g. Then find the possible Laurent expansions
of g(z) about z = 0.

12. Suppose f is entire and f(C) is not dense in C. Show that f is constant.

13. Assume f has a pole of order m at α, and P is a polynomial of degree n. Prove that
the composition P ◦ f has a pole of order mn at α.

4.2 Residue Theory

We now develop a technique that often allows for the rapid evaluation of integrals of the
form

∫
γ

f(z) dz, where γ is a closed path (or cycle) in Ω and f is analytic on Ω except
possibly for isolated singularities.
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4.2.1 Definition

Let f have an isolated singularity at z0, and let the Laurent expansion of f about z0 be∑∞
n=−∞ an(z − z0)n. The residue of f at z0, denoted by Res(f, z0), is defined to be a−1.

4.2.2 Remarks

In many cases, the evaluation of an integral can be accomplished by the computation of
residues. This is illustrated by (a) and (b) below.
(a) Suppose f has an isolated singularity at z0, so that f is analytic on D′(z0, ρ) for some
ρ > 0. Then for any r such that 0 < r < ρ, we have∫

C(z0,r)

f(w) dw = 2πiRes(f, z0).

Proof. Apply the integral formula (4.1.3) for a−1. ♣
(b) More generally, if γ is a closed path or cycle in D′(z0, ρ) such that n(γ, z0) = 1 and
n(γ, z) = 0 for every z /∈ D(z0, ρ), then∫

γ

f(w) dw = 2πiRes(f, z0).

Proof. This follows from (3.3.7). ♣
(c) Res(f, z0) is that number k such that f(z)− [k/(z − z0)] has a primitive on D′(z0, ρ).
Proof. Note that if 0 < r < ρ, then by (a),∫

C(z0,r)

(
f(w)− k

w − z0

)
dw = 2πi[Res(f, z0)− k].

Thus if f(z)− [k/(z−z0)] has a primitive on D′(z0, ρ), then the integral is zero, and hence
Res(f, z0) = k. Conversely, if Res(f, z0) = k, then

f(z)− k

z − z0
=

∞∑
n=−∞
n �=−1

an(z − z0)n,

which has a primitive on D′(z0, ρ), namely

∞∑
n=−∞
n �=−1

an

n + 1
(z − z0)n+1. ♣

(d) If f has a pole of order m at z0, then

Res(f, z0) =
1

(m− 1)!
lim

z→z0

{
dm−1

dzm−1
[(z − z0)mf(z)]

}
.
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In particular, if f has a simple pole at z0, then

Res(f, z0) = lim
z→z0

[(z − z0)f(z)].

Proof. Let {an} be the Laurent coefficient sequence for f about z0, so that an = 0 for
n < −m and a−m �= 0. Then for z ∈ D′(z0, ρ),

(z − z0)mf(z) = a−m + a−m+1(z − z0) + · · ·+ a−1(z − z0)m−1 + a0(z − z0)m + · · · ,

hence

dm−1

dzm−1
[(z − z0)mf(z)] = (m− 1)!a−1 + (z − z0)g(z)

where g has a removable singularity at z0. The result follows. ♣
(e) Suppose f is analytic at z0 and has a zero of order k at z0. Then f ′/f has a simple
pole at z0 and Res(f ′/f, z0) = k.
Proof. There exists ρ > 0 and a zero-free analytic function g on D(z0, ρ) such that
f(z) = (z − z0)kg(z) for z ∈ D(z0, ρ). Then f ′(z) = k(z − z0)k−1g(z) + (z − z0)kg′(z),
and hence for z ∈ D′(z0, ρ),

f ′(z)
f(z)

=
k

z − z0
+

g′(z)
g(z)

.

Since g′/g is analytic on D(z0, ρ), it follows that f ′/f has a simple pole at z0 and
Res(f ′/f, z0) = k. ♣

We are now ready for the main result of this section.

4.2.3 Residue Theorem

Let f be analytic on Ω \ S, where S is a subset of Ω with no limit point in Ω. In other
words, f is analytic on Ω except for isolated singularities. Then for any closed path (or
cycle) γ in Ω \ S such that γ is Ω-homologous to 0, we have∫

γ

f(w) dw = 2πi
∑
w∈S

n(γ, w) Res(f, w).

Proof. Let S1 = {w ∈ S : n(γ, w) �= 0}. Then S1 ⊆ Q = C \ {z /∈ γ∗ : n(γ, z) = 0}.
Since γ is Ω-homologous to 0, Q is a subset of Ω. Furthermore, by (3.2.5), Q is closed and
bounded. Since S has no limit point in Ω, S1 has no limit points at all. Thus S1 is a finite
set. Consequently, the sum that appears in the conclusion of the theorem is the finite
sum obtained by summing over S1. Let w1, w2, . . . , wk denote the distinct points of S1.
[If S1 is empty, we are finished by Cauchy’s theorem (3.3.1).] Choose positive numbers
r1, r2, . . . , rk so small that

D′(wj , rj) ⊆ Ω \ S, j = 1, 2, . . . , k.

Let σ be the cycle
∑k

j=1 n(γ, wj)γj , where γj is the positively oriented boundary of
D(wj , rj). Then σ is cycle in the open set Ω\S, and you can check that if z /∈ Ω\S, then
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n(γ, z) = n(σ, z). Since f is analytic on Ω \ S, it follows from (3.3.7) that
∫

γ
f(w) dw =∫

σ
f(w) dw. But by definition of σ,

∫
γ

f(w) dw =
k∑

j=1

n(γ, wj)
∫

γj

f(w) dw = 2πi

k∑
j=1

n(γ, wj) Res(f, wj)

by part (a) of (4.2.2). ♣
In many applications of the residue theorem, the integral

∫
γ

f(w) dw is computed by
evaluating the sum 2πi

∑
w∈S n(γ, w) Res(f, w). Thus it is important to have methods

available for calculating residues. For example, (4.2.2d) is useful when f is a rational
function, since the only singularities of f are poles. The residue theorem can also be
applied to obtain a basic geometric property of analytic functions called the argument
principle. Before discussing the general result, let’s look at a simple special case. Suppose
z traverses the unit circle once in the positive sense, that is, z = eit, 0 ≤ t ≤ 2π. Then
the argument of z2, namely 2t, changes by 4π, so that z2 makes two revolutions around
the origin. Thus the number of times that z2 winds around the origin as z traverses the
unit circle is the number of zeros of z2 inside the circle, counting multiplicity.

The index of a point with respect to a closed path allows us to formalize the notion
of the number of times that f(z) winds around the origin as z traverses a path γ. For we
are looking at the net number of revolutions about 0 of f(γ(t)), a ≤ t ≤ b, and this, as we
have seen, is n(f ◦ γ, 0). We may now state the general result.

4.2.4 Argument Principle

Let f be analytic on Ω, and assume that f is not identically zero on any component of Ω.
If Z(f) = {z : f(z) = 0} and γ is any closed path in Ω\Z(f) such that γ is Ω-homologous
to 0,then

n(f ◦ γ, 0) =
∑

z∈Z(f)

n(γ, z)m(f, z)

where m(f, z) is the order of the zero of f at z.
Proof. The set S = Z(f) and the function f ′/f satisfy the hypothesis of the residue
theorem. Applying it, we get

1
2πi

∫
γ

f ′(z)
f(z)

dz =
∑

z∈Z(f)

n(γ, z) Res(f ′/f, z).

But the left side equals n(f◦γ, 0) by (3.2.3), and the right side equals
∑

z∈Z(f) n(γ, z)m(f, z)
by (4.2.2e). ♣

4.2.5 Remarks

Assuming that for each z ∈ Z(f), n(γ, z) = 1 or 0, the argument principle says that the
net increase in the argument of f(z) as z traverses γ∗ in the positive direction is equal to
the number of zeros of f “inside γ” (n(γ, z) = 1) with multiplicities taken into account.
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There is a useful generalization of (4.2.4) to meromorphic functions. A function f is
meromorphic on Ω if f is analytic on Ω except possibly for poles. That is, there is a subset
S ⊆ Ω with no limit points in Ω such that f is analytic on Ω \S and f has a pole at each
point of S. For example, any rational function is meromorphic on C. More generally,
the quotient f/g of two analytic functions is meromorphic, provided g is not identically
zero on any component of Ω. (This follows from (2.4.8) and (4.1.5).) Conversely, every
meromorphic function is a quotient of two analytic functions. (This is a much deeper
result, which will be proved in a later chapter.)

4.2.6 Definition

For f meromorphic on Ω, let Z(f) denote the set of zeros of f , and P (f) the set of poles
of f . If z ∈ Z(f) ∪ P (f), let m(f, z) be the order of the zero or pole of f at z.

4.2.7 Argument Principle for Meromorphic Functions

Suppose f is meromorphic on Ω. Then for any closed path (or cycle) γ in Ω\(Z(f)∪P (f))
such that γ is Ω-homologous to 0, we have

n(f ◦ γ, 0) =
∑

z∈Z(f)

n(γ, z)m(f, z)−
∑

z∈P (f)

n(γ, z)m(f, z).

Proof. Take S = Z(f)∪P (f), and apply the residue theorem to f ′/f . The analysis is the
same as in the proof of (4.2.4), if we note that if z0 ∈ P (f), then Res(f ′/f, z0) = −m(f, z0).
To see this, write f(z) = g(z)/(z − z0)k where k = m(f, z0) and g is analytic at z0, with
g(z0) �= 0. Then f ′(z)/f(z) = [g′(z)/g(z)]− [k/(z − z0)]. ♣

Under certain conditions, the argument principle allows a very useful comparison of
the number of zeros of two functions.

4.2.8 Rouché’s Theorem

Suppose f and g are analytic on Ω, with neither f nor g identically zero on any component
of Ω. Let γ be a closed path in Ω such that γ is Ω-homologous to 0. If

|f(z) + g(z)| < |f(z)|+ |g(z)| for each z ∈ γ∗, (1)

then ∑
z∈Z(f)

n(γ, z)m(f, z) =
∑

z∈Z(g)

n(γ, z)m(g, z).

Thus f and g have the same number of zeros, counting multiplicity and index.
Proof. The inequality (1) implies that γ∗ ⊆ Ω\ [Z(f)∪P (f)], and hence by the argument
principle, applied to each of f and g, we obtain

n(f ◦ γ, 0) =
∑

z∈Z(f)

n(γ, z)m(f, z) and n(g ◦ γ, 0) =
∑

z∈Z(g)

n(γ, z)m(g, z).
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But again by (1), |f(γ(t)) + g(γ(t))| < |f(γ(t))| + |g(γ(t))| for all t in the domain of
the closed path γ. Therefore by the generalized dog-walking theorem (Problem 3.2.4),
n(f ◦ γ, 0) = n(g ◦ γ, 0). The result follows. ♣

4.2.9 Remarks

Rouché’s theorem is true for cycles as well. To see this, suppose that γ is the formal
sum k1γ1 + · · · + krγr. Then just as in the proof of (4.2.8), we have n(f ◦ γ, 0) =∑

z∈Z(f) n(γ, z)m(f, z) and n(g ◦ γ, 0) =
∑

z∈Z(g) n(γ, z)m(g, z). But now |f(z)+ g(z)| <
|f(z)|+ |g(z)| for each z ∈ γ∗ = ∪r

j=1γ
∗
j implies, as before, that n(f ◦ γj , 0) = n(g ◦ γj , 0)

for j = 1, . . . , r, hence n(f ◦ γ, 0) = n(g ◦ γ, 0) and the proof is complete. ♣
In the hypothesis of (4.2.8), (1) is often replaced by

|f(z)− g(z)| < |f(z)| for each z ∈ γ∗. (2)

But now if (2) holds, then |f(z) + (−g(z))| < |f(z)| ≤ |f(z)| + | − g(z)| on γ∗, so f and
−g, hence f and g, have the same number of zeros.

Problems

1. Let f(z) = (z − 1)(z − 3 + 4i)/(z + 2i)2, and let γ be as shown in Figure 4.2.1. Find
n(f ◦ γ, 0), and interpret the result geometrically.

.
.

i

-2i

x

y

.3-4i

Figure 4.2.1

2. Use the argument principle to find (geometrically) the number of zeros of z3−z2+3z+5
in the right half plane.

3. Use Rouché’s theorem to prove that any polynomial of degree n ≥ 1 has exactly n
zeros, counting multiplicity.

4. Evaluate the following integrals using residue theory or Cauchy’s theorem.
(a)

∫∞
−∞

x sin ax
x4+4 dx, a > 0 (b)

∫∞
−∞

x
(x2+1)(x2+2x+2) dx

(c)
∫∞
−∞

1
(x2−4x+5)2 dx (d)

∫ 2π

0
cos θ

5+4 cos θ dθ (e)
∫∞
0

1
x4+a4 dx, a > 0

(f)
∫∞
0

cos x
x2+1 dx (g)

∫ 2π

0
(sin θ)2n dθ
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5-5i
-5-5i

-5-21
10-2i

10+10i-5+10i

-5+5i 5+5i

y

x

Figure 4.2.2

5. Evaluate
∫

γ
Log z
1+ez dz along the path γ indicated in Figure 4.2.2.

6. Find the residue at z = 0 of (a) csc2 z, (b) z−3 csc(z2), (c) z cos(1/z).

7. Find the residue of sin(ez/z) at z = 0. (Leave the answer in the form of an infinite
series.)

8. The results of this exercise are necessary for the calculations that are to be done in
Problem 9.
(a) Show that for any r > 0,

∫ π/2

0

e−r sin θ dθ ≤ π

2r
(1− e−r).

(Hint: sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2.)
(b) Suppose f has a simple pole at z0, and let γε be a circular arc with center z0 and
radius ε which subtends an angle α at z0, 0 < α ≤ 2π (see Figure 4.2.3). Prove that

lim
ε→0

∫
γε

f(z) dz = αiRes(f, z0).

In particular, if the γε are semicircular arcs (α = π), then

lim
ε→0

∫
γε

f(z) dz = πiRes(f, z0) = (1/2)2πiRes(f, z0).

(Hint: f(z)− [Res(f, z0)/(z − z0)] has a removable singularity at z0.)

9. (a) Show that
∫∞
−∞

sin x
x dx = π by integrating eiz/z on the closed path γR,ε indicated

in Figure 4.2.4.
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ε

γε

Figure 4.2.3

(b) Show that
∫∞
0

cos x2 dx =
∫∞
0

sinx2 dx = 1
2

√
π/2. (Integrate eiz2

around the
closed path indicated in Figure 4.2.5; assume as known the result that

∫∞
0

e−x2
dx =

1
2

√
π.)

(c) Compute
∫∞
0

ln(x2+1)
x2+1 dx by integrating Log(z+i)

z2+1 around the closed path of Figure
4.2.6.
(d) Derive formulas for

∫ π/2

0
ln cos θ dθ and

∫ π/2

0
ln sin θ dθ by making the change of

variable x = tan θ in (c).

Figure 4.2.4

π/4

Figure 4.2.5

10. Use Rouché’s theorem to show that all the zeros of z4 + 6z + 3 are in |z| < 2, and
three of them are in 1 < |z| < 2.

11. Suppose f is analytic on an open set Ω ⊃ D(0, 1), and |f(z)| < 1 for |z| = 1. Show that
for each n, the function f(z)−zn has exactly n zeros in D(0, 1), counting multiplicity.
In particular, f has exactly one fixed point in D(0, 1).

12. Prove the following version of Rouché’s theorem. Suppose K is compact, Ω is an
open subset of K, f and g are continuous on K and analytic on Ω, and we have the
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Figure 4.2.6

inequality |f(z) + g(z)| < |f(z)|+ |g(z)| for every z ∈ K \Ω. Show that f and g have
the same number of zeros in Ω, that is,∑

z∈Z(f)

m(f, z) =
∑

z∈Z(g)

m(g, z).

[Hint: Note that Z(f) ∪ Z(g) ⊆ {z : |f(z) + g(z)| = |f(z)|+ |g(z)|, and the latter set
is a compact subset of Ω. Now apply the hexagon lemma and (4.2.9).]

13. Show that 1
π

∫∞
−∞

eiux

1+x2 dx = e−|u| for real u.

14. Evaluate the integral of exp[sin(1/z)] around the unit circle |z| = 1.

15. Suppose f and g are analytic at z0. Establish the following:
(a) If f has a zero of order k and g has a zero of order k + 1 at z0, then f/g has a
simple pole at z0 and

Res(f/g, z0) = (k + 1)f (k)(z0)/g(k+1)(z0).

(The case k = 0 is allowed.)
(b) If f(z0) �= 0 and g has a zero of order 2 at z0, then f/g has a pole of order 2 at
z0 and

Res(f/g, z0) = 2
f ′(z0)
g′′(z0)

− 2
3

f(z0)g
′′′

(z0)
[g′′(z0)]2

.

16. Show that the equation 3z = e−z has exactly one root in |z| < 1.

17. Let f be analytic on D(0, 1) with f(0) = 0. Suppose ε > 0, 0 < r < 1, and
min|z|=r |f(z)| ≥ ε. Prove that D(0, ε) ⊆ f(D(0, r)).

18. Evaluate ∫
C(1+i,2)

[
eπz

z2 + 1
+ cos

1
z

+
1
ez

]
dz.

19. Suppose that P and Q are polynomials, the degree of Q exceeds that of P by at
least 2, and the rational function P/Q has no poles on the real axis. Prove that∫∞
−∞[P (x)/Q(x)] dx is 2πi times the sum of the residues of P/Q at its poles in the

upper half plane. Then compute this integral with P (x) = x2 and Q(x) = 1 + x4.
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20. Prove that the equation ez − 3z7 = 0 has seven roots in the unit disk |z| < 1. More
generally, if |a| > e and n is a positive integer, prove that ez−azn has exactly n roots
in |z| < 1.

21. Prove that ez = 2z + 1 for exactly one z ∈ D(0, 1).

22. Show that f(z) = z7 − 5z4 + z2 − 2 has exactly 4 zeros inside the unit circle.

23. If f(z) = z5 + 15z + 1, prove that all zeros of f are in {z : |z| < 2}, but only one zero
of f is in {z : |z| < 1/2}.

24. Show that all the roots of z5 + z + 1 = 0 satisfy |z| < 5/4.

25. Let {fn} be a sequence of analytic functions on an open connected set Ω such that
fn → f uniformly on compact subsets of Ω. Assume that f is not identically zero,
and let z0 ∈ Ω. Prove that f(z0) = 0 iff there is a subsequence {fnk

} and a sequence
{zk} such that zk → z0 and fnk

(zk) = 0 for all k. (Suggestion: Rouché’s theorem.)

26. Let p(z) = anzn + · · ·+ a1z + a0, an �= 0, define q(z) = a0z
n + · · ·+ an−1z + an, and

put

f(z) = a0p(z)− anq(z).

Assume that p has k ≥ 0 zeros in |z| < 1, but no zeros on |z| = 1. Establish the
following.
(a) For z �= 0, q(z) = znp(1/z).
(b) q has n− k zeros in |z| < 1.
(c) |p(z)| = |q(z)| for |z| = 1.
(d) If |a0| > |an|, then f also has k zeros in |z| < 1, while if |a0| < |an|, then f has
n− k zeros in |z| < 1.
(e) If |a0| > |an|, then p has at least one zero in |z| > 1, while if |a0| < |an|, then p
has at least one zero in |z| < 1.

4.3 The Open Mapping Theorem for Analytic Func-
tions

Our aim in this section is to show that a non-constant analytic function on a region Ω
maps Ω to a region, and that a one-to-one analytic function has an analytic inverse. These
facts, among others, are contained in the following theorem.

4.3.1 Open Mapping Theorem

Let f be a non-constant analytic function on an open connected set Ω. Let z0 ∈ Ω and
w0 = f(z0), and let k = m(f − w0, z0) be the order of the zero which f − w0 has at z0.
(a) There exists ε > 0 such that D(z0, ε) ⊆ Ω and such that neither f − w0 nor f ′ has a
zero in D(z0, ε) \ {z0}.
(b) Let γ be the positively oriented boundary of D(z0, ε), let W0 be the component of
C \ (f ◦ γ)∗ that contains w0, and let Ω1 = D(z0, ε)∩ f−1(W0). Then f is a k-to-one map
of Ω1 \ {z0} onto W0 \ {w0}.
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(c) f is a one-to-one map of Ω1 onto W0 iff f ′(z0) �= 0.

(d) f(Ω) is open.

(e) f : Ω→ C maps open subsets of Ω onto open sets.

(f) If f is one-to-one, then f−1 is analytic.

Proof.

(a) This follows from the identity theorem; the zeros of a non-constant analytic function
and its derivative have no limit point in Ω.

(b) If w ∈ W0, then by the argument principle, n(f ◦ γ) is the number of zeros of f − w
in D(z0, ε). But n(f ◦ γ, w) = n(f ◦ γ, w0), because the index is constant on components
of the complement of (f ◦ γ)∗. Since n(f ◦ γ, w0) = k, and f ′ has no zeros in D′(z0, ε), it
follows that for w �= w0, f −w has exactly k zeros in D(z0, ε), all simple. This proves (b).

(c) If f ′(z0) �= 0, then k = 1. Conversely, if f ′(z0) = 0, then k > 1.

(d) This is a consequence of (a) and (b), as they show that f(z0) is an interior point of
the range of f .

(e) This is a consequence of (d) as applied to an arbitrary open subdisk of Ω.

(f) Assume that f is one-to-one from Ω onto f(Ω). Since f maps open subsets of Ω
onto open subsets of f(Ω), f−1 is continuous on f(Ω). By (c), f ′ has no zeros in Ω, and
Theorem 1.3.2 then implies that f−1 is analytic. ♣

4.3.2 Remarks

If Ω is not assumed to be connected, but f is non-constant on each component of Ω,
then the conclusions of (4.3.1) are again true. In particular, if f is one-to-one, then
surely f is non-constant on components of Ω and hence f−1 is analytic on f(Ω). Finally,
note that the maximum principle is an immediate consequence of the open mapping
theorem. (Use (4.3.1d), along with the observation that given any disk D(w0, r), there
exists w ∈ D(w0, r) with |w| > |w0|.)

The last result of this section is an integral representation theorem for f−1 in terms of
the given function f . It can also be used to give an alternative proof that f−1 is analytic.

4.3.3 Theorem

Let f and g be analytic on Ω and assume that f is one-to-one. Then for each z0 ∈ Ω and
each r such that D(z0, r) ⊆ Ω, we have

g(f−1(w)) =
1

2πi

∫
C(z0,r)

g(z)
f ′(z)

f(z)− w
dw

for every w ∈ f(D(z0, r)). In particular, with g(z) = z, we have

f−1(w) =
1

2πi

∫
C(z0,r)

z
f ′(z)

f(z)− w
dw.
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Proof. Let w ∈ f(D(z0, r)). The function h(z) = g(z) f ′(z)
f(z)−w is analytic on Ω \ {f−1(w)},

and hence by the residue theorem [or even (4.2.2a)],

1
2πi

∫
C(z0,r)

g(z)
f ′(z)

f(z)− w
dz = Res(h, w).

But g is analytic at f−1(w) and f −w has a simple zero at f−1(w) (because f is one-to-
one), hence (Problem 1)

Res(h, w) = g(f−1(w)) Res(
f ′

f − w
, w) = g(f−1(w)) by (4.2.2e). ♣

In Problem 2, the reader is asked to use the above formula to give another proof that f−1

is analytic on f(Ω).

Problems

1. Suppose g is analytic at z0 and f has a simple pole at z0. show that Res(gf, z0) =
g(z0) Res(f, z0). Show also that the result is false if the word “simple” is omitted.

2. Let f be as in Theorem 4.3.3. Use the formula for f−1 derived therein to show that
f−1 is analytic on f(Ω). (Show that f−1 is representable in f(Ω) by power series.)

3. The goal of this problem is an open mapping theorem for meromorphic functions.
Recall from (4.2.5) that f is meromorphic on Ω if f is analytic on Ω \ P where P is a
subset of Ω with no limit point in Ω such that f has a pole at each point of P . Define
f(z) =∞ if z ∈ P , so that by (4.1.5b), f is a continuous map of Ω into the extended
plane Ĉ. Prove that if f is non-constant on each component of Ω, then f(Ω) is open
in Ĉ.

4. Suppose f is analytic on Ω, D(z0, r) ⊆ Ω, and f has no zeros on C(z0, r). Let
a1, a2, . . . , an be the zeros of f in D(z0, r). Prove that for any g that is analytic
on Ω,

1
2πi

∫
C(z0,r)

f ′(z)
f(z)

g(z) dz =
n∑

j=1

m(f, aj)g(aj)

where (as before) m(f, aj) is the order of the zero of f at aj .

5. Let f be a non-constant analytic function on an open connected set Ω. How does
the open mapping theorem imply that neither |f | nor Re f nor Im f takes on a local
maximum in Ω?

4.4 Linear Fractional Transformations

In this section we will study the mapping properties of a very special class of functions
on C, the linear fractional transformations (also known as Möbius transformations).
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4.4.1 Definition

If a, b, c, d are complex numbers such that ad−bc �= 0, the linear fractional transformation
T : Ĉ→ Ĉ associated with a, b, c, d is defined by

T (z) =




az+b
cz+d , z �=∞, z �= −d/c

a/c, z =∞
∞, z = −d/c.

Note that the condition ad − bc �= 0 guarantees that T is not constant. Also, if c = 0,
then a �= 0 and d �= 0, so that the usual agreements regarding ∞ can be made, that is,

T (∞) =

{
a/c if c �= 0,

∞ if c = 0
and T (−d/c) =∞ if c �= 0.

It follows from the definition that T is a one-to-one continuous map of Ĉ onto Ĉ. Moreover,
T is analytic on Ĉ \ {−d/c} with a simple pole at the point −d/c. Also, each such T is a
composition of maps of the form
(i) z → z + B (translation)
(ii) z → λz, where |λ| = 1 (rotation)
(iii) z → ρz, ρ > 0 (dilation)
(iv) z → 1/z (inversion).

To see that T is always such a composition, recall that if c = 0, then a �= 0 �= d, so

T (z) = |a/d| a/d

|a/d|z +
b

d
,

and if c �= 0, then

T (z) =
(bc− ad)/c2

z + (d/c)
+

a

c
.

Linear fractional transformations have the important property of mapping the family of
lines and circles in C onto itself. This is most easily seen by using complex forms of
equations for lines and circles.

4.4.2 Theorem

Let L = {z : αzz + βz + βz + γ = 0} where α and γ are real numbers, β is complex, and
s2 = ββ−αγ > 0. If α �= 0, then L is a circle, while if α = 0, then L is a line. Conversely,
each line or circle can be expressed as one of the sets L for appropriate α, γ, β.
Proof. First let us suppose that α �= 0. Then the equation defining L is equivalent to
|z + (β/α)|2 = (ββ − αγ)/α2, which is the equation of a circle with center at −β/α
and radius s/|α|. Conversely, the circle with center z0 and radius r > 0 has equation
|z−z0|2 = r2, which is equivalent to zz−z0z−z0z + |z0|2− r2 = 0. This has the required
form with α = 1, β = −z0, γ = |z0|2 − r2. On the other hand, if α = 0, then β �= 0, and
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the equation defining L becomes βz+βz+γ = 0, which is equivalent to Re(βz)+γ/2 = 0.
This has the form Ax + By + γ/2 = 0 where z = x + iy and β = A + iB, showing that
L is a line in this case. Conversely, an equation of the form Ax + By + C = 0, where A
and B are not both zero, can be written in complex form as Re(βz) + γ/2 = 0, where
β = A + iB and γ = 2C. ♣

4.4.3 Theorem

Suppose L is a line or circle, and T is a linear fractional transformation. Then T (L) is a
line or circle.

Proof. Since T is a composition of maps of the types (i)-(iv) of (4.4.1), it is sufficient to
show that T (L) is a line or circle if T is any one of these four types. Now translations,
dilations, and rotations surely map lines to lines and circles to circles, so it is only necessary
to look at the case where T (z) = 1/z. But if z satisfies αzz + βz + βz + γ = 0, then
w = 1/z satisfies γww +βw +βw +α = 0, which is also an equation of a line or circle. ♣

Note, for example, that if T (z) = 1/z, γ = 0 and α �= 0, then L is a circle through the
origin, but T (L), with equation βw + βw + α = 0, is a line not through the origin. This
is to be expected because inversion interchanges 0 and ∞.

Linear fractional transformations also have an angle-preserving property that is pos-
sessed, more generally, by all analytic functions with non-vanishing derivatives. This will
be discussed in the next section. Problems on linear fractional transformations will be
postponed until the end of Section 4.5.

4.5 Conformal Mapping

We saw in the open mapping theorem that if f ′(z0) �= 0, then f maps small neighborhoods
of z0 onto neighborhoods of f(z0) in a one-to-one fashion. In particular, f maps smooth
arcs (that is, continuously differentiable arcs) through z0 onto smooth arcs through f(z0).
Our objective now is to show that f preserves angles between any two such arcs. This is
made precise as follows.

4.5.1 Definition

Suppose f is a complex function defined on a neighborhood of z0, with f(z) �= f(z0) for
all z near z0 but not equal to z0. If there exists a unimodular complex number eiϕ such
that for all θ,

f(z0 + reiθ)− f(z0)
|f(z0 + reiθ)− f(z0)|

→ eiϕeiθ

as r → 0+, then we say that f preserves angles at z0.

To gain some insight and intuitive feeling for the meaning of the above condition,
note that for any θ and small r0 > 0, f(z0+reiθ)−f(z0)

|f(z0+r0eiθ)−f(z0)| is a unit vector from f(z0) to
f(z0 + r0e

iθ). The vectors from z0 to z0 + reiθ, 0 < r ≤ r0, have argument θ, so the
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condition states that f maps these vectors onto an arc from f(z0) whose unit tangent
vector at f(z0) has argument ϕ+ θ. Since ϕ is to be the same for all θ, f rotates all short
vectors from z0 through the fixed angle ϕ. Thus we see that f preserves angles between
tangent vectors to smooth arcs through z0.

4.5.2 Theorem

Suppose f is analytic at z0. Then f preserves angles at z0 iff f ′(z0) �= 0.

Proof. If f ′(z0) �= 0, then for any θ,

lim
r→0+

f(z0 + reiθ)− f(z0)
|f(z0 + reiθ)− f(z0)|

= eiθ lim
r→0+

[f(z0 + reiθ)− f(z0)]/reiθ

|[f(z0 + reiθ)− f(z0)|]/r
= eiθ f ′(z0)

|f ′(z0)|.

Thus the required unimodular complex number of Definition 4.5.1 is f ′(z0)/|f ′(z0)|. Con-
versely, suppose that f ′(z0) = 0. Assuming that f is not constant, f − f(z0) has a zero
of some order m > 1 at z0, hence we may write f(z)− f(z0) = (z − z0)mg(z) where g is
analytic at z0 and g(z0) �= 0. For any θ and small r > 0,

f(z0 + reiθ)− f(z0)
|f(z0 + reiθ)− f(z0)|

= eimθ g(z0 + reiθ)
|g(z0 + reiθ)| = eiθei(m−1)θ g(z0 + reiθ)

|g(z0 + reiθ)|

and the expression on the right side approaches eiθei(m−1)θg(z0)/|g(z0)| as r → 0+. Since
the factor ei(m−1)θg(z0)/|g′(z0)| depends on θ, f does not preserve angles at z0. Indeed,
the preceding shows that angles are increased by a factor of m, the order of the zero of
f − f(z0) at z0. ♣

A function f on Ω that is analytic and has a nonvanishing derivative will be called a
conformal map; it is locally one-to-one and preserves angles. Examples are the exponential
function and the linear fractional transformation (on their domains of analyticity). The
angle-preserving property of the exponential function was illustrated in part (i) of (2.3.1),
where it was shown that exp maps any pair of vertical and horizontal lines onto, respec-
tively, a circle with center 0 and an open ray emanating from 0. Thus the exponential
function preserves the orthogonality of vertical and horizontal lines.

Problems

1. Show that the inverse of a linear fractional transformation and the composition of two
linear fractional transformations is again a linear fractional transformation.

2. Consider the linear fractional transformation T (z) = (1 + z)/(1− z).
(a) Find a formula for the inverse of T .
(b) Show that T maps |z| < 1 onto Re z > 0, |z| = 1 onto {z : Re z = 0} ∪ {∞}, and
|z| > 1 onto Re z < 0.

3. Find linear fractional transformations that map
(a) 1, i,−1 to 1, 0,−1 respectively.
(b) 1, i,−1 to −1, i, 1 respectively.
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4. Let (z1, z2, z3) be a triple of distinct complex numbers.
(a) Prove that there is a unique linear fractional transformation T with the property
that T (z1) = 0, T (z2) = 1, T (z3) =∞.
(b) Prove that if one of z1, z2, z3 is ∞, then the statement of (a) remains true.
(c) Let each of (z1, z2, z3) and (w1, w2, w3) be triples of distinct complex numbers
(or extended complex numbers in Ĉ). Show that there is a unique linear fractional
transformation such that T (zj) = wj , j = 1, 2, 3.

5. Let f be meromorphic on C and assume that f is one-to-one. Show that f is a linear
fractional transformation. In particular, if f is entire, then f is linear, that is, a first
degree polynomial in z. Here is a suggested outline:
(a) f has at most one pole in C, consequently ∞ is an isolated singularity of f .
(b) f(D(0, 1)) and f(C \D(0, 1)) are disjoint open sets in Ĉ.
(c) f has a pole or removable singularity at ∞, so f is meromorphic on Ĉ.
(d) f has exactly one pole in Ĉ.
(e) Let the pole of f be at z0. If z0 = ∞, then f is a polynomial, which must be of
degree 1. If z0 ∈ C, consider g(z) = 1/f(z), z �= z0; g(z0) = 0. Then g is analytic at
z0 and g′(z0) �= 0.
(f) f has a simple pole at z0.
(g) f(z)−[Res(f, z0))/(z−z0)] is constant, hence f is a linear fractional transformation.

4.6 Analytic Mappings of One Disk to Another

In this section we will investigate the behavior of analytic functions that map one disk
into another. The linear fractional transformations are examples which are, in addition,
one-to-one. Schwarz’s lemma (2.4.16) is an important illustration of the type of conclusion
that can be drawn about such functions, and will be generalized in this section. We will
concentrate on the special case of maps of the unit disk D = D(0, 1) into itself. The
following lemma supplies us with an important class of examples.

4.6.1 Lemma

Fix a ∈ D, and define a function ϕa on Ĉ by

ϕa(z) =
z − a

1− az
,

where the usual conventions regarding ∞ are made: ϕa(∞) = −1/a and ϕa(1/a) = ∞.
Then ϕa is a one-to-one continuous map of Ĉ into Ĉ whose inverse is ϕ−a. Also, ϕa is
analytic on Ĉ \ {1/a} with a simple pole at 1/a (and a zero of order 1 at a). Thus ϕa is
analytic on a neighborhood of the closed disk D. Finally,

ϕa(D) = D, ϕa(∂D) = ∂D, ϕ′a(z) =
1− |a|2

(1− az)2

hence

ϕ′a(a) =
1

1− |a|2 and ϕ′a(0) = 1− |a|2.
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Proof. Most of the statements follow from the definition of ϕa and the fact that it is a
linear fractional transformation. To see that ϕa maps |z| = 1 into itself, we compute, for
|z| = 1, ∣∣∣∣ z − a

1− az

∣∣∣∣ =
∣∣∣∣ z − a

z(1− az)

∣∣∣∣ =
∣∣∣∣z − a

z − a

∣∣∣∣ = 1.

Thus by the maximum principle, ϕa maps D into D. Since ϕ−1
a = ϕ−a (a computation

shows that ϕ−a(ϕa(z)) = z), and |a| < 1 iff | − a| < 1, it follows that ϕa maps D onto
D and maps ∂D onto ∂D. The formulas involving the derivative of ϕa are verified by a
direct calculation. ♣

4.6.2 Remark

The functions ϕa are useful in factoring out the zeros of a function g on D, because g(z)
and ϕa(g(z)) have the same maximum modulus on D, unlike g(z) and (z − a)g(z). In
fact, if g is defined on the closed disk D, then∣∣∣∣ z − a

1− az
g(z)

∣∣∣∣ = |g(z)| for |z| = 1.

This property of the functions ϕa will be applied several times in this section and the
problems following it.

We turn now to what is often called Pick’s generalization of Schwarz’s lemma.

4.6.3 Theorem

Let f : D → D be analytic. then for any a ∈ D and any z ∈ D,∣∣∣∣∣ f(z)− f(a)
1− f(a)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − a

1− az

∣∣∣∣ (i)

and

|f ′(a)| ≤ 1− |f(a)|2
1− |a|2 . (ii)

Furthermore, if equality holds in (i) for some z �= a, or if equality holds in (ii), then f is
a linear fractional transformation. In fact, there is a unimodular complex number λ such
that with b = f(a), f is the composition ϕ−b ◦ λϕa = ϕ−1

b ◦ λϕa. That is,

f(z) =
λϕa(z) + b

1 + bλϕa(z)
, |z| < 1.

Proof. Let a ∈ D and set b = f(a). We are going to apply Schwarz’s lemma (2.4.16) to
the function g = ϕb ◦ f ◦ ϕ−a. First, since f maps D into D, so does g. Also,

g(0) = ϕb(f(ϕ−a(0))) = ϕb(f(a)) = ϕb(b) = 0.
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By Schwarz’s lemma, |g(w)| ≤ |w| for |w| < 1, and replacing w by ϕa(z) and noting that
g(ϕa(z)) = ϕb(f(z)), we obtain (i). Also by (2.4.16), we have |g′(0) ≤ 1. But by (4.6.1),

g′(0) = ϕ′b(f(ϕ−a(0)))f ′(ϕ−a(0))ϕ′−a(0)

= ϕ′b(f(a))f ′(a)(1− |a|2)

=
1

1− |f(a)|2)f ′(a)(1− |a|2).

Thus the condition |g′(0)| ≤ 1 implies (ii).

Now if equality holds in (i) for some z �= a, then |g(ϕa(z))| = |ϕa(z)| for some z �= a,
hence |g(w)| = |w| for some w �= 0. If equality holds in (ii), then |g′(0)| = 1. In either
case, (2.4.16) yields a unimodular complex number λ such that g(w) = λw for |w| < 1.
Set w = ϕa(z) to obtain ϕb(f(z)) = λϕa(z), that is, f(z) = ϕ−b(λϕa(z)) for |z| < 1. ♣

An important application of Theorem 4.6.3 is in characterizing the one-to-one analytic
maps of D onto itself as having the form λϕa where |λ| = 1 and a ∈ D.

4.6.4 Theorem

Suppose f is a one-to-one analytic map of D onto D. then f = λϕa for some unimodular
λ and a ∈ D.

Proof. Let a ∈ D be such that f(a) = 0 and let g = f−1, so g(0) = a. Now since
g(f(z)) = z, we have 1 = g′(f(z))f ′(z), in particular, 1 = g′(f(a))f ′(a) = g′(0)f ′(a).
Next, (4.6.3ii) implies that |g′(0)| ≤ 1− |a|2 and |f ′(a)| ≤ 1/(1− |a|2). Thus

1 = |g′(0)||f ′(a)| ≤ 1− |a|2
1− |a|2 = 1.

Necessarily then, |f ′(a)| = 1/(1 − |a|2) (and |g′(0)| = 1 − |a|2). Consequently, by the
condition for equality in (4.6.3ii), f = λϕa, as required. ♣

4.6.5 Remark

One implication of the previous theorem is that any one-to-one analytic map of D onto
D actually extends to a homeomorphism of D onto D. We will see when we study the
Riemann mapping theorem in the next chapter that more generally, if f maps D onto a
special type of region Ω, then f again extends to a homeomorphism of D onto Ω.

Our final result is a characterization of those continuous functions on D which are
analytic on D and have constant modulus on the boundary |z| = 1. The technique
mentioned in (4.6.2) will be used.

4.6.6 Theorem

Suppose f is continuous on D, analytic on D, and |f(z)| = 1 for |z| = 1. Then there is
a unimodular λ, finitely many points a1, . . . , an in D, and positive integers k1, . . . , kn,
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such that

f(z) = λ

n∏
j=1

(
z − aj

1− ajz

)kj

.

In other words, f is, to within a multiplicative constant, a finite product of functions
of the type ϕa. (If f is constant on D, the product is empty and we agree that it is
identically 1 in this case.)
Proof. First note that |f(z)| = 1 for |z| = 1 implies that f has at most finitely many
zeros in D. If f has no zeros in D, then by the maximum and minimum principles, f is
constant on D. Suppose then that f has its zeros at the points a1, . . . , an with orders
k1, . . . , kn respectively. Put

g(z) =
n∏

j=1

(
z − aj

1− ajz

)kj

, z ∈ D.

Then f/g has only removable singularities in D, the analytic extension of f/g has no
zeros in D, and |f/g| = 1 on ∂D. Again by the maximum and minimum principles, f/g
is constant on D \ {a1, . . . , an}. Thus f = λg with |λ| = 1. ♣

Problems

1. Derive the inequality (4.6.3ii) directly from (4.6.3i).
2. Let f be an analytic map of D(0, 1) into the right half plane {z : Re z > 0}. Show that

1− |z|
1 + |z| |f(0)| ≤ |f(z)| ≤ 1 + |z|

1− |z| |f(0)|, z ∈ D(0, 1),

and

|f ′(0)| ≤ 2|Re f(0)|.

Hint: Apply Schwarz’s lemma to T ◦ f , where T (w) = (w − f(0))/(w + f(0)).
3. Show that if f is an analytic map of D(0, 1) into itself, and f has two or more fixed

points, then f(z) = z for all z ∈ D(0, 1).
4. (a) Characterize the entire functions f such that |f(z)| = 1 for |z| = 1 [see (4.6.6)].

(b) Characterize the meromorphic functions f on C such that |f(z)| = 1 for |z| = 1.
(Hint: If f has a pole of order k at a ∈ D(0, 1), then [(z − a)/(1 − az)]kf(z) has a
removable singularity at a.)

5. Suppose that in Theorem 4.6.3, the unit disk D is replaced by D(0, R) and D(0, M).
That is, suppose f : D(0, R)→ D(0, M). How are the conclusions (i) and (ii) modified
in this case? (Hint: Consider g(z) = f(Rz)/M .)

6. Suppose f : D(0, 1)→ D(0, 1) is continuous and f is analytic on D(0, 1). Assume that
f has zeros at z1, . . . , zn of orders k1, . . . , kn respectively. Show that

|f(z)| ≤
n∏

j=1

∣∣∣∣ z − zj

1− zjz

∣∣∣∣
kj

.
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Suppose equality holds for some z ∈ D(0, 1) with z �= zj , j = 1, . . . , n. Find a formula
for f(z).

4.7 The Poisson Integral Formula and its Applications

Our aim in this section is to solve the Dirichlet problem for a disk, that is, to construct
a solution of Laplace’s equation in the disk subject to prescribed boundary values. The
basic tool is the Poisson integral formula, which may be regarded as an analog of the
Cauchy integral formula for harmonic functions. We will begin by extending Cauchy’s
theorem and the Cauchy integral formula to functions continuous on a disk and analytic
on its interior.

4.7.1 Theorem

Suppose f is continuous on D(0, 1) and analytic on D(0, 1). Then
(i)

∫
C(0,1)

f(w) dw = 0 and

(ii) f(z) = 1
2πi

∫
C(0,1)

f(w)
w−z dw for all z ∈ D(0, 1).

Proof. For 0 < r < 1,
∫

C(0,r)
f(w) dw = 0 by Cauchy’s theorem. For n = 1, 2, . . . , put

fn(z) = f( n
n+1z). Then fn is analytic on D(0, n+1

n ) and the sequence {fn} converges
to f uniformly on C(0, 1) [by continuity of f on D(0, 1)]. Hence

∫
C(0,1)

fn(w) dw →∫
C(0,1)

f(w) dw. Since
∫

C(0,1)
fn(w) dw = n+1

n

∫
C(0, n

n+1 )
f(w) dw = 0, we have (i). To

prove (ii), we apply (i) to the function g, where

g(w) =

{
f(w)−f(z)

w−z , w �= z

f ′(z), w = z. ♣

Note that the same proof works with only minor modifications if D(0, 1) is replaced by
an arbitrary disk D(z0, R).

4.7.2 Definition

For z ∈ D(0, 1), define functions Pz and Qz on the real line R by

Pz(t) =
1− |z|2
|eit − z|2 and Qz(t) =

eit + z

eit − z
;

Pz(t) is called the Poisson kernel and Qz(t) the Cauchy kernel. We have

Re[Qz(t)] = Re
[
(eit + z)(e−it − z)

|eit − z|2
]

= Re
[
1− |z|2 + ze−it − zeit

|eit − z|2
]

= Pz(t).

Note also that if z = reiθ, then

Pz(t) =
1− r2

|eit − reiθ|2 =
1− r2

|ei(t−θ)− r|2 = Pr(t− θ).
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Since |ei(t−θ) − r|2 = 1− 2r cos(t− θ) + r2, we see that

Pr(t− θ) =
1− r2

1− 2r cos(t− θ) + r2
=

1− r2

1− 2r cos(θ − t) + r2
= Pr(θ − t).

Thus for 0 ≤ r < 1, Pr(x) is an even function of x. Note also that Pr(x) is positive and
decreasing on [0, π].

After these preliminaries, we can establish the Poisson integral formula for the unit
disk, which states that the value of an analytic function at a point inside the disk is a
weighted average of its values on the boundary, the weights being given by the Poisson
kernel. The precise statement is as follows.

4.7.3 Poisson Integral Formula

Suppose f is continuous on D(0, 1) and analytic on D(0, 1). then for z ∈ D(0, 1) we have

f(z) =
1
2π

∫ 2π

0

Pz(t)f(eit) dt

and therefore

Re f(z) =
1
2π

∫ 2π

0

Pz(t) Re f(eit) dt.

Proof. By Theorem 4.7.1(ii),

f(0) =
1

2πi

∫
C(0,1)

f(w)
w

dw =
1
2π

∫ 2π

0

f(eit) dt,

hence f(0) = (1/2π)
∫ 2π

0
P0(t)f(eit) dt because P0(t) ≡ 1. This takes care of the case

z = 0. If z �= 0, then again by (4.7.1) we have

f(z) =
1

2πi

∫
C(0,1)

f(w)
w − z

dw and 0 =
1

2πi

∫
C(0,1)

f(w)
w − 1/z

dw,

the second equation holding because 1/z /∈ D(0, 1). Subtracting the second equation from
the first, we get

f(z) =
1

2πi

∫
C(0,1)

[
1

w − z
− 1

w − 1/z
]f(w) dw

=
1
2π

∫ 2π

0

[
1

eit − z
− 1

eit − 1/z
]eitf(eit) dt

=
1
2π

∫ 2π

0

[
eit

eit − z
+

zeit

1− zeit
]f(eit) dt

=
1
2π

∫ 2π

0

[
eit

eit − z
+

z

e−it − z
]f(eit) dt

=
1
2π

∫ 2π

0

1− |z|2
|eit − z|2 f(eit) dt

which proves the first formula. Taking real parts, we obtain the second. ♣
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4.7.4 Corollary

For |z| < 1, 1
2π

∫ 2π

0
Pz(t) dt = 1.

Proof. Take f ≡ 1 in (4.7.3). ♣
Using the formulas just derived for the unit disk D(0, 1), we can obtain formulas for

functions defined on arbitrary disks.

4.7.5 Poisson Integral Formula for Arbitrary Disks

Let f be continuous on D(z0, R) and analytic on D(z0, R). Then for z ∈ D(z0, R),

f(z) =
1
2π

∫ 2π

0

P(z−z0)/R(t)f(z0 + Reit) dt.

In polar form, if z = z0 + reiθ, then

f(z0 + reiθ) =
1
2π

∫ 2π

0

Pr/R(θ − t)f(z0 + Reit) dt.

Proof. Define g on D(0, 1) by g(w) = f(z0 + Rw). Then (4.7.3) applies to g, and we
obtain

g(w) =
1
2π

∫ 2π

0

Pw(t)g(eit) dt, |w| < 1.

If z ∈ D(z0, R), then w = (z − z0)/R ∈ D(0, 1) and

f(z) = g(
z − z0

R
) =

1
2π

∫ 2π

0

P(z−z0)/R(t)f(z0 + Reit) dt

which establishes the first formula. For the second, apply (4.7.2). [See the discussion
beginning with “Note also that . . . ”.] ♣

We now have the necessary machinery available to solve the Dirichlet problem for
disks. Again, for notational reasons we will solve the problem for the unit disk D(0, 1).
If desired, the statement and proof for an arbitrary disk can be obtained by the same
technique we used to derive (4.7.5) from (4.7.3).

4.7.6 The Dirichlet Problem

Suppose u0 is a real-valued continuous function on C(0, 1). Define a function u on D(0, 1)
by

u(z) =

{
u0(z) for |z| = 1,
1
2π

∫ 2π

0
Pz(t)u0(eit) dt for |z| < 1.
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Then u is continuous on D(0, 1) and harmonic on D(0, 1). Furthermore (since Pz is the
real part of Qz), for z ∈ D(0, 1),

u(z) = Re
[

1
2π

∫ 2π

0

Qz(t)u0(eit) dt

]
.

In particular, the given continuous function u0 on C(0, 1) has a continuous extension to
D(0, 1) which is harmonic on the interior D(0, 1).

Proof. The function z → 1
2π

∫ 2π

0
Qz(t)u0(eit) dt is analytic on D(0, 1) by (3.3.3), and

therefore u is harmonic, hence continuous, on D(0, 1). All that remains is to show that u
is continuous at points of the boundary C(0, 1).

We will actually show that u(reiθ) → u0(eiθ) uniformly in θ as r → 1. Since u0 is
continuous on C(0, 1), this will prove that u is continuous at each of point of C(0, 1), by
the triangle inequality. Thus let θ and r be real numbers with 0 < r < 1. Then by (4.7.2),
(4.7.4) and the definition of u(z),

u(reiθ)− u0(eiθ) =
1
2π

∫ 2π

0

Pr(θ − t)[u0(eit)− u0(eiθ)] dt.

Make the change of variable x = t− θ and recall that Pr is an even function. The above
integral becomes

1
2π

∫ 2π−θ

−θ

Pr(x)[u0(ei(θ+x))− u0(eiθ)] dx,

and the limits of integration can be changed to −π and π, because the integrand has 2π
as a period. Now fix δ with 0 < δ < π and write the last integral above as the sum,

1
2π

∫ −δ

−π

+
1
2π

∫ δ

−δ

+
1
2π

∫ π

δ

.

We can estimate each of these integrals. The first and third have absolute value at
most 2 sup{|u0(eit)| : −π ≤ t ≤ π}Pr(δ), because Pr(x) is a positive and decreasing
function on [0, π] and Pr(−x) = Pr(x). The middle integral has absolute value at most
sup{|u0(ei(θ+x))− u0(eiθ)| : −δ ≤ x ≤ δ}, by (4.7.4).

But for fixed δ > 0, Pr(δ)→ 0 as r → 1, while sup{|u0(ei(θ+x))−u0(eiθ)| : −δ ≤ x ≤ δ}
approaches 0 as δ → 0, uniformly in θ because u0 is uniformly continuous on C(0, 1).
Putting this all together, we see that given ε > 0 there is an r0, 0 < r0 < 1, such that for
r0 < r < 1 and all θ, we have |u(reiθ) − u0(eiθ)| < ε. This, along with the continuity of
u0 on C(0, 1), shows that u is continuous at each point of C(0, 1). ♣

4.7.7 Uniqueness of Solutions to the Dirichlet Problem

We saw in (2.4.15) that harmonic functions satisfy the maximum and minimum principles.
Specifically, if u is continuous on D(0, 1) and harmonic on D(0, 1), then

max
z∈D(0,1)

u(z) = max
z∈C(0,1)

u(z) and min
z∈D(0,1)

u(z) = min
z∈C(0,1)

u(z).
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Thus if u ≡ 0 on C(0, 1), then u ≡ 0 on D(0, 1).
Now suppose that u1 and u2 are solutions to a Dirichlet problem on D(0, 1) with

boundary function u0. Then u1 − u2 is continuous on D(0, 1), harmonic on D(0, 1), and
identically 0 on C(0, 1), hence identically 0 on D(0, 1). Therefore u1 ≡ u2, so the solution
to any given Dirichlet problem is unique.

Here is a consequence of the uniqueness result.

4.7.8 Poisson Integral Formula for Harmonic Functions

Suppose u is continuous on D(0, 1) and harmonic on D(0, 1). Then for z ∈ D(0, 1), we
have

u(z) =
1
2π

∫ 2π

0

Pz(t)u(eit) dt.

More generally, if D(0, 1) is replaced by D(z0, R), then

u(z) =
1
2π

∫ 2π

0

P(z−z0)/R(t)u(z0 + Reit) dt;

equivalently,

u(z0 + reiθ) =
1
2π

∫ 2π

0

Pr/R(θ − t)u(z0 + Reit) dt

for 0 ≤ r < R and all θ.
Proof. The result for D(0, 1) follows from (4.7.6) and (4.7.7). To prove the result for
D(z0, R), we apply (4.7.6) and (4.7.7) to u∗(w) = u(z0 + Rw), w ∈ D(0, 1). If z =
z0 + reiθ, 0 ≤ r < R, then u(z) = u∗((z − z0)/R), hence

u(z) =
1
2π

∫ 2π

0

P(z−z0)/R(t)u∗(eit) dt =
1
2π

∫ 2π

0

Pr/R(θ − t)u(z0 + Reit) dt

as in (4.7.5). ♣
The Poisson integral formula allows us to derive a mean value property for harmonic

functions.

4.7.9 Corollary

Suppose u is harmonic on an open set Ω. If z0 ∈ Ω and D(z0, R) ⊆ Ω, then

u(z0) =
1
2π

∫ 2π

0

u(z0 + Reit) dt.

That is, u(z0) is the average of its values on circles with center at z0.
Proof. Apply (4.7.8) with r = 0. ♣

It is interesting that the mean value property characterizes harmonic functions.



30 CHAPTER 4. APPLICATIONS OF THE CAUCHY THEORY

4.7.10 Theorem

Suppose ϕ is a continuous, real-valued function on Ω such that whenever D(z0, R) ⊆ Ω,
it is true that ϕ(z0) = 1

2π

∫ 2π

0
ϕ(z0 + Reit) dt. Then ϕ is harmonic on Ω.

Proof. Let D(z0, R) be any disk such that D(z0, R) ⊆ Ω. Let u0 be the restriction of ϕ
to the circle C(z0, R) and apply (4.7.6) [for the disk D(z0, R)] to produce a continuous
function u on D(z0, R) such that u = u0 = ϕ on C(z0, R). We will show that ϕ = u on
D(z0, R), thereby proving that ϕ is harmonic on D(z0, R). Since D(z0, R) is an arbitrary
subdisk, this will prove that ϕ is harmonic on Ω.

The function ϕ − u is continuous on D(z0, R), and hence assumes its maximum and
minimum at some points z1 and z2 respectively. If both z1 and z2 belong to C(z0, R),
then since u = ϕ on C(z0, R), the maximum and minimum values of ϕ− u are both 0. It
follows that ϕ− u ≡ 0 on D(z0, R) and we are finished. On the other hand, suppose that
(say) z1 belongs to the open disk D(z0, R). Define a set A by

A = {z ∈ D(z0, R) : (ϕ− u)(z) = (ϕ− u)(z1)}.

Then A is closed in D(z0, R) by continuity of ϕ−u. We will also show that A is open, and
thus conclude by connectedness that A = D(z0, R). For suppose that a ∈ A and r > 0 is
chosen so that D(a, r) ⊆ D(z0, R). Then for 0 < ρ ≤ r we have

ϕ(a)− u(a) =
1
2π

∫ 2π

0

[ϕ(a + ρeit)− u(a + ρeit)] dt.

Since ϕ(a + ρeit) − u(a + ρeit) ≤ ϕ(a) − u(a), it follows from Lemma 2.4.11 that ϕ − u
is constant on D(a, r). Thus D(a, r) ⊆ A, so A is open. A similar argument is used if
z2 ∈ D(z0, R). ♣

Remark

The above proof shows that a continuous function with the mean value property that has
an absolute maximum or minimum in a region Ω is constant.

Problems

1. Let Qz(t) be as in (4.7.2). Prove that 1
2π

∫ 2π

0
Qz(t) dt = 1.

2. Use (4.7.8) to prove Harnack’s inequality : Suppose u satisfies the hypothesis of (4.7.8),
and in addition u ≥ 0. Then for 0 ≤ r < 1 and all θ,

1− r

1 + r
u(0) ≤ u(reiθ) ≤ 1 + r

1− r
u(0).

3. Prove the following analog (for harmonic functions) of Theorem 2.2.17. Let {un} be a
sequence of harmonic functions on Ω such that un → u uniformly on compact subsets
of Ω. Then u is harmonic on Ω. (Hint: If D(z0, R) ⊆ Ω, the Poisson integral formula
holds for u on D(z0, R).)
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4. In Theorem 1.6.2 we showed that every harmonic function is locally the real part of
an analytic function. Using results of this section, give a new proof of this fact.

5. Let Ω be a bounded open set and γ a closed path such that the following conditions
are satisfied:
(a) γ∗ = ∂Ω, the boundary of Ω.
(b) There exists z0 such that for every δ, 0 ≤ δ < 1, the path γδ = z0 + δ(γ − z0) has
its range in Ω (see Figure 4.7.1).

If f is continuous on Ω and analytic on Ω, show that∫
γ

f(w) dw = 0 and n(γ, z)f(z) =
1

2πi

∫
γ

f(w)
w − z

dw, z ∈ Ω.

Outline:
(i) First show that Ω must be starlike with star center z0 by showing that if z ∈ Ω,
then the ray [z0, z,∞) meets ∂Ω at some point β. By (a) and (b), [z0, β) ⊆ Ω. Next
show that z ∈ [z0, β), hence [z0, z] ⊆ Ω.
(ii) The desired conclusions hold with γ replaced by γδ; let δ → 1 to complete the
proof.

6. (Poisson integral formula for a half plane). Let f be analytic on {z : Im z > 0} and
continuous on {z : Im z ≥ 0}. If u = Re f , establish the formula

u(x, y) =
1
π

∫ ∞
−∞

yu(t, 0)
(t− x)2 + y2

dt, Im z > 0

under an appropriate hypothesis on the growth of f as z →∞. (Consider the path γ
indicated back in Figure 4.2.6. Write, for Im z > 0, f(z) = (2πi)−1

∫
γ
[f(w)/(w−z)] dw

and 0 = (2πi)−1
∫

γ
[f(w)/(w− z)] dw by using either Problem 5 or a technique similar

to that given in the proof of (4.7.1). Then subtract the second equation from the first.)

.z0

γ
δ
(t)

Figure 4.7.1

4.8 The Jensen and Poisson-Jensen Formulas

Suppose f is continuous on D(0, R), analytic on D(0, R) and f has no zeros in D(0, R).
Then we know that f has an analytic logarithm on D(0, R) whose real part ln |f | is
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continuous on D(0, R) and harmonic on D(0, R). Thus by (4.7.8), the Poisson integral
formula for harmonic functions, we have

ln |f(z)| = 1
2π

∫ 2π

0

Pz/R(t) ln |f(Reit)| dt

or in polar form,

ln |f(reiθ)| = 1
2π

∫ 2π

0

Pr/R(θ − t) ln |f(Reit)| dt.

If f has zeros in D(0, R), then this derivation fails. However, the above formula can be
modified to take the zeros of f into account.

4.8.1 Poisson-Jensen Formula

Suppose that f is continuous on D(0, R), analytic on D(0, R) and that f has no zeros on
C(0, R). Let a1, . . . , an be the distinct zeros of f in D(0, R) with multiplicities k1, . . . , kn

respectively. Then for z ∈ D(0, R), z unequal to any of the aj , we have

ln |f(z)| =
n∑

j=1

kj ln
∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣ +
1
2π

∫ 2π

0

Pz/R(t) ln |f(Reit| dt.

Proof. We first give a proof for the case R = 1. By (4.6.2), there is a continuous function
g on D(0, 1), analytic on D(0, 1), such that g has no zeros in D(0, 1) and such that

f(z) =


 n∏

j=1

(
z − aj

1− ajz

)kj


 g(z).

Since the product has modulus one when |z| = 1 we have |f(z)| = |g(z)| for |z| = 1. Thus
if f(z) �= 0, then

ln |f(z)| =
n∑

j=1

kj ln
∣∣∣∣ z − aj

1− ajz

∣∣∣∣ + ln |g(z)|.

But g has no zeros in D(0, 1), so by the discussion in the opening paragraph of this section,

ln |g(z)| = 1
2π

∫ 2π

0

Pz(t) ln |g(eit)| dt =
1
2π

∫ 2π

0

Pz(t) ln |f(eit)| dt.

This gives the result for R = 1. To obtain the formula for arbitrary R, we apply what
was just proved to F (w) = f(Rw), |w| ≤ 1. Thus

ln |F (w)| =
n∑

j=1

kj ln
∣∣∣∣ w − (aj/R)
1− (ajw/R)

∣∣∣∣ +
1
2π

∫ 2π

0

Pw(t) ln |F (eit)| dt.
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If we let z = Rw and observe that

w − (aj/R)
1− (ajw/R)

=
R(z − aj)
R2 − ajz

,

we have the desired result. ♣
The Poisson-Jensen formula has several direct consequences.

4.8.2 Corollary

Assume that f satisfies the hypothesis of (4.8.1). Then

(a) ln |f(z)| ≤ 1
2π

∫ 2π

0
Pz/R(t) ln |f(Reit)| dt.

If in addition, f(0) �= 0, then

(b) ln |f(0)| =
∑n

j=1 kj ln |aj/R|+ 1
2π

∫ 2π

0
ln |f(Reit)| dt, hence

(c) ln |f(0)| ≤ 1
2π

∫ 2π

0
ln |f(Reit)| dt.

Part (b) is known as Jensen’s formula.
Proof. It follows from (4.6.1) and the proof of (4.8.1) that∣∣∣∣R(z − aj)

R2 − ajz

∣∣∣∣ < 1, hence kj ln
∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣ < 0,

proving (a). Part (b) follows from (4.8.1) with z = 0, and (c) follows from (b). ♣
Jensen’s formula (4.8.2b) does not apply when f(0) = 0, and the Poisson-Jensen

formula (4.8.1) requires that f have no zeros on C(0, R). It is natural to ask whether any
modifications of our formulas are available so that these situations are covered.

First, if f has a zero of order k at 0, with f(z) �= 0 for |z| = R, then the left side of
Jensen’s formula is modified to k lnR + ln |f (k)(0)/k!| rather than ln |f(0)|. This can be
verified by considering f(z)/zk and is left as Problem 1 at the end of the section.

However, if f(z) = 0 for some z ∈ C(0, R), then the situation is complicated for several
reasons. For example, it is possible that f(z) = 0 for infinitely many points on C(0, R)
without being identically zero on D(0, R) if f is merely assumed continuous on D(0, R)
and analytic on D(0, R). Thus ln |f(z)| = −∞ at infinitely many points in C(0, R) and
so the Poisson integral of ln |f | does not à priori exist. It turns out that the integral does
exist in the sense of Lebesgue, but Lebesgue integration is beyond the scope of this text.
Thus we will be content with a version of the Poisson-Jensen formula requiring analyticity
on D(0, R), but allowing zeros on the boundary.

4.8.3 Poisson-Jensen Formula, Second Version

Let f be analytic and not identically zero on D(0, R). Let a1, . . . , an be the zeros of f in
D(0, R), with multiplicities k1, . . . , kn respectively. Then for z ∈ D(0, R) \ Z(f),

ln |f(z)| =
n∑

j=1

kj ln
∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣ +
1
2π

∫ 2π

0

Pz/R(t) ln |f(Reit)| dt
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where the integral exists as an improper Riemann integral.

Proof. Suppose that in addition to a1, . . . , an, f has zeros on C(0, R) at an+1, . . . , am

with multiplicities kn+1, . . . , km. There is an analytic function g on D(0, R) with no zeros
on C(0, R) such that

f(z) = (z − an+1)kn+1 · · · (z − am)kmg(z). (1)

The function g satisfies the hypothesis of (4.8.1) and has the same zeros as f in D(0, R).
Now if z ∈ D(0, R) \ Z(f), then

ln |f(z)| =
n∑

j=1

kj ln |z − aj |+ ln |g(z)|.

But by applying (4.8.1) to g we get

ln |g(z)| =
n∑

j=1

ln
∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣ +
1
2π

∫ 2π

0

Pz/R(t) ln |g(Reit)| dt,

so the problem reduces to showing that

m∑
j=n+1

kj ln |z − aj |+
1
2π

∫ 2π

0

Pz/R(t) ln |g(Reit)| dt =
1
2π

∫ 2π

0

Pz/R(t) ln |f(Reit)| dt.

Since by (1), f(Reit) = [
∏n

j=1(Reit− aj)kj ]g(Reit), 0 ≤ t ≤ 2π, we see that it is sufficient
to show that

ln |z − aj | =
1
2π

∫ 2π

0

Pz/R(t) ln |Reit − aj | dt

for j = n + 1, . . . , m. In other words, the Poisson integral formula (4.7.8) holds for the
functions u(z) = ln |z − a| when |a| = R (as well as for |a| < R. This is essentially the
content of the following lemma, where to simplify the notation we have taken R = 1 and
a = 1

4.8.4 Lemma

For |z| < 1,

ln |z − 1| = 1
2π

∫ 2π

0

Pz(t) ln |eit − 1| dt,

where the integral is to be understood as an improper Riemann integral at 0 and 2π. In
particular,

1
2π

∫ 2π

0

ln |eit − 1| dt = 0.
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Proof. We note first that the above improper integral exists, because if 0 ≤ t ≤ π, then
|eit − 1| =

√
2(1− cos t) = 2 sin(t/2) ≥ 2t/π. Therefore

Pz(t) ln |eit − 1| ≥ Pz(t) ln(2t/π) = Pz(t)[ln(2/π) + ln t].

Since the improper integral
∫ π/2

0
ln t dt exists by elementary calculus and Pz(t) is contin-

uous, the above inequalities imply that

lim
δ→0+

1
2π

∫ π

δ

Pz(t) ln |eit − 1| dt > −∞ and lim
δ→0+

1
2π

∫ 2π−δ

π

Pz(t) ln |eit − 1| dt > −∞.

Thus it remains to show that the value of the improper Riemann integral in the statement
of the lemma is ln |z − 1|. We will use a limit argument to evaluate the integral

I =
1
2π

∫ 2π

0

Pz(t) ln |eit − 1| dt.

For r > 1, define

Ir =
1
2π

∫ 2π

0

Pz(t) ln |eit − r| dt.

We will show that Ir → I as r → 1+. Now for any fixed r > 1, the function z → ln |z− r|
is continuous on D(0, 1) and harmonic in D(0, 1), hence by (4.7.8), ln |z − r| = Ir. Since
ln |z − r| → ln |z − 1| as r → 1+, this will show that I = ln |z − 1|, completing the proof.
So consider, for r > 1,

|Ir − I| =
∣∣∣∣ 1
2π

∫ 2π

0

Pz(t) ln
∣∣∣∣eit − r

eit − 1

∣∣∣∣ dt

∣∣∣∣ =
1
2π

∫ 2π

0

Pz(t) ln
∣∣∣∣eit − r

eit − 1

∣∣∣∣ dt.

(The outer absolute values may be removed because |eit − r| > |eit − 1| and therefore the
integrand is positive.) Using the 2π-periodicity of the integrand, we may write∫ 2π

0

=
∫ π

−π

=
∫ 0

−π

+
∫ π

0

and since Pz(−t) = Pz(t), this becomes∫ π

0

+
∫ π

0

= 2
∫ π

0

.

Now if 0 ≤ t ≤ π, then

eit − r

eit − 1
=

eit − 1 + 1− r

eit − 1
= 1 +

1− r

eit − 1
.

But as we noted at the beginning of the proof, |eit − 1| ≥ 2t/π, so the above expression
is bounded in absolute value by 1 + [π(r − 1)/2t]. Thus

0 < ln
∣∣∣∣eit − r

eit − 1

∣∣∣∣ ≤ ln
[
1 +

π(r − 1)
2t

]
.
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Also, the Poisson kernel satisfies

Pz(t) =
1− |z|2
|eit − z|2 ≤

(1− |z|)(1 + |z|)
(1− |z|)2 =

1 + |z|
1− |z| ,

an estimate that was used to establish Harnack’s inequality. (See the solution to Section
4.7, Problem 2. Thus we now have

0 < |Ir − I| ≤ 1 + |z|
1− |z| ·

1
π

∫ π

0

ln
[
1 +

π(r − 1)
2t

]
dt.

Now fix δ, 0 < δ < π, and write∫ π

0

ln
[
1 +

π(r − 1)
2t

]
dt =

∫ δ

0

ln
[
1 +

π(r − 1)
2t

]
dt +

∫ π

δ

ln
[
1 +

π(r − 1)
2t

]
dt.

Since the integral on the left side is finite (this is essentially the same as saying that∫ π

0
ln t dt > −∞), and the integrand increases as r increases (r > 1), the first integral on

the right side approaches 0 as δ → 0+, uniformly in r. On the other hand, the second
integral on the right side is bounded by (π−δ) ln(1+[π(r−1)/2δ]), which for fixed δ > 0,
approaches 0 as r → 1+. This completes the proof of the lemma, and as we noted earlier,
finishes the proof of (4.8.3). ♣

The Poisson-Jensen formula has a number of interesting corollaries, some of which will
be stated below. The proof of the next result (4.8.5), as well as other consequences, will
be left for the problems.

4.8.5 Jensen’s Formula, General Case

Let f be analytic on an open disc D(0, R) and assume that f �≡ 0. Assume that f has a
zero of order k ≥ 0 at 0 and a1, a2, . . . are the zeros of f in D(0, R) \ {0}, each appearing
as often as its multiplicity and arranged so that 0 < |a1| ≤ |a2| ≤ · · · . Then for 0 < r < R
we have

k ln r + ln
∣∣∣∣f (k)(0)

k!

∣∣∣∣ =
n(r)∑
j=1

ln
∣∣∣aj

r

∣∣∣ +
1
2π

∫ 2π

0

ln |f(reit)| dt

where n(r) is the number of terms of the sequence a1, a2, . . . that are in the disk D(0, r).

Problems

1. Prove (4.8.5).
2. Let f be as in (4.8.2), except that instead of being analytic on all of D(0, R), f has

poles at b1, . . . , bm in D(0, R) \ {0}, of orders l1, . . . , lm respectively. State and prove
an appropriate version of Jensen’s formula in this case.

3. Let n(r) be as in (4.8.5). Show that

∫ r

0

n(t)
t

dt =
n(r)∑
j=1

ln
r

|aj |
.
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4. With f as in (4.8.5) and M(r) = max{|f(z)| : |z| = r}, show that for 0 < r < R,∫ r

0

n(t)
t

dt ≤ ln
[

M(r)
|f (k)(0)|rk/k!

]
.

5. Let f be as in (4.8.5). Show that the function

r → 1
2π

∫ 2π

0

ln |f(reit)| dt

is increasing, and discuss the nature of its graph on the interval (0, R).

4.9 Analytic Continuation

In this section we examine the problem of extending an analytic function to a larger
domain. An example of this has already been encountered in the Schwarz reflection
principle (2.2.15). We first consider a function defined by a power series.

4.9.1 Definition

Let f(z) =
∑∞

n=0 an(z − z0)n have radius of convergence r, 0 < r <∞. Let z∗ be a point
such that |z∗ − z0| = r and let r(t) be the radius of convergence of the expansion of f
about the point z1 = (1 − t)z0 + tz∗, 0 < t < 1. Then r(t) ≥ (1 − t)r (Figure 4.9.1). If

o

o

o
z0

1
z

z*

tr
(1
-t
)r

Figure 4.9.1

r(t) = (1 − t)r for some (hence for all) t ∈ (0, 1), so that there is no function g analytic
on an open set containing D(z0, r)∪{z∗} and such that g = f on D(z0, r), then z∗ is said
to be a singular point of f . Equivalently, z∗ ∈ D(0, r) is not a singular point of f iff f
has an analytic extension to an open set containing D(z0, r) ∪ {z∗}.

We are going to show that there is always at least one singular point on the circle of
convergence, although in general, its exact location will not be known. Before doing this,
we consider a special case in which it is possible to locate a singular point.
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4.9.2 Theorem

In (4.9.1), if an is real and nonnegative for all n, then z0 + r is a singular point.

Proof. Fix z1 between z0 and z0 + r. Note that since an ≥ 0 for all n and z1 − z0 is
a positive real number, f and its derivatives are nonnegative at z1. Now assume, to the
contrary, that the Taylor series expansion of f about z1 does converge for some z2 to the
right of z0 + r. Then we have

∞∑
k=0

f (k)(z1)
k!

(z2 − z1)k < +∞.

But by the remark after (2.2.18),

f (k)(z1) =
∞∑

n=k

n(n− 1) · · · (n− k + 1)an(z1 − z0)n−k

for k = 0, 1, 2, . . . . Substituting this for f (k)(z1) in the Taylor expansion of f about z1

and using the fact that the order of summation in a double series with nonnegative terms
can always be reversed, we get

+∞ >

∞∑
k=0

[ ∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z1 − z0)n−k

]
(z2 − z1)k

k!

=
∞∑

k=0

[ ∞∑
n=k

(
n

k

)
an(z1 − z0)n−k

]
(z2 − z1)k

=
∞∑

n=0

an

[
n∑

k=0

(
n

k

)
(z1 − z0)n−k(z2 − z1)k

]

=
∞∑

n=0

an(z2 − z0)n

by the binomial theorem. But this implies that
∑∞

n=0 an(z−z0)n has radius of convergence
greater than r, a contradiction. ♣

The preceding theorem is illustrated by the geometric series 1 + z + z2 + · · · , which
has radius of convergence equal to 1 and which converges to 1/(1− z) for |z| < 1. In this
case, z∗ = 1 is the only singular point, but as we will see later, the other extreme is also
possible, namely that every point on the circle of convergence is a singular point.

4.9.3 Theorem

In (4.9.1), let Γ = {z : |z − z0| = r} be the circle of convergence. Then there is at least
one singular point on Γ.

Proof. If z ∈ Γ is not a singular point, then there is a function fz analytic on a disk
D(z, εz) such that fz = f on D(z0, r) ∩D(z, εz). Say there are no singular points on Γ.
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By compactness, Γ is covered by finitely many such disks, say by D(zj , εj), j = 1, . . . , n.
Define

g(z) =

{
f(z), z ∈ D(z0, r)
fzj

(z), z ∈ D(zj , εj), j = 1, . . . , n.

We show that g is well defined. If D(zj , εj)∩D(zk, εk) �= ∅, then also D(zj , εj)∩D(zk, εk)∩
D(z0, r) �= ∅, as is verified by drawing a picture. Now fzj

−fzk
= f −f = 0 on D(zj , εj)∩

D(zk, εk) by the identity theorem (2.4.8), proving that g is well defined. Thus g is analytic
on D(z0, s) for some s > r, and the Taylor expansion of g about z0 coincides with that
of f since g = f on D(z0, r). This means that the expansion of f converges in a disk of
radius greater than r, a contradiction. ♣

We are now going to construct examples of power series for which the circle of conver-
gence is a natural boundary, that is, every point on the circle of convergence is a singular
point. The following result will be needed.

4.9.4 Lemma

Let f1(w) = (wp + wp+1)/2, p a positive integer. Then |w| < 1 implies |f1(w)| < 1, and
if Ω = D(0, 1) ∪D(1, ε), ε > 0, then f1(D(0, r)) ⊆ Ω for some r > 1.

Proof. If |w| ≤ 1, then |f1(w)| = |w|p|1 + w|/2 ≤ |1 + w|/2, which is less than 1 unless
w = 1, in which case f1(w) = 1. Thus |w| < 1 implies |f1(w)| < 1, and f1(D(0, 1)) ⊆ Ω.
Hence f−1

1 (Ω) is an open set containing D(0, 1). Consequently, there exists r > 1 such
that D(0, r) ⊆ f−1

1 (Ω), from which it follows that f1(D(0, r) ⊆ f1(f−1
1 (Ω)) ⊆ Ω. ♣

The construction of natural boundaries is now possible.

4.9.5 Hadamard Gap Theorem

Suppose that f(z) =
∑∞

k=1 akznk and, for some s > 1, nk+1/nk ≥ s for all k. (We say
that

∑
k akznk is a gap series.) If the radius of convergence of the series is 1, then every

point on the circle of convergence is a singular point.

Proof. We will show that 1 is a singular point, from which it will follow (under these
hypotheses) that every point on the unit circle is a singular point. Thus assume, to the
contrary, that 1 is not a singular point. Then, for some ε > 0, f has an analytic extension
g to D(0, 1) ∪ D(1, ε). Let p be a positive integer such that s > (p + 1)/p, and let f1

and r > 1 be as in Lemma 4.9.4. Then h(w) = g(f1(w)) is analytic on D(0, r), and for



40 CHAPTER 4. APPLICATIONS OF THE CAUCHY THEORY

|w| < 1,

g(f1(w)) = f(f1(w)) =
∞∑

k=1

ak(f1(w))nk

=
∞∑

k=1

ak2−nk(wp + wp+1)nk

=
∞∑

k=1

ak2−nk

nk∑
n=0

(
nk

n

)
wp(nk−n)w(p+1)n

=
∞∑

k=1

ak2−nk

nk∑
n=0

(
nk

n

)
wpnk+n.

Now for each k we have nk+1/nk ≥ s > (p + 1)/p, so pnk + nk < pnk+1. Therefore, the
highest power of w that appears in

∑nk

n=0

(
nk

n

)
wpnk+n, namely wpnk+nk , is less than the

lowest power wpnk+1 that appears in
∑nk+1

n=0

(
nk+1

n

)
wpnk+1+n. This means that the series

∞∑
k=1

ak2−nk

nk∑
n=0

(
nk

n

)
wpnk+n

is (with a grouping of terms) precisely the Taylor expansion of h about w = 0. But since
h is analytic on D(0, r), this expansion converges absolutely on D(0, r), hence (as there
are no repetition of powers of w),

∞∑
k=1

|ak|2−nk

nk∑
n=0

(
nk

n

)
|w|pnk+n <∞,

that is [as in the above computation of g(f1(w))],

∞∑
k=1

|ak|2−nk(|w|p + |w|p+1)nk <∞

for |w| < r. But if 1 < |w| < r, then 2−nk(|w|p + |w|p+1)nk =
[
|w|p( 1+|w|

2 )
]nk

> 1. Con-

sequently,
∑∞

k=1 akznk converges for some z with |z| > 1, contradicting the assumption
that the series defining f has radius of convergence 1.

Finally, if z∗ = eiθ is not a singular point, let q(z) = f(eiθz) =
∑∞

k=1 akeiθnkznk (with
radius of convergence 1, as before, because |eiθnk | = 1). Now f extends to a function
analytic on D(0, 1) ∪D(z∗, ε) for some ε > 0, and thus q extends to a function analytic
on D(0, 1) ∪D(1, ε), contradicting the above argument. ♣

Some typical examples of gap series are
∑∞

k=1 z2k

and
∑∞

k=1 zk!.

Remarks

The series
∑∞

n=0 zn diverges at every point of the circle of convergence since |z|n does
not approach 0 when |z| = 1. However, z = 1 is the only singular point since (1 − z)−1



4.9. ANALYTIC CONTINUATION 41

is analytic except at z = 1. On the other hand,
∑∞

n=1
1
n!z

2n

has radius of convergence 1,
for if ak = 0, k �= 2n; a2n = 1/n!, then

lim sup
n→∞

|an|1/n = lim sup
n→∞

|a2n |1/2n

= lim sup
n→∞

(1/n!)1/2n

= 1

because

ln[(n!)1/2n

] = 2−n ln(n!) = 2−n
n∑

k=1

ln k ≤ 2−nn lnn→ 0.

The series converges (as does every series obtained from it by termwise differentiation) at
each point of the circle of convergence, and yet by (4.9.5), each such point is singular.

The conclusion of Theorem 4.9.5 holds for any (finite) radius of convergence. For if∑
akznk has radius of convergence r, then

∑
ak(rz)nk has radius of convergence 1.

We now consider chains of functions defined by power series.

4.9.6 Definitions

A function element in Ω is a pair (f, D), where D is a disk contained in Ω and f is analytic
on D. (The convention D = D(0, 1) is no longer in effect.) If z is an element of D, then
(f, D) is said to be a function element at z. Two function elements (f1, D1) and (f2, D2)
in Ω are direct analytic continuations of each other (relative to Ω) if D1 ∩ D2 �= ∅ and
f1 = f2 on D1 ∩D2. Note that in this case, f1 ∪ f2 is an extension of f1 (respectively f2)
from D1 (respectively D2) to D1 ∪D2. If there is a chain (f1, D1), (f2, D2), . . . , (fn, Dn)
of function elements in Ω, with (fi, Di) and (fi+1, Di+1) direct analytic continuations
of each other for i = 1, 2, . . . , n − 1, then (f1, D1) and (fn, Dn) are said to be analytic
continuations of each other relative to Ω.

Suppose that γ is a curve in Ω, with γ defined on the interval [a, b]. If there is a partition
a = t0 < t1 < · · · < tn = b, and a chain(f1, D1), . . . , (fn, Dn) of function elements in Ω
such that (fi+1, Di+1) is a direct analytic continuation of (fi, Di) for i = 1, 2, . . . , n− 1,
and γ(t) ∈ Di for ti−1 ≤ t ≤ ti, i = 1, 2, . . . , n, then (fn, Dn) is said to be an analytic
continuation of (f1, D1) along the curve γ.

4.9.7 Theorem

Analytic continuation of a given function element along a given curve is unique, that is,
if (fn, Dn) and (gm, Em) are two continuations of (f1, D1) along the same curve γ, then
fn = gm on Dn ∩ Em.
Proof. Let the first continuation be (f1, D1), . . . , (fn, Dn), and let the second continuation
be (g1, E1), . . . , (gm, Em), where g1 = f1, E1 = D1. There are partitions a = t0 < t1 <
· · · < tn = b, a = s0 < s1 < · · · < sm = b such that γ(t) ∈ Di for ti−1 ≤ t ≤ ti, i =
1, 2, . . . , n, γ(t) ∈ Ej for sj−1 ≤ t ≤ sj , j = 1, 2, . . . , m.

We claim that if 1 ≤ i ≤ n, 1 ≤ j ≤ m, and [ti−1, ti] ∩ [sj−1, sj ] �= ∅, then (fi, Di) and
(gj , Ej) are direct analytic continuations of each other. This is true when i = j = 1, since
g1 = f1 and E1 = D1. If it is not true for all i and j, pick from all (i, j) for which the
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statement is false a pair such that i+j is minimal. Say ti−1 ≥ sj−1 [then i ≥ 2, for if i = 1,
then sj−1 = t0 = a, hence j = 1, and we know that the result holds for the pair (1,1)]. We
have ti−1 ≤ sj since [ti−1, ti]∩ [sj−1, sj ] �= ∅, hence sj−1 ≤ ti−1 ≤ sj . Therefore γ(ti−1) ∈
Di−1 ∩ Di ∩ Ej , in particular, this intersection is not empty. Now (fi, Di) is a direct
analytic continuation of (fi−1, Di−1), and furthermore (fi−1, Di−1) is a direct analytic
continuation of (gj , Ej) by minimality of i + j (note that ti−1 ∈ [ti−2, ti−1] ∩ [sj−1, sj ],
so the hypothesis of the claim is satisfied). Since Di−1 ∩ Di ∩ Ej �= ∅, (fi, Di) must be
a direct continuation of gj , Ej), a contradiction. Thus the claim holds for all i and j, in
particular for i = n and j = m. The result follows. ♣

4.9.8 Definition

Let Ω be an open connected subset of C. The function elements (f1, D1) and (f2, D2) in
Ω are said to be equivalent if they are analytic continuations of each other relative to Ω.
(It is immediate that this is an equivalence relation.) An equivalence class Φ of function
elements in Ω such that for every z ∈ Ω there is an element (f, D) ∈ Φ with z ∈ D is
called a generalized analytic function on Ω.

Note that connectedness of Ω is necessary in this definition if there are to be any
generalized analytic functions on Ω at all. For if z1, z2 ∈ Ω, there must exist equivalent
function elements (f1, D1) and (f2, D2) at z1 and z2 respectively. This implies that there
is a curve in Ω joining z1 to z2.

Note also that if g is analytic on Ω, then g determines a generalized analytic function
Φ on Ω in the following sense. Take

Φ = {(f, D) : D ⊆ Ω and f = g|D}.

However, not every generalized analytic function arises from a single analytic function
in this way (see Problem 2). The main result of this section, the monodromy theorem
(4.9.11), addresses the question of when a generalized analytic function is determined by
a single analytic function.

4.9.9 Definition

Let γ0 and γ1 be curves in a set S ⊆ C (for convenience, let γ0 and γ1 have common domain
[a, b]). Assume γ0(a) = γ1(a) = z0, γ0(b) = γ1(b) = z1, that is, the curves have the same
endpoints. Then γ0 and γ1 are said to be homotopic (in S) if there is a continuous map
H : [a, b]× [0, 1]→ S (called a homotopy of γ0 and γ1) such that H(t, 0) = γ0(t), H(t, 1) =
γ1(t), a ≤ t ≤ t;H(a, s) = z0, H(b, s) = z1, 0 ≤ s ≤ 1. Intuitively, H deforms γ0 into γ1

without moving the endpoints or leaving the set S. For 0 ≤ s ≤ 1, the curve t→ H(t, s)
represents the state of the deformation at “time s”.

4.9.10 Theorem

Let Ω be an open connected subset of C, and let γ0, γ1 be curves in Ω that are homotopic
in Ω. Let (f, D) be a function element at z0, the initial point of γ0 and γ1. Assume that
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(f, D) can be continued along all possible curves in Ω, that is, if γ is a curve in Ω joining
z0 to another point zn, there is an analytic continuation (fn, Dn) of (f, D) along γ.

If (g0, D0) is a continuation of (f, D) along γ0 and (g1, D1) is a continuation of (f, D)
along γ1, then g0 = g1 on D0 ∩ D1. (Note that D0 ∩ D1 �= ∅ since the terminal point
z1 of γ0 and γ1 belongs to D0 ∩ D1.) Thus (g0, D0) and (g1, D1) are direct analytic
continuations of each other.
Proof. Let H be a homotopy of γ0 and γ1. By hypothesis, if 0 ≤ s ≤ 1, then (f, D)
can be continued along the curve γs = H(· , s), say to (gs, Ds). Fix s and pick one
such continuation, say (h1, E1), . . . , (hn, En) [with (h1, E1) = (f, D), (hn, En) = (gs, Ds)].
There is a partition a = t0 < t1 < · · · tn = b such that γs(t) ∈ Ei for ti−1 ≤ t ≤ ti, i =
1, . . . , n. Let Ki be the compact set γs([ti−1, ti]) ⊆ Ei, and let

ε = min
1≤i≤n

{dist(Ki,C \ Ei} > 0.

Since H is uniformly continuous, there exists δ > 0 such that if |s − s1| < δ, then
|γs(t) − γs1(t)| < ε for all t ∈ [a, b]. In particular, if ti−1 ≤ t ≤ ti, then since γs(t) ∈ Ki

and |γs(t)− γs1(t)| < ε, we have γs1(t) ∈ Ei.
Thus by definition of continuation along a curve, (h1, E1), . . . , (hn, En) is also a con-

tinuation of (f, D) along γs1 . But we specified at the beginning of the proof that (f, D)
is continued along γs1 to (gs1 , Ds1). By (4.9.7), gs = gs1 on Ds ∩ Ds1 . Thus for each
s ∈ [0, 1] there is an open interval Is such that gs = gs1 on Ds ∩Ds1 whenever s1 ∈ Is.
Since [0, 1] can be covered by finitely many such intervals, it follows that g0 = g1 on
D0 ∩D1. ♣

4.9.11 Monodromy Theorem

Let Ω be an open connected subset of C with the property that every closed curve γ in
Ω is homotopic to a point, that is, homotopic (in Ω) to γ0 ≡ z, where z is the initial and
terminal point of γ. Let Φ be a generalized analytic function on Ω, and assume that each
element of Φ can be continued along all possible curves in Ω. Then there is a function g
analytic on Ω such that whenever (f, D) ∈ Φ we have g = f on D. Thus Φ is determined
by a single analytic function.
Proof. If z ∈ Ω there is a function element (f, D) ∈ Φ such that z ∈ D. Define g(z) = f(z).
We must show that g is well defined. If (f∗, D∗) ∈ Φ and z ∈ D∗, we have to show that
f(z) = f∗(z). But since (f, D), (f∗, D∗) ∈ Φ, there is a continuation in Ω from (f, D) to
(f∗, D∗); since z ∈ D ∩ D∗, we can find a curve γ (in fact a polygonal path) in Ω with
initial and terminal point z such that the continuation is along γ. But by hypothesis, γ
is homotopic to the curve γ0 ≡ z. Since (f, D) is a continuation of (f, D) along γ0, it
follows from (4.9.10) that f = f∗ on D ∩D∗, in particular, f(z) = f∗(z). Since g = f on
D, g is analytic on Ω. ♣

Remarks

Some authors refer to (4.9.10), rather than (4.9.11), as the monodromy theorem. Still
others attach this title to our next result (4.9.13), which is a corollary of (4.9.11). It is
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appropriate at this point to assign a name to the topological property of Ω that appears
in the hypothesis of (4.9.11).

4.9.12 Definition

Let Ω be a plane region, that is, an open connected subset of C. We say that Ω is
(homotopically) simply connected if every closed curve in Ω is homotopic (in Ω) to a
point. In the next chapter, we will show that the homotopic and homological versions of
simple connectedness are equivalent.

Using this terminology, we have the following corollary to the monodromy theorem
(4.9.11).

4.9.13 Theorem

Let Ω be simply connected region and let (f, D) be a function element in Ω such that
(f, D) can be continued along all curves in Ω whose initial points are in D. Then there is
an analytic function g on Ω such that g = f on D.

Proof (outline). Let Φ be the collection of all function elements (h, E) such that (h, E) is
a continuation of (f, D). One can then verify that Φ satisfies the hypothesis of (4.9.11).
Since (f, D) ∈ Φ, the result follows. ♣

Alternatively, we need not introduce Φ at all, but instead imitate the proof of (4.9.11).

We conclude this section with an important and interesting application of analytic
continuation in simply connected regions.

4.9.14 Theorem

If Ω is a (homotopically) simply connected region, then every harmonic function on Ω has
a harmonic conjugate.

Proof. If u is harmonic on Ω, we must produce an analytic function g on Ω such that
u = Re g. We make use of previous results for disks; if D is a disk contained in Ω, then
by (1.6.2), there is an analytic function f on D such that Re f = u. That is, (f, D) is a
function element in Ω with Re f = u on D.

If γ : [a, b] → Ω is any curve in Ω such that γ(a) ∈ D, we need to show that (f, D)
can be continued along γ. As in the proof of (3.1.7), there is a partition a = t0 < t1 <
· · · < tn = b and disks D1, . . . , Dn with centers at γ(t1), . . . , γ(tn) respectively, such that
if tj−1 ≤ t ≤ tj , then γ(t) ∈ Dj . Now D ∩D1 �= ∅, and by repeating the above argument
we see that there exists f1 analytic on D1 such that Re f1 = u on D1. Since f −f1 is pure
imaginary on D ∩ D1, it follows (from the open mapping theorem (4.3.1), for example)
that f − f1 is a purely imaginary constant on D ∩ D1. By adding this constant to f1

on D1, we obtain a new f1 on D1 such that (f1, D1) is a direct continuation of (f, D).
Repeating this process with (f1, D1) and (f2, D2), and so on, we obtain a continuation
(fn, Dn) of (f, D) along γ. Thus by (4.9.13), there is an analytic function g on Ω such
that g = f on D. Then Re g = u on D, and hence by the identity theorem for harmonic
functions (2.4.14), Re g = u on Ω. ♣
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In the next chapter we will show that the converse of (4.9.14) holds. However, this will
require a closer examination of the connection between homology and homotopy. Also, we
can give an alternative (but less constructive) proof of (4.9.14) after proving the Riemann
mapping theorem.

Problems

1. Let f(z) =
∑∞

n=0 zn!, z ∈ D(0, 1). Show directly that f has C(0, 1) as its natural
boundary without appealing to the Hadamard gap theorem. (Hint: Look at f on radii
which terminate at points of the form ei2πp/q where p and q are integers.)

2. Let f(z) = Log z =
∑∞

n=1(−1)n−1(z − 1)n/n, z ∈ D = D(1, 1). Let Ω = C \ {0} and
let Φ be the equivalence class determined by (f, D).
(a) Show that Φ is actually a generalized analytic function on Ω, that is, if z ∈ Ω then
there is an element (g, E) ∈ Φ with z ∈ E.
(b) Show that there is no function h analytic on Ω such that for every (g, E) ∈ Φ we
have h = g on E.

3. Criticize the following argument: Let f(z) =
∑∞

n=0 an(z − z0)n have radius of conver-
gence r. If z1 ∈ D(z0, r), then by the rearrangement procedure of (4.9.2) we can find
the Taylor expansion of f about z1, namely

f(z) =
∞∑

k=0

[ ∞∑
n=k

(
n

k

)
an(z1 − z0)n−k

]
(z − z1)k.

If the expansion about z1 converges at some point z /∈ D(z0, r), then since power series
converge absolutely inside the circle of convergence, we may rearrange the expansion
about z1 to show that the original expansion about z0 converges at z, a contradiction.
Consequently, for any function defined by a power series, the circle of convergence is a
natural boundary.

4. (Law of permanence of functional equations). Let F : Ck+1 → C be such that
F and all its first order partial derivatives are continuous. Let f1, . . . , fk be ana-
lytic on a disk D, and assume that F (z, f1(z), . . . , fk(z)) = 0 for all z ∈ D. Let
(fi1, D1), (fi2, D2), . . . , (fin, Dn), with fi1 = fi, D1 = D, form a continuation of
(fi, D), i = 1, . . . , k. Show that F (z, f1n(z), . . . , fkn(z)) = 0 for all z ∈ Dn. An
example: If eg = f on D and the continuation carries f into f∗ and g into g∗, then
eg∗ = f∗ on Dn (take F (z, w1, w2) = w1 − ew2 , f1 = f, f2 = g).

5. Let (f∗, D∗) be a continuation of (f, D). Show that (f∗′, D∗) is a continuation of
(f ′, D). (“The derivative of the continuation, that is, f∗′, is the continuation of the
derivative.”)

Reference

W. Rudin, “Real and Complex Analysis,” 3rd ed., McGraw Hill Series in Higher Mathe-
matics, New York, 1987.



Chapter 5

Families of Analytic Functions

In this chapter we consider the linear space A(Ω) of all analytic functions on an open set
Ω and introduce a metric d on A(Ω) with the property that convergence in the d-metric is
uniform convergence on compact subsets of Ω. We will characterize the compact subsets
of the metric space (A(Ω), d) and prove several useful results on convergence of sequences
of analytic functions. After these preliminaries we will present a fairly standard proof of
the Riemann mapping theorem and then consider the problem of extending the mapping
function to the boundary. Also included in this chapter are Runge’s theorem on rational
approximations and the homotopic version of Cauchy’s theorem.

5.1 The Spaces A(Ω) and C(Ω)

5.1.1 Definitions

Let Ω be an open subset of C. Then A(Ω) will denote the space of analytic functions on
Ω, while C(Ω) will denote the space of all continuous functions on Ω. For n = 1, 2, 3 . . . ,
let

Kn = D(0, n) ∩ {z : |z − w| ≥ 1/n for all w ∈ C \ Ω}.
By basic topology of the plane, the sequence {Kn} has the following three properties:
(1) Kn is compact,
(2) Kn ⊆ Ko

n+1 (the interior of Kn+1),
(3) If K ⊆ Ω is compact, then K ⊆ Kn for n sufficiently large.

Now fix a nonempty open set Ω, let {Kn} be as above, and for f, g ∈ C(Ω), define

d(f, g) =
∞∑

n=1

(
1
2n

) ‖f − g‖Kn

1 + ‖f − g‖Kn

,

where

‖f − g‖Kn
=

{
sup{|f(z)− g(z)| : z ∈ Kn}, Kn �= ∅
0, Kn = ∅

1
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5.1.2 Theorem

The assignment (f, g)→ d(f, g) defines a metric on C(Ω). A sequence {fj} in C(Ω) is d-
convergent (respectively d-Cauchy) iff {fj} is uniformly convergent (respectively uniformly
Cauchy) on compact subsets of Ω. Thus (C(Ω), d) and (A(Ω), d) are complete metric
spaces.
Proof. That d is a metric on C(Ω) is relatively straightforward. The only troublesome part
of the argument is verification of the triangle inequality, whose proof uses the inequality:
If a, b and c are nonnegative numbers and a ≤ b + c, then

a

1 + a
≤ b

1 + b
+

c

1 + c
.

To see this, note that h(x) = x/(1 + x) increases with x ≥ 0, and consequently h(a) ≤
h(b+ c) = b

1+b+c + c
1+b+c ≤ b

1+b + c
1+c . Now let us show that a sequence {fj} is d-Cauchy

iff {fj} is uniformly Cauchy on compact subsets of Ω. Suppose first that {fj} is d-Cauchy,
and let K be any compact subset of Ω. By the above property (3) of the sequence {Kn},
we can choose n so large that K ⊆ Kn. Since d(fj , fk)→ 0 as j, k →∞, the same is true
of ‖fj − fk‖Kn

. But ‖fj − fk‖K ≤ ‖fj − fk‖Kn
, hence {fj} is uniformly Cauchy on K.

Conversely, assume that {fj} is uniformly Cauchy on compact subsets of Ω. Let ε > 0 and
choose a positive integer m such that

∑∞
n=m+1 2−n < ε. Since {fj} is uniformly Cauchy

on Km in particular, there exists N = N(m) such that j, k ≥ N implies ‖fj − fk‖Km
< ε,

hence
m∑

n=1

(
1
2n

) ‖fj − fk‖Kn

1 + ‖fj − fk‖Kn

≤
m∑

n=1

(
1
2n

)
‖fj − fk‖Kn

≤ ‖fj − fk‖Km

m∑
n=1

1
2n

< ε.

It follows that for j, k ≥ N ,

d(fj , fk) =
∞∑

n=1

(
1
2n

) ‖fj − fk‖Kn

1 + ‖fj − fk‖Kn

< 2ε.

The remaining statements in (5.1.2) follow from the above, Theorem 2.2.17, and com-
pleteness of C. ♣

If {fn} is a sequence in A(Ω) and fn → f uniformly on compact subsets of Ω, then
we know that f ∈ A(Ω) also. The next few theorems assert that certain other properties
of the limit function f may be inferred from the possession of these properties by the fn.
The first results of this type relate the zeros of f to those of the fn.

5.1.3 Hurwitz’s Theorem

Suppose that {fn} is a sequence in A(Ω) that converges to f uniformly on compact subsets
of Ω. Let D(z0, r) ⊆ Ω and assume that f(z) �= 0 for |z−z0| = r. Then there is a positive
integer N such that for n ≥ N , fn and f have the same number of zeros in D(z0, r).
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Proof. Let ε = min{|f(z)| : |z−z0| = r} > 0. Then for sufficiently large n, |fn(z)−f(z)| <
ε ≤ |f(z)| for |z − z0| = r. By Rouché’s theorem (4.2.8), fn and f have the same number
of zeros in D(z0, r). ♣

5.1.4 Theorem

Let {fn} be a sequence in A(Ω) such that fn → f uniformly on compact subsets of Ω. If
Ω is connected and fn has no zeros in Ω for infinitely many n, then either f has no zeros
in Ω or f is identically zero.

Proof. Assume f is not identically zero, but f has a zero at z0 ∈ Ω. Then by the identity
theorem (2.4.8), there is r > 0 such that the hypothesis of (5.1.3) is satisfied. Thus for
sufficiently large n, fn has a zero in D(z0, r). ♣

5.1.5 Theorem

Let {fn} be a sequence in A(Ω) such that fn converges to f uniformly on compact subsets
of Ω. If Ω is connected and the fn are one-to-one on Ω, then either f is constant on Ω or
f is one-to-one.

Proof. Assume that f is not constant on Ω, and choose any z0 ∈ Ω. The sequence
{fn−fn(z0)} satisfies the hypothesis of (5.1.4) on the open connected set Ω\{z0} (because
the fn are one-to-one). Since f − f(z0) is not identically zero on Ω \ {z0}, it follows from
(5.1.4) that f − f(z0) has no zeros in Ω \ {z0}. Since z0 is an arbitrary point of Ω, we
conclude that f is one-to-one on Ω. ♣

The next task will be to identify the compact subsets of the space A(Ω) (equipped
with the topology of uniform convergence on compact subsets of Ω). After introducing
the appropriate notion of boundedness for subsets F ⊆ A(Ω), we show that each sequence
of functions in F has a subsequence that converges uniformly on compact subsets of Ω.
This leads to the result that a subset of A(Ω) is compact iff it is closed and bounded.

5.1.6 Definition

A set F ⊆ C(Ω) is bounded if for each compact set K ⊆ Ω, sup{‖f‖K : f ∈ F} < ∞,
that is, the functions in F are uniformly bounded on each compact subset of Ω.

We will also require the notion of equicontinuity for a family of functions.

5.1.7 Definition

A family F of functions on Ω is equicontinuous at z0 ∈ Ω if given ε > 0 there exists δ > 0
such that if z ∈ Ω and |z − z0| < δ, then |f(z)− f(z0)| < ε for all f ∈ F .

We have the following relationship between bounded and equicontinuous subsets of
A(Ω).
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5.1.8 Theorem

Let F be a bounded subset of A(Ω). Then F is equicontinuous at each point of Ω.
Proof. Let z0 ∈ Ω and choose r > 0 such that D(z0, r) ⊆ Ω. Then for z ∈ D(z0, r) and
f ∈ F , we have

f(z)− f(z0) =
1

2πi

∫
C(z0,r)

f(w)
w − z

dw − 1
2πi

∫
C(z0,r)

f(w)
w − z0

dw.

Thus

|f(z)− f(z0)| ≤
1
2π

sup
{∣∣∣∣ f(w)

w − z
− f(w)

w − z0

∣∣∣∣ : w ∈ C(z0, r)
}

2πr

= r|z − z0| sup
{∣∣∣∣ f(w)

(w − z)(w − z0)

∣∣∣∣ : w ∈ C(z0, r)
}

.

But by hypothesis, there exists Mr such that |f(w)| ≤ Mr for all w ∈ C(z0, r) and all
f ∈ F . Consequently, if z ∈ D(z0, r/2) and f ∈ F , then

r|z − z0| sup
{∣∣∣∣ f(w)

(w − z)(w − z0)

∣∣∣∣ : w ∈ C(z0, r)
}
≤ r|z − z0|

Mr

(r/2)2
,

proving equicontinuity of F . ♣
We will also need the following general fact about equicontinuous families.

5.1.9 Theorem

Suppose F is an equicontinuous subset of C(Ω) (that is, each f ∈ F is continuous on Ω
and F is equicontinuous at each point of Ω) and {fn} is a sequence from F such that
fn converges pointwise to f on Ω. Then f is continuous on Ω and fn → f uniformly on
compact subsets of Ω. More generally, if fn → f pointwise on a dense subset of Ω, then
fn → f on all of Ω and the same conclusion holds.
Proof. Let ε > 0. For each w ∈ Ω, choose a δw > 0 such that |fn(z) − fn(w)| < ε for
each z ∈ D(w, δw) and all n. It follows that |f(z) − f(w)| ≤ ε for all z ∈ D(w, δw),
so f is continuous. Let K be any compact subset of Ω. Since {D(w, δw) : w ∈ K} is
an open cover of K, there are w1, . . . , wm ∈ K such that K ⊆ ∪m

j=1D(wj , δwj ). Now
choose N such that n ≥ N implies that |f(wj) − fn(wj)| < ε for j = 1, . . . , m. Hence if
z ∈ D(wj , δwj ) and n ≥ N , then

|f(z)− fn(z)| ≤ |f(z)− f(wj)|+ |f(wj)− fn(wj)|+ |fn(wj)− fn(z)| < 3ε.

In particular, if z ∈ K and n ≥ N , then |f(z) − fn(z)| < 3ε, showing that fn → f
uniformly on K.

Finally, suppose only that fn → f pointwise on a dense subset S ⊆ Ω. Then as before,
|fn(z)−fn(w)| < ε for all n and all z ∈ D(w, δw). But since S is dense, D(w, δw) contains
a point z ∈ S, and for m and n sufficiently large,

|fm(w)− fn(w)| ≤ |fm(w)− fm(z)|+ |fm(z)− fn(z)|+ |fn(z)− fn(w)| < 3ε.

Thus {fn(w)} is a Cauchy sequence and therefore converges, hence {fn} converges point-
wise on all of Ω and the first part of the theorem applies. ♣



5.1. THE SPACES A(Ω) AND C(Ω) 5

5.1.10 Montel’s Theorem

Let F be a bounded subset of A(Ω), as in (5.1.6). Then each sequence {fn} from F has
a subsequence {fnj} which converges uniformly om compact subsets of Ω.

Remark

A set F ⊆ C(Ω is said to be relatively compact if the closure of F in C(Ω) is compact.
The conclusion of (5.1.10) is equivalent to the statement that F is a relatively compact
subset of C(Ω), and hence of A(Ω).

Proof. Let {fn} be any sequence from F and choose any countable dense subset S =
{z1, z2, . . . } of Ω. The strategy will be to show that fn} has a subsequence which converges
pointwise on S. Since F is a bounded subset of A(Ω), it is equicontinuous on Ω by (5.1.8).
Theorem 5.1.9 will then imply that this subsequence converges uniformly on compact
subsets of Ω, thus completing the proof. So consider the following bounded sequences of
complex numbers:

{fj(z1)}∞j=1, {fj(z2)}∞j=1, . . . .

There is a subsequence {f1j}∞j=1 of {fj}∞j=1 which converges at z1. There is a subsequence
{f2j}∞j=1 of {f1j}∞j=1 which converges at z2 and (necessarily) at z1 as well. Proceeding
inductively, for each n ≥ 1 and each k = 1, . . . , n we construct sequences {fkj}∞j=1

converging at z1, . . . , zk, each a subsequence of the preceding sequence.

Put gj = fjj . Then {gj} is a subsequence of {fj}, and {gj} converges pointwise on
{z1, z2, . . . } since for each n, {gj} is eventually a subsequence of {fnj}∞j=1. ♣

5.1.11 Theorem (Compactness Criterion)

Let F ⊆ A(Ω). Then F is compact iff F is closed and bounded. Also, F is relatively
compact iff F is bounded.

(See Problem 3 for the second part of this theorem.)

Proof.
If F is compact, then F is closed (a general property that holds in any metric space).
In order to show that F is bounded, we will use the following device. Let K be any
compact subset of Ω. Then f → ‖f‖K is a continuous map from A(Ω) into R. Hence
{‖f‖K : f ∈ F} is a compact subset of R and thus is bounded. Conversely, if F is closed
and bounded, then F is closed and, by Montel’s theorem, relatively compact. Therefore
F is compact. ♣

Remark

Problem 6 gives an example which shows that the preceding compactness criterion fails
in the larger space C(Ω). That is, there are closed and bounded subsets of C(Ω) that are
not compact.
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5.1.12 Theorem

Suppose F is a nonempty compact subset of A(Ω). Then given z0 ∈ Ω, there exists g ∈ F
such that |g′(z0)| ≥ |f ′(z0)| for all f ∈ F .

Proof. Just note that the map f → |f ′(z0)|, f ∈ A(Ω), is continuous. ♣
Here is a compactness result that will be needed for the proof of the Riemann mapping

theorem in the next section.

5.1.13 Theorem

Assume that Ω is connected, z0 ∈ Ω, and ε > 0. Define

F = {f ∈ A(Ω) : f is a one-to-one map of Ω into D(0, 1) and |f ′(z0)| ≥ ε}.

Then F is compact. The same conclusion holds with D(0, 1) replaced by D(0, 1).

Proof. By its definition, F is bounded, and F is closed by (5.1.5). Thus by (5.1.11), F
is compact. To prove the last statement of the theorem, note that if fn ∈ F and fn → f
uniformly on compact subsets of Ω, then (5.1.5) would imply that f ∈ F , were it not
for the annoying possibility that |f(w)| = 1 for some w ∈ Ω. But if this happens, the
maximum principle implies that f is constant, contradicting |f ′(z0)| ≥ ε > 0. ♣

The final result of this section shows that if Ω is connected, then any bounded sequence
in A(Ω) that converges pointwise on a set having a limit point in Ω, must in fact converge
uniformly on compact subsets of Ω.

5.1.14 Vitali’s Theorem

Let {fn} be a bounded sequence in A(Ω) where Ω is connected. Suppose that {fn}
converges pointwise on S ⊆ Ω and S has a limit point in Ω. Then {fn} is uniformly
Cauchy on compact subsets of Ω, hence uniformly convergent on compact subsets of Ω to
some f ∈ A(Ω).

Proof. Suppose, to the contrary, that there is a compact set K ⊆ Ω such that {fn} is not
uniformly Cauchy on K. Then for some ε > 0, we can find sequences {mj} and {nj} of
positive integers such that m1 < n1 < m2 < n2 < · · · and for each j, ‖fmj

− fnj
‖K ≥ ε.

Put {gj} = {fmj} and {hj} = {fnj}. Now apply Montel’s theorem (5.1.10) to {gj}
to obtain a subsequence {gjr} converging uniformly on compact subsets of Ω to some
g ∈ A(Ω), and then apply Montel’s theorem to {hjr} to obtain a subsequence converging
uniformly on compact subsets of Ω to some h ∈ A(Ω). To prevent the notation from
getting out of hand, we can say that without loss of generality, we have gn → g and
hn → h uniformly on compact subsets, and ‖gn−hn‖K ≥ ε for all n, hence ‖g−h‖K ≥ ε.
But by hypothesis, g = h on S and therefore, by (2.4.9), g = h on Ω, a contradiction. ♣

Problems

1. Let F = {f ∈ A(D(0, 1)) : Re f > 0 and |f(0)| ≤ 1}. Prove that F is relatively
compact. Is F compact? (See Section 4.6, Problem 2.)
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2. Let Ω be (open and) connected and let F = {f ∈ A(Ω) : |f(z) − a| ≥ r for all
z ∈ Ω}, where r > 0 and a ∈ C are fixed. Show that F is a normal family, that is,
if fn ∈ F , n = 1, 2, . . . , then either there is a subsequence {fnj

} converging uniformly
on compact subsets to a function f ∈ A(Ω) or there is a subsequence {fnj

} converging
uniformly on compact subsets to ∞. (Hint: Look at the sequence {1/(fn − a)}.)

3. (a) If F ⊆ C(Ω), show that F is relatively compact iff each sequence in F has a
convergent subsequence (whose limit need not be in F).
(b) Prove the last statement in Theorem 5.1.11.

4. Let F ⊆ A(D(0, 1)). Show that F is relatively compact iff there is a sequence of
nonnegative real numbers Mn with lim supn→∞(Mn)1/n ≤ 1 such that for all f ∈ F
and all n = 0, 1, 2, . . . , we have |f (n)(0)/n!| ≤Mn.

5. (a) Suppose that f is analytic on Ω and D(a, R) ⊆ Ω. Prove that

|f(a)|2 ≤ 1
πR2

∫ 2π

0

∫ R

0

|f(a + reit)|2r dr dt.

(b) Let M > 0 and define F to be the set

{f ∈ A(Ω) :
∫

Ω

∫
|f(x + iy)|2 dx dy ≤M}.

Show that F is relatively compact.

6. Let Ω be open and K = D(a, R) ⊆ Ω. Define F to be the set of all f ∈ C(Ω) such
that |f(z)| ≤ 1 for all z ∈ Ω and f(z) = 0 for z ∈ Ω \K}. Show that F is a closed and
bounded subset of C(Ω), but F is not compact. (Hint: Consider the map from F to
the reals given by

f →
[∫

K

∫
(1− |f(x + iy)|) dx dy

]−1

.

Show that this map is continuous but not bounded on F .)

.

.

αα

0

S (θ,α)

eiθ

Figure 5.1.1
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7. (An application of Vitali’s theorem.) Let f be a bounded analytic function on D(0, 1)
with the property that for some θ, f(reiθ) approaches a limit L as r → 1−. Fix
α ∈ (0, π/2) and consider the region S(θ, α) in Figure 5.1.1. Prove that if z ∈ S(θ, α)
and z → eiθ, then f(z) → L. (Suggestion: Look at the sequence of functions defined
by fn(z) = f(eiθ + 1

n (z − eiθ)), z ∈ D(0, 1).)
8. Let L be a multiplicative linear functional on A(Ω), that is, L : A(Ω) → C such that

L(af + bg) = aL(f) + bL(g) and L(fg) = L(f)L(g) for all a, b ∈ C, f, g ∈ A(Ω).
Assume L �≡ 0. Show that L is a point evaluation, that is, there is some z0 ∈ Ω such
that L(f) = f(z0) for all f ∈ A(Ω).
Outline: First show that for f ≡ 1, L(f) = 1. Then apply L to the function I(z) = z,
the identity on Ω, and show that if L(I) = z0, then z0 ∈ Ω. Finally, if f ∈ A(Ω), apply
L to the function

g(z) =

{
f(z)−f(z0)

z−z0
, z �= z0

f ′(z0), z = z0.

9. (Osgood’s theorem). Let {fn} be a sequence in A(Ω) such that fn → f pointwise on Ω.
Show that there is an open set U , dense in Ω, such that fn → f uniformly on compact
subsets of U . In particular, f is analytic on a dense open subset of Ω.
(Let An = {z ∈ Ω : |fk(z)| ≤ n for all k = 1, 2, . . . }. Recall the Baire category theorem:
If a complete metric space X is the union of a sequence {Sn} of closed subsets, then
some Sn contains a nonempty open ball. Use this result to show that some An contains
a disk D. By Vitali’s theorem, fn → f uniformly on compact subsets of D. Take U to
be the union of all disks D such that fn → f uniformly on compact subsets of D.)

5.2 Riemann Mapping Theorem

Throughout this section, Ω will be a nonempty open connected proper subset of C with
the property that every zero-free analytic function has an analytic square root. Later
in the section we will prove that any open subset Ω such that every zero-free analytic
function on Ω has an analytic square root must be (homotopically) simply connected,
and conversely. Thus we are considering open, connected and simply connected proper
subsets of C. Our objective is to prove the Riemann mapping theorem, which states that
there is a one-to-one analytic map of Ω onto the open unit disk D. The proof given is
due to Fejer and F.Riesz.

5.2.1 Lemma

There is a one-to-one analytic map of Ω into D.
Proof. Fix a ∈ C \ Ω. Then the function z − a satisfies our hypothesis on Ω and hence
there exists h ∈ A(Ω) such that (h(z))2 = z − a, z ∈ Ω. Note that h is one-to-one and
0 /∈ h(Ω). Furthermore, h(Ω) is open by (4.3.1), the open mapping theorem, hence so
is −h(Ω) = {−h(z) : z ∈ Ω}, and [h(Ω] ∩ [−h(Ω] = ∅ (because 0 /∈ h(Ω)). Now choose
w ∈ −h(Ω). Since −h(Ω) is open, there exists r > 0 such that D(w, r) ⊆ −h(Ω), hence
h(Ω) ∩ D(w, r) = ∅. The function f(z) = 1/(h(z) − w), z ∈ Ω, is one-to-one, and its
magnitude is less than 1/r on Ω. Thus rf is a one-to-one map of Ω into D. ♣
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5.2.2 Riemann Mapping Theorem

Let Ω be as in (5.2.1), that is, a nonempty, proper, open and connected subset of C such
that every zero-free analytic function on Ω has an analytic square root. Then there is a
one-to-one analytic map of Ω onto D.

Proof. Fix z0 ∈ Ω and a one-to-one analytic map f0 of Ω into D [f0 exists by (5.2.1)].
Let F be the set of all f ∈ A(Ω) such that f is a one-to-one analytic map of Ω into D
and |f ′(z0)| ≥ |f ′0(z0)|. Note that |f ′0(z0)| > 0 by (4.3.1).

Then F �= ∅ (since f0 ∈ F) and F is bounded. Also, F is closed, for if {fn} is a
sequence in F such that fn → f uniformly on compact subsets of Ω, then by (5.1.5),
either f is constant on Ω or f is one-to-one. But since f ′n → f ′, it follows that |f ′(z0)| ≥
|f ′0(z0)| > 0, so f is one-to-one. Also, f maps Ω into D (by the maximum principle), so
f ∈ F . Since F is closed and bounded, it is compact (Theorem 5.1.1). Hence by (5.1.2),
there exists g ∈ F such that |g′(z0)| ≥ |f ′(z0)| for all f ∈ F . We will now show that such
a g must map Ω onto D. For suppose that there is some a ∈ D \ g(Ω). Let ϕa be as in
(4.6.1), that is,

ϕa(z) =
z − a

1− az
, z ∈ D.

Then ϕa ◦ g : Ω → D and ϕa ◦ g is one-to-one with no zeros in Ω. By hypothesis, there
is an analytic square root h for ϕa ◦ g. Note also that h2 = ϕa ◦ g is one-to-one, and
therefore so is h. Set b = h(z0) and define f = ϕb ◦ h. Then f(z0) = ϕb(b) = 0 and we
can write

g = ϕ−a ◦ h2 = ϕ−a ◦ (ϕ−b ◦ f)2 = ϕ−a ◦ (ϕ2
−b ◦ f) = (ϕ−a ◦ ϕ2

−b) ◦ f.

Now

g′(z0) = (ϕ−a ◦ ϕ2
−b)
′(f(z0))f ′(z0)

(1)

= (ϕ−a ◦ ϕ2
−b)
′(0)f ′(z0).

The function ϕ−a ◦ ϕ2
−b is an analytic map of D into D, but it is not one-to-one; indeed,

it is two-to-one. Hence by the Schwarz-Pick theorem (4.6.3), part (ii), it must be the case
that

|(ϕ−a ◦ ϕ2
−b)
′(0)| < 1− |ϕ−a ◦ ϕ2

−b(0)|2.

Since f ′(z0) �= 0, it follows from (1) that

|g′(z0)| < (1− |ϕ−a ◦ ϕ2
−b(0)|2)|f ′(z0)| ≤ |f ′(z0)|.

This contradicts our choice of g ∈ F as maximizing the numbers |f ′(z0)|, f ∈ F . Thus
g(Ω) = D as desired. ♣
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5.2.3 Remarks

(a) Any function g that maximizes the numbers {|f ′(z0)| : f ∈ F} must send z0 to 0.
Proof. Let a = g(z0). Then ϕa ◦ g is a one-to-one analytic map of Ω into D. Moreover,

|(ϕa ◦ g)′(z0)| = |ϕ′a(g(z0))g′(z0)|
= |ϕ′a(a)g′(z0)|

=
1

1− |a|2 |g
′(z0)|

≥ |g′(z0)| ≥ |f ′0(z0)|.
Thus ϕa ◦ g ∈ F , and since |g′(z0)| maximizes |f ′(z0)| for f ∈ F , it follows that equality
must hold in the first inequality. Therefore 1/(1− |a|2) = 1, so 0 = a = g(z0). ♣
(b) Let f and h be one-to-one analytic maps of Ω onto D such that f(z0) = h(z0) = 0
and f ′(z0) = h′(z0) (it is enough that Arg f ′(z0) = Arg h′(z0)). Then f = h.
Proof. The function h ◦ f−1 is a one-to-one analytic map of D onto D, and h ◦ f−1(0) =
h(z0) = 0. Hence by Theorem 4.6.4 (with a = 0), there is a unimodular complex number
λ such that h(f−1(z)) = λz, z ∈ D. Thus h(w) = λf(w), w ∈ D. But if h′(z0) = f ′(z0)
(which is equivalent to Arg h′(z0) = Arg f ′(z0) since |h′(z0)| = |λ||f ′(z0)| = |f ′(z0)|), we
have λ = 1 and f = h. ♣
(c) Let f be any analytic map of Ω into D (not necessarily one-to-one or onto) with
f(z0) = 0. Then with g as in the theorem, |f ′(z0)| ≤ |g′(z0)|. Also, equality holds iff
f = λg with |λ| = 1.
Proof. The function f ◦ g−1 is an analytic map of D into D such that f ◦ g−1(0) =
0. By Schwarz’s lemma (2.4.16), |f(g−1(z))| ≤ |z| and |f ′(g−1(0)) · 1

g′(z0)
| ≤ 1. Thus

|f ′(z0)| ≤ |g′(z0)|. Also by (2.4.16), equality holds iff for some unimodular λ we have
f ◦ g−1(z) = λz, that is, f(z) = λg(z), for all z ∈ D. ♣

If we combine (a), (b) and (c), and observe that λg′(z0) will be real and greater than
0 for appropriately chosen unimodular λ, then we obtain the following existence and
uniqueness result.
(d) Given z0 ∈ Ω, there is a unique one-to-one analytic map g of Ω onto D such that
g(z0) = 0 and g′(z0) is real and positive.

As a corollary of (d), we obtain the following result, whose proof will be left as an
exercise; see Problem 1.
(e) Let Ω1 and Ω2 be regions that satisfy the hypothesis of the Riemann mapping theorem.
Let z1 ∈ Ω1 and z2 ∈ Ω2. Then there is a unique one-to-one analytic map f of Ω1 onto
Ω2 such that f(z1) = z2 and f ′(z1) is real and positive.

Recall from (3.4.6) that if Ω ⊆ C and Ω satisfies any one of the six equivalent conditions
listed there, then Ω is called (homologically) simply connected. Condition (6) is that every
zero-free analytic function on Ω have an analytic n-th root for n = 1, 2, . . . . Thus if Ω
is homologically simply connected, then in particular, assuming Ω �= C, the Riemann
mapping theorem implies that Ω is conformally equivalent to D, in other words, there is a
one-to-one analytic map of Ω onto D. The converse is also true, but before showing this,
we need to take a closer look at the relationship between homological simple connectedness
and homotopic simple connectedness [see (4.9.12)].
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5.2.4 Theorem

Let γ0 and γ1 be closed curves in an open set Ω ⊆ C. If γ0 and γ1 are Ω-homotopic (in
other words, homotopic in Ω), then they are Ω-homologous, that is, n(γ0, z) = n(γ1, z)
for every z ∈ C \ Ω.

Proof. We must show that n(γ0, z) = n(γ1, z) for each z ∈ C \ Ω. Thus let z ∈ C \ Ω, let
H be a homotopy of γ0 to γ1, and let θ be a continuous argument of H− z. (See Problem
6 of Section 3.2.) That is, θ is a real continuous function on [a, b]× [0, 1] such that

H(t, s)− z = |H(t, s)− z|eiθ(t,s)

for (t, s) ∈ [a, b]× [0, 1]. Then for each s ∈ [0, 1], the function t → θ(t, s) is a continuous
argument of H(·, s)− z and hence

n(H(·, s), z) =
θ(b, s)− θ(a, s)

2π
.

This shows that the function s→ n(H(·, s), z) is continuous, and since it is integer valued,
it must be constant. In particular,

n(H(·, 0), z) = n(H(·, 1), z).

In other words, n(γ0, z) = n(γ1, z). ♣
The above theorem implies that if γ is Ω-homotopic to a point in Ω, then γ must be

Ω-homologous to 0. Thus if γ is a closed path in Ω such that γ is Ω-homotopic to a point,
then

∫
γ

f(z) dz = 0 for every analytic function f on Ω. We will state this result formally.

5.2.5 The Homotopic Version of Cauchy’s Theorem

Let γ be a closed path in Ω such that γ is Ω-homotopic to a point. Then
∫

γ
f(z) dz = 0

for every analytic function f on Ω.

. .
a b

 

Figure 5.2.1
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Remark

The converse of Theorem 5.2.5 is not true. In particular, there are closed curves γ
and open sets Ω such that γ is Ω-homologous to 0 but γ is not homotopic to a point.
Take Ω = C \ {a, b}, a �= b, and consider the closed path γ of Figure 5.2.1. Then
n(γ, a) = n(γ, b) = 0, hence γ is Ω-homologous to 0. But (intuitively at least) we see that
γ cannot be shrunk to a point without passing through a or b. It follows from this example
and Theorem 5.2.4 that the homology version of Cauchy’s theorem (3.3.1) is actually
stronger than the homotopy version (5.2.5). That is, if γ is a closed path to which the
homotopy version applies, then so does the homology version, while the homology version
applies to the above path, but the homotopy version does not. However, if every closed
path in Ω is homologous to zero, then every closed path is homotopic to a point, as we
now show.

5.2.6 Theorem

Let Ω be an open connected subset of C. The following are equivalent.

(1) Every zero-free f ∈ A(Ω) has an analytic square root.

(2) If Ω �= C, then Ω is conformally equivalent to D.

(3) Ω is homeomorphic to D.

(4) Ω is homotopically simply connected.

(5) Each closed path in Ω is homotopic to a point.
(6) Ω is homologically simply connected.

Proof.

(1) implies (2): This is the Riemann mapping theorem.

(2) implies (3): If Ω �= C, this follows because a conformal equivalence is a homeomor-
phism., while if Ω = C, then the map h(z) = z/(1 + |z|) is a homeomorphism of C onto
D (see Problem 2).

(3) implies (4): Let γ : [a, b] → Ω be any closed curve in Ω. By hypothesis there is a
homeomorphism f of Ω onto D. Then f ◦γ is a closed curve in D, and there is a homotopy
H (in D) of f ◦ γ to the point f(γ(a)) (see Problem 4). Therefore f−1 ◦H is a homotopy
in Ω of γ to γ(a).

(4) implies (5): Every closed path is a closed curve.

(5) implies (6): Let γ be any closed path in Ω. If γ is Ω-homotopic to a point, then by
Theorem 5.2.4, γ is Ω-homologous to zero.

(6) implies (1): This follows from part (6) of (3.4.6).

Remark

If Ω is any open set (not necessarily connected) then the statement of the preceding
theorem applies to each component of Ω. Therefore (1), (4), (5) and (6) are equivalent
for arbitrary open sets.

Here is yet another condition equivalent to simple connectedness of an open set Ω.
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5.2.7 Theorem

Let Ω be a simply connected open set. Then every harmonic function on Ω has a harmonic
conjugate. Conversely, if Ω is an open set such that every harmonic function on Ω has a
harmonic conjugate, then Ω is simply connected.

Proof. The first assertion was proved as Theorem 4.9.14 using the method of analytic con-
tinuation. However, we can also give a short proof using the Riemann mapping theorem,
as follows. First note that we can assume that Ω is connected by applying this case to
components. If Ω = C then every harmonic function on Ω has a harmonic conjugate as in
Theorem 1.6.2. Suppose then that Ω �= C. By the Riemann mapping theorem, there is a
conformal equivalence f of Ω onto D. Let u be harmonic on Ω. Then u ◦ f−1 is harmonic
on D and thus by (1.6.2), there is a harmonic function V on D such that u ◦ f−1 + iV is
analytic on D. Since (u ◦ f−1 + iV ) ◦ f is analytic on Ω, there is a harmonic conjugate of
u on Ω, namely v = V ◦ f .

Conversely, suppose that Ω is not simply connected. Then Ω is not homologically
simply connected, so there exists z0 ∈ C\Ω and a closed path γ in Ω such that n(γ, z0) �= 0.
Thus by (3.1.9) and (3.2.3), the function z → z − z0 does not have an analytic logarithm
on Ω, hence z → ln |z − z0| does not have a harmonic conjugate. ♣

The final result of this section is Runge’s theorem on rational and polynomial approx-
imation of analytic functions. One consequence of the development is another condition
that is equivalent to simple connectedness.

5.2.8 Runge’s Theorem

Let K be a compact subset of C, and S a subset of Ĉ \K that contains at least one point
in each component of Ĉ \K. Define B(S) = {f : f is a uniform limit on K of rational
functions whose poles lie in S}. Then every function f that is analytic on a neighborhood
of K is in B(S). That is, there is a sequence {Rn} of rational functions whose poles lie
in S such that Rn → f uniformly on K.

Before giving the proof, let us note the conclusion in the special case where Ĉ \K is
connected. In this case, we can take S = {∞}, and our sequence of rational functions will
actually be a sequence of polynomials. The proof given is due to Sandy Grabiner (Amer.
Math. Monthly, 83 (1976), 807-808) and is based on three lemmas.

5.2.9 Lemma

Suppose K is a compact subset of the open set Ω ⊆ C. If f ∈ A(Ω), then f is a uniform
limit on K of rational functions whose poles (in the extended plane!) lie in Ω \K.

5.2.10 Lemma

Let U and V be open subsets of C with V ⊆ U and ∂V ∩ U = ∅. If H is any component
of U and V ∩H �= ∅, then H ⊆ V .
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5.2.11 Lemma

If K is a compact subset of C and λ ∈ C \K, then (z − λ)−1 ∈ B(S).

Let us see how Runge’s theorem follows from these three lemmas, and then we will
prove the lemmas. First note that if f and g belong to B(S), then so do f + g and
fg. Thus by Lemma 5.2.11 (see the partial fraction decomposition of Problem 4.1.7),
every rational function with poles in Ĉ \K belongs to B(S). Runge’s theorem is then a
consequence of Lemma 5.2.9. (The second of the three lemmas is used to prove the third.)

Proof of Lemma 5.2.9

Let Ω be an open set containing K. By (3.4.7), there is a cycle γ in Ω \K such that for
every f ∈ A(Ω) and z ∈ K,

f(z) =
1

2πi

∫
γ

f(w)
w − z

dw.

Let ε > 0 be given. Then δ = dist(γ∗, K) > 0 because γ∗ and K are disjoint compact
sets. Assume [0, 1] is the domain of γ and let s, t ∈ [0, 1], z ∈ K. Then

∣∣∣∣ f(γ(t))
γ(t)− z

− f(γ(s))
γ(s)− z

∣∣∣∣
=

∣∣∣∣f(γ(t))(γ(s)− z)− f(γ(s))(γ(t)− z)
(γ(t)− z)(γ(s)− z)

∣∣∣∣
=

∣∣∣∣f(γ(t))(γ(s)− γ(t)) + γ(t)(f(γ(t))− f(γ(s)))− z(f(γ(t))− f(γ(s)))
(γ(t)− z)(γ(s)− z)

∣∣∣∣
≤ 1

δ2
(|f(γ(t))||γ(s)− γ(t)|+ |γ(t)||f(γ(t))− f(γ(s))|+ |z||f(γ(t))− f(γ(s))|).

Since γ and f ◦ γ are bounded functions and K is a compact set, there exists C > 0 such
that for s, t ∈ [0, 1] and z ∈ K, the preceding expression is bounded by

C

δ2
(|γ(s)− γ(t)|+ |f(γ(t))− f(γ(s))|.

Thus by uniform continuity of γ and f ◦ γ on the interval [0, 1], there is a partition
0 = t0 < t1 < · · · < tn = 1 such that for t ∈ [tj−1, tj ] and z ∈ K,

∣∣∣∣ f(γ(t))
γ(t)− z

− f(γ(tj))
γ(tj)− z

∣∣∣∣ < ε.

Define

R(z) =
n∑

j=1

f(γ(tj))
γ(tj)− z

(γ(tj)− γ(tj−1)), z �= γ(tj).
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Then R(z) is a rational function whose poles are included in the set {γ(t1), . . . , γ(tn)},
in particular, the poles are in Ω \K. Now for all z ∈ K,

|2πif(z)−R(z)| =

∣∣∣∣∣∣
∫

γ

f(w)
w − z

dw −
n∑

j=1

f(γ(tj))
γ(tj)− z

(γ(tj)− γ(tj−1))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

(
f(γ(t))
γ(t)− z

− f(γ(tj))
γ(tj)− z

)
γ′(t) dt

∣∣∣∣∣∣
≤ ε

∫ 1

0

|γ′(t)| dt = ε · length of γ.

Since the length of γ is independent of ε, the lemma is proved. ♣

Proof of Lemma 5.2.10

Let H be any component of U such that V ∩ H �= ∅. We must show that H ⊆ V . let
s ∈ V ∩ H and let G be that component of V that contains s. It suffices to show that
G = H. Now G ⊆ H since G is a connected subset of U containing s and H is the union
of all subsets with this property. Write

H = G ∪ (H \G) = G ∪ [(∂G ∩H) ∪ (H \G)].

But ∂G ∩H = ∅, because otherwise the hypothesis ∂V ∩ U = ∅ would be violated. Thus
H = G ∪ (H \G), the union of two disjoint open sets. Since H is connected and G �= ∅,
we have G = H as required. ♣

Proof of Lemma 5.2.11

Suppose first that ∞ ∈ S. Then for sufficiently large |λ0|, with λ0 in the unbounded
component of C \ K, the Taylor series for (z − λ0)−1 converges uniformly on K. Thus
(z − λ0)−1 ∈ B(S), and it follows that

B((S \ {∞}) ∪ {λ0}) ⊆ B(S).

(If f ∈ B((S \ {∞}) ∪ {λ0}) and R is a rational function with poles in (S \ {∞}) ∪ {λ0}
that approximates f , write R = R1 + R2 where all the poles (if any) of R1 lie in S \ {∞}
and the pole (if any) of R0 is at λ0. But R0 can be approximated by a polynomial P0,
hence R1 +P0 approximates f and has its poles in S, so f ∈ B(S).) Thus it is sufficient to
establish the lemma for sets S ⊆ C. We are going to apply Lemma 5.2.10. Put U = C\K
and define

V = {λ ∈ U : (z − λ)−1 ∈ B(S)}.
Recall that by hypothesis, S ⊆ U and hence S ⊆ V ⊆ U . To apply (5.2.10) we must first
show that V is open. Suppose λ ∈ V and µ is such that 0 < |λ − µ| < dist(λ, K). Then
µ ∈ C \K and for all z ∈ K,

1
z − µ

=
1

(z − λ)[1− µ−λ
z−λ ]

.
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Since (z − λ)−1 ∈ B(S), it follows from the remarks preceding the proof of Lemma 5.2.9
that (z − µ)−1 ∈ B(S). Thus µ ∈ V , proving that V is open. Next we’ll show that
∂V ∩ U = ∅. Let w ∈ ∂V and let {λn} be a sequence in V such that λn → w. Then as
we noted earlier in this proof, |λn − w| < dist(λn, K) implies w ∈ V , so it must be the
case that |λn −w| ≥ dist(λn, K) for all n. Since |λn −w| → 0, the distance from w to K
must be 0, so w ∈ K. Thus w /∈ U , proving that ∂V ∩ U = ∅, as desired. Consequently,
V and U satisfy the hypotheses of (5.2.10).

Let H be any component of U . By definition of S, there exists s ∈ S such that s ∈ H.
Now s ∈ V because S ⊆ V . Thus H ∩V �= ∅, and Lemma 5.2.10 implies that H ⊆ V . We
have shown that every component of U is a subset of V , and consequently U ⊆ V . Since
V ⊆ U , we conclude that U = V . ♣

5.2.12 Remarks

Theorem 5.2.8 is often referred to as Runge’s theorem for compact sets. Other versions
of Runge’s theorem appear as Problems 6(a) and 6(b).

We conclude this section by collecting a long list of conditions, all equivalent to simple
connectedness.

5.2.13 Theorem

If Ω is an open subset of C, the following are equivalent.

(a) Ĉ \ Ω is connected.

(b) n(γ, z) = 0 for each closed path (or cycle) γ in Ω and each point z ∈ C \ Ω.

(c)
∫

γ
f(z) dz = 0 for each f ∈ A(Ω) and each closed path γ in Ω.

(d) n(γ, z) = 0 for each closed curve γ in Ω and each z ∈ C \ Ω.

(e) Every analytic function on Ω has a primitive.

(f) Every zero-free analytic function on Ω has an analytic logarithm.

(g) Every zero-free analytic function on Ω has an analytic n-th root for n = 1, 2, 3, . . . .

(h) Every zero-free analytic function on Ω has an analytic square root.

(i) Ω is homotopically simply connected.

(j) Each closed path in Ω is homotopic to a point.

(k) If Ω is connected and Ω �= C, then Ω is conformally equivalent to D.

(l) If Ω is connected, then Ω is homeomorphic to D.

(m) Every harmonic function on Ω has a harmonic conjugate.

(n) Every analytic function on Ω can be uniformly approximated on compact sets by
polynomials.

Proof. See (3.4.6), (5.2.4), (5.2.6), (5.2.7), and Problem 6(b) in this section. ♣
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Problems

1. Prove (5.2.3e).

2. Show that h(z) = z/(1 + |z|) is a homeomorphism of C onto D.

3. Let γ : [a, b]→ Ω be a closed curve in a convex set Ω. Prove that

H(t, s) = sγ(a) + (1− s)γ(t), t ∈ [a, b], s ∈ [0, 1]

is an Ω-homotopy of γ to the point γ(a).

4. Show directly, using the techniques of Problem 3, that a starlike open set is homotopi-
cally simply connected.

5. This problem is in preparation for other versions of Runge’s theorem that appear in
Problem 6. Let Ω be an open subset of C, and let {Kn} be as in (5.1.1). Show that in
addition to the properties (1), (2) and (3) listed in (5.1.1), the sequence {Kn} has an
additional property:
(4) Each component of Ĉ \Kn contains a component of Ĉ \ Ω.

6. Prove the following versions of Runge’s theorem:
(a) Let Ω be an open set and let S be a set containing at least one point in each
component of Ĉ \Ω. Show that if f ∈ A(Ω), then there is a sequence {Rn} of rational
functions with poles in S such that Rn → f uniformly on compact subsets of Ω.
(b) Let Ω be an open subset of C. Show that Ω is simply connected if and only if for
each f ∈ A(Ω), there is a sequence {Pn} of polynomials converging to f uniformly on
compact subsets of Ω.

.

n!
 +
 

1
n

n!

.
n! + 

7
n

n! + 1
n

n!
 +
 
2 n

.
-n!

Kn
An

1/
n

4/n
Bn

Cn

M n

Figure 5.2.2

7. Define sequences of sets as follows:

An = {z : |z + n!| < n! +
2
n
}, Bn = {z : |z − 4

n
| < 1

n
},
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Cn = {z : |z − (n! +
7
n

)| < n! +
1
n
}, Kn = {z : |z + n!| ≤ n! +

1
n
},

Ln = { 4
n
}, Mn = {z : |z − (n! +

7
n

)| ≤ n!}

(see Figure 5.2.2). Define

fn(z) =




0, z ∈ An

1, z ∈ Bn

0, z ∈ Cn

and gn(z) =

{
0, z ∈ An

1, z ∈ Cn

(a) By approximating fn by polynomials (see Problem 6), exhibit a sequence of poly-
nomials converging pointwise to 0 on all of C, but not uniformly on compact subsets.
(b) By approximating gn by polynomials, exhibit a sequence of polynomials converging
pointwise on all of C to a discontinuous limit.

5.3 Extending Conformal Maps to the Boundary

Let Ω be a proper simply connected region in C. By the Riemann mapping theorem,
there is a one-to-one analytic map of Ω onto the open unit disk D. In this section we will
consider the problem of extending f to a homeomorphism of the closure Ω of Ω onto D.
Note that if f is extended, then Ω must be compact. Thus we assume in addition that Ω
is bounded. We will see that ∂Ω plays an essential role in determining whether such an
extension is possible. We begin with some results of a purely topological nature.

5.3.1 Theorem

Suppose Ω is an open subset of C and f is a homeomorphism of Ω onto f(Ω) = V . Then
a sequence {zn} in Ω has no limit point in Ω iff the sequence {f(zn)} has no limit point
in V .

Proof. Assume {zn} has a limit point z ∈ Ω. There is a subsequence {znj} in Ω such that
znj
→ z. By continuity, f(znj

) → f(z), and therefore the sequence {f(zn)} has a limit
point in V . The converse is proved by applying the preceding argument to f−1. ♣

5.3.2 Corollary

Suppose f is a conformal equivalence of Ω onto D. If {zn} is a sequence in Ω such that
zn → β ∈ ∂Ω, then |f(zn)| → 1.

Proof. Since {zn} has no limit point in Ω, {f(zn)} has no limit point in D, hence
|f(zn)| → 1. ♣

Let us consider the problem of extending a conformal map f to a single boundary
point β ∈ ∂Ω. As the following examples indicate, the relationship of Ω and β plays a
crucial role.



5.3. EXTENDING CONFORMAL MAPS TO THE BOUNDARY 19

5.3.3 Examples

(1) Let Ω = C\(−∞, 0] and let
√

z denote the analytic square root of z such that
√

1 = 1.
Then

√
z is a one-to-one analytic map of Ω onto the right half plane. The linear fractional

transformation T (z) = (z − 1)/(z + 1) maps the right half plane onto the unit disk D,
hence f(z) = (

√
z − 1)/(

√
z + 1) is a conformal equivalence of Ω and D. Now T maps

Re z = 0 onto ∂D\{1}, so if {zn} is a sequence in Im z > 0 that converges to β ∈ (−∞, 0),
then {f(zn)} converges to a point w ∈ ∂D with Im w > 0. On the other hand, if {zn} lies
in Im z < 0 and zn → β, then {f(zn)} converges to a point w ∈ ∂D with Im w < 0. Thus
f does not have a continuous extension to Ω ∪ {β} for any β on the negative real axis.

(2) To get an example of a bounded simply connected region Ω with boundary points to
which the mapping functions are not extendible, let

Ω = [(0, 1)× (0, 1)] \ {{1/n} × (0, 1/2] : n = 2, 3, . . . }.

Thus Ω is the open unit square with vertical segments of height 1/2 removed at each
of the points 1/2, 1/3, . . . on the real axis; see Figure 5.3.1. Then Ĉ \ Ω is seen to be

1/5 1/4 1/3 1/2

z2 z
1

. . .iy

0

...

Ω
f
-1

[α  ,  α  ]
1 2

Figure 5.3.1

connected, so that Ω is simply connected. Let β = iy where 0 < y < 1/2, and choose
a sequence {zn} in Ω such that zn → iy and Im zn = y, n = 1, 2, 3, . . . . Let f be
any conformal map of Ω onto D. Since by (5.3.2), |f(zn)| → 1, there is a subsequence
{znk
} such that {f(znk

)} converges to a point w ∈ ∂D. For simplicity assume that
{f(zn)} converges to w. Set αn = f(zn) and in D, join αn to αn+1 with the straight
line segment [αn, αn+1], n = 1, 2, 3, . . . . Then f−1([αn, αn+1]) is a curve in Ω joining
zn to zn+1, n = 1, 2, 3, . . . . It follows that every point of [iy, i/2] is a limit point of
∪nf−1([αn, αn+1]). Hence f−1, in this case, cannot be extended to be continuous at
w ∈ ∂D.

As we now show, if β ∈ ∂Ω is such that sequences of the type {zn} in the previous
example are ruled out, then any mapping function can be extended to Ω ∪ {β}.
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5.3.4 Definition

A point β ∈ ∂Ω is called simple if to each sequence {zn} in Ω such that zn → β, there
corresponds a curve γ : [0, 1] → Ω ∪ {β} and a strictly increasing sequence {tn} in [0,1)
such that tn → 1, γ(tn) = zn, and γ(t) ∈ Ω for 0 ≤ t < 1.

Thus a boundary point is simple iff for any sequence {zn} that converges to β, there
is a curve γ in Ω that contains the points zn and terminates at β. In Examples 1 and 2
of (5.3.3), none of the boundary points β with β ∈ (−∞, 0) or β ∈ (0, i/2) is simple.

5.3.5 Theorem

Let Ω be a bounded simply connected region in C, and let β ∈ ∂Ω be simple. If f is a
conformal equivalence of Ω onto D, then f has a continuous extension to Ω ∪ {β}.

To prove this theorem, we will need a lemma due to Lindelöf.

z
0

.

−Ω

Ω

C(z , r)
0

.

.

Figure 5.3.2

5.3.6 Lemma

Suppose Ω is an open set in C, z0 ∈ Ω, and the circle C(z0, r) has an arc lying in the
complement of Ω which subtends an angle greater than π at z0 (see Figure 5.3.2). Let g
be any continuous function on Ω which is analytic on Ω. If |g(z)| ≤M for all z ∈ Ω while
|g(z)| ≤ ε for all z ∈ D(z0, r) ∩ ∂Ω, then |g(z0)| ≤

√
εM .

Proof. Assume without loss of generality that z0 = 0. Put U = Ω∩ (−Ω)∩D(0, r). (This
is the shaded region in Figure 5.3.2.) Define h on U by h(z) = g(z)g(−z). We claim
first that U ⊆ Ω ∩ (−Ω) ∩ D(0, r). For by general properties of the closure operation,
U ⊆ Ω ∩ (−Ω) ∩D(0, r). Thus it is enough to show that if z ∈ ∂D(0, r), that is, |z| = r,
then z /∈ Ω or z /∈ (−Ω). But this is a consequence of our assumption that C(0, r) has
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an arc lying in the complement of Ω that subtends an angle greater than π at z0 = 0,
from which it follows that the entire circle C(0, r) lies in the complement of Ω ∩ (−Ω).
Consequently, we conclude that if z ∈ ∂U , then z ∈ ∂Ω ∩D(0, r) or z ∈ ∂(−Ω) ∩D(0, r).
Therefore, for all z ∈ ∂U , hence for all z ∈ U by the maximum principle, we have

|h(z)| = |g(z)||g(−z)| ≤ εM.

In particular, |h(0)| = |g(0)|2 ≤ εM , and the lemma is proved. ♣

We now proceed to prove Theorem 5.3.5. Assume the statement of the theorem is
false. This implies that there is a sequence {zn} in Ω converging to β, and distinct
complex numbers w1 and w2 of modulus 1, such that f(z2j−1)→ w1 while f(z2j)→ w2.
(Proof: There is a sequence {zn} in Ω such that zn → β while {f(zn)} does not converge.
But {f(zn)} is bounded, hence it has at least two convergent subsequences with different
limits w1, w2 and with |w1| = |w2| = 1.) Let p be the midpoint of the positively oriented
arc of ∂D from w1 to w2. Choose points a and b, interior to this arc, equidistant from p
and close enough to p for Figure 5.3.3 to obtain. Let γ and {tn} be as in the definition

.

.

.

...
.

W

W
1

2

d

c

b

a

p

w
1

w
2

. 0

Figure 5.3.3

of simple boundary point. No loss of generality results if we assume that f(z2j−1) ∈ W1

and f(z2j) ∈ W2 for all j, and that |f(γ(t))| > 1/2 for all t. Since f(γ(t2j−1)) ∈ W1 and
f(γ(t2j)) ∈W2 for each j, there exist xj and yj with t2j−1 < xj < yj < t2j such that one
of the following holds:

(1) f(γ(xj)) ∈ (0, a), f(γ(yj)) ∈ (0, b), and f(γ(t)) is in the open sector a0ba for all t
such that xj < t < yj , or

(2) f(γ(xj)) ∈ (0, d), f(γ(yj)) ∈ (0, c), and f(γ(t)) is in the open sector d0cd for all t
such that xj < t < yj .

See Figure 5.3.4 for this and details following. Thus (1) holds for infinitely many j or
(2) holds for infinitely many j. Assume that the former is the case, and let J be the set
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of all j such that (1) is true. For j ∈ J define γj on [0, 1] by

γj(t) =




t
xj

f(γ(xj)), 0 ≤ t ≤ xj ,

f(γ(t)), xj ≤ t ≤ yj ,
1−t
1−yj

f(γ(yj)), yj ≤ t ≤ 1.

Thus γj is the closed path whose trajectory γ∗j consists of

.z
0

.

.

.

a

b

c

d

p

.w1

w2

0
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.
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f( (t  ))γ 2j
f( (y ))γ
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)
)

γ
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 )
)

γ
2j
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Figure 5.3.4

[0, f(γ(xj))] ∪ {f(γ(t) : xj ≤ t ≤ yj} ∪ [f(γ(yj)), 0].

Let Ωj be that component of C \ γ∗j such that 1
2p ∈ Ωj . Then ∂Ωj ⊆ γ∗j . Furthermore,

Ωj ⊆ D, for if we compute the index n(γj ,
1
2p), we get 1 because |γj(t)| > 1

2 for xj ≤ t ≤ yj ,
while the index of any point in C \D is 0. Let r be a positive number with r < 1

2 |a− b|
and choose a point z0 on the open radius (0, p) so close to p that the circle C(0, r)
meets the complement of D in an arc of length greater than πr. For sufficiently large
j ∈ J, |f(γ(t))| > |z0| for all t ∈ [t2j−1, t2j ] ; so for these j we have z0 ∈ Ωj . Further, if
z ∈ ∂Ωj∩D(z0, r), then z ∈ {f(γ(t)) : t2j−1 ≤ t ≤ t2j} and hence f−1(z) ∈ γ([t2j−1, t2j ]}.
Define

εj = sup{|f−1(z)− β| : z ∈ ∂Ωj ∩D(z0, r)} ≤ sup{|γ(t)− β| : t ∈ [t2j−1, t2j ]}

and

M = sup{|f−1(z)− β| : z ∈ D}.
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Since M ≥ sup{|f−1(z)− β| : z ∈ Ωj}, Lemma 5.3.6 implies that |f−1(z0)− β| ≤
√

εjM .
Since εj can be made as small as we please by taking j ∈ J sufficiently large, we have
f−1(z0) = β. This is a contradiction since f−1(z0) ∈ Ω, and the proof is complete. ♣

We next show that if β1 and β2 are simple boundary points and β1 �= β2, then any
continuous extension f to Ω ∪ {β1, β2} that results from the previous theorem is one-to-
one, that is, f(β1) �= f(β2). The proof requires a lemma that expresses the area of the
image of a region under a conformal map as an integral. (Recall that a one-to-one analytic
function is conformal.)

5.3.7 Lemma

Let g be a conformal map of an open set Ω. Then the area (Jordan content) of g(Ω) is∫ ∫
Ω
|g′|2 dx dy.

Proof. Let g = u + iv and view g as a transformation from Ω ⊆ R2 into R2. Since g is
analytic, u and v have continuous partial derivatives (of all orders). Also, the Jacobian
determinant of the transformation g is

∂(u, v)
∂(x, y)

=

∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ =
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
= (

∂u

∂x
)2 + (

∂v

∂x
)2 = |g′|2

by the Cauchy-Riemann equations. Since the area of g(Ω) is
∫ ∫

Ω
∂(u,v)
∂(x,y) dx dy, the state-

ment of the lemma follows. ♣

.
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5.3.8 Theorem

Let Ω be a bounded, simply connected region and f a conformal map of Ω onto D. If
β1 and β2 are distinct simple boundary points of Ω and f is extended continuously to
Ω ∪ {β1, β2}, then f(β1) �= f(β2).
Proof. Assume that β1 and β2 are simple boundary points of Ω and f(β1) = f(β2). We
will show that β1 = β2. It will simplify the notation but result in no loss of generality if
we replace D by D(1, 1) and assume that f(β1) = f(β2) = 0.

Since β1 and β2 are simple boundary points, for j = 1, 2 there are curves γj in Ω∪{βj}
such that γj([0, 1)) ⊆ Ω and γj(1) = βj . Put g = f−1. By continuity, there exists τ < 1
such that τ < s, t < 1 implies

|γ2(t)− γ1(s)| ≥
1
2
|β2 − β1| (1)

and there exists δ, 0 < δ < 1, such that for t ≤ τ we have f(γj(t)) /∈ D(0, δ), j = 1, 2.
Also, for each r such that 0 < r ≤ δ, we can choose sr and tr > τ such that f(γ1(sr)) and
f(γ2(tr)) meet the circle C(0, r); see Figure 5.3.5. Let θ(r) be the principal value of the
argument of the point of intersection in the upper half plane of C(0, r) and C(1, 1). Now
g(f(γ2(tr)))− g(f(γ1(sr))) is the integral of g′ along the arc λr of C(0, r) from f(γ1(sr))
to f(γ2(tr)). It follows from this and (1) that

1
2
|β2 − β1| ≤ |γ2(tr)− γ1(sr)|

= |g(f(γ2(tr)))− g(f(γ1(sr)))|

= |
∫

λr

g′(z) dz|

≤
∫ θ(r)

−θ(r)

|g′(reiθ)|r dθ. (2)

(Note: The function θ → |g′(reiθ)| is positive and continuous on the open interval
(−θ(r), θ(r)), but is not necessarily bounded. Thus the integral in (2) may need to
be treated as an improper Riemann integral. In any case (2) remains correct and the
calculations that follow are also seen to be valid.)

Squaring in (2) and applying the Cauchy-Schwarz inequality for integrals we get

1
4
|β2 − β1|2 ≤ 2θ(r)r2

∫ θ(r)

−θ(r)

|g′(reiθ)|2 dθ.

(The factor 2θ(r) comes from integrating 12dθ from −θ(r) to θ(r).) Since θ(r) ≤ π/2, we
have

|β2 − β1|2
4πr

≤ r

∫ θ(r)

−θ(r)

|g′(reiθ)|2 dθ. (3)

Now integrate the right hand side of (3) with respect to r from r = 0 to r = δ. We obtain∫ δ

0

∫ θ(r)

−θ(r)

|g′(reiθ)|2r dθ dr ≤
∫ ∫

L

|g′(x + iy)|2 dx dy
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where L is the lens-shaped open set whose boundary is formed by arcs of C(0, δ) and
C(1, 1); see Figure 5.3.5. By (5.3.7),

∫ ∫
L
|g′|2 dx dy is the area (or Jordan content) of

g(L). Since g(L) ⊆ Ω and Ω is bounded, g(L) has finite area. But the integral from 0
to δ of the left hand side of (3) is +∞ unless β1 = β2. Thus f(β1) = f(β2) implies that
β1 = β2. ♣

We can now prove that f : Ω→ D extends to a homeomorphism of Ω and D if every
boundary point of Ω is simple.

5.3.9 Theorem

Suppose Ω is a bounded, simply connected region with the property that every boundary
point of Ω is simple. If f : Ω → D is a conformal equivalence, then f extends to a
homeomorphism of Ω onto D.
Proof. By Theorem 5.3.5, for each β ∈ ∂Ω we can extend f to Ω ∪ {β} so that f is
continuous on Ω ∪ {β}. . Assume this has been done. Thus (the extension of) f is a
map of Ω into D, and Theorem 5.3.8 implies that f is one-to-one. Furthermore, f is
continuous at each point β ∈ ∂Ω, for if {zn} is any sequence in Ω such that zn → β then
for each n there exists wn ∈ Ω with |zn − wn| < 1/n and also |f(zn)− f(wn)| < 1/n, by
Theorem 5.3.5. But again by (5.3.5), f(wn)→ f(β) because wn → β and wn ∈ Ω. Hence
f(zn) → β, proving that f is continuous on Ω. Now D ⊆ f(Ω) ⊆ D, and since f(Ω) is
compact, hence closed, f(Ω) = D. Consequently, f is a one-to-one continuous map of Ω
onto D, from which it follows that f−1 is also continuous. ♣

Theorem 5.3.9 has various applications, and we will look at a few of these in the sequel.
In the proof of (5.3.8), we used the fact that for open subsets L ⊆ D,∫ ∫

L

|g′|2 dx dy (1)

is precisely the area of g(L), where g is a one-to-one analytic function on D. Suppose
that g(z) =

∑∞
n=0 anzn, z ∈ D. Then g′(z) =

∑∞
n=1 nanzn−1. Now in polar coordinates

the integral in (1), with L replaced by D, is given by∫ ∫
D

|g′(reiθ)|2r dr dθ =
∫ 1

0

r dr

∫ π

−π

|g′(reiθ)|2 dθ.

But for 0 ≤ r < 1,

|g′(reiθ)|2 = g′(reiθ)g′(reiθ)

=
∞∑

n=1

nanrn−1ei(n−1)θ
∞∑

m=1

mamrm−1e−i(m−1)θ (2)

=
∞∑

j=1

∑
m+n=j

nmanamrm+n−2ei(n−m)θ.

Since ∫ π

−π

ei(n−m)θ dθ =

{
2π, n = m

0, n �= m
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and the series in (2) converges uniformly in θ, we can integrate term by term to get

∫ π

−π

|g′(reiθ)|2 dθ = 2π

∞∑
k=1

k2|ak|2r2k−2.

Multiplying by r and integrating with respect to r, we have

∫ 1

0

r dr

∫ π

−π

|g′(reiθ)|2 dθ = lim
ρ→1−

2π

∞∑
k=1

k2|ak|2ρ2k

2k

If this limit, which is the area of g(D), is finite, then

π
∞∑

k=1

k|ak|2 <∞.

We have the following result.

5.3.10 Theorem

Suppose g(z) =
∑∞

n=0 anzn is one-to-one and analytic on D. If g(D) has finite area, then∑∞
n=1 n|an|2 <∞.

Now we will use the preceding result to study the convergence of the power series for
g(z) when |z| = 1. Here is a result on uniform convergence.

5.3.11 Theorem

Let g(z) =
∑∞

n=0 anzn be a one-to-one analytic map of D onto a bounded region Ω such
that every boundary point of Ω is simple. Then the series

∑∞
n=0 anzn converges uniformly

on D to (the extension of) g on D.

Proof. By the maximum principle, it is sufficient to show that
∑∞

n=0 anzn converges
uniformly to g(z) for |z| = 1; in other words,

∑∞
n=0 aneinθ converges uniformly in θ to

g(eiθ). So let ε > 0 be given. Since g is uniformly continuous on D, |g(eiθ)− g(reiθ)| → 0
uniformly in θ as r → 1−. If m is any positive integer and 0 < r < 1, we have

|g(eiθ)−
m∑

n=0

aneinθ| ≤ |g(eiθ)− g(reiθ)|+ |g(reiθ)−
m∑

n=0

aneinθ|.

The first term on the right hand side tends to 0 as r → 1−, uniformly in θ, so let us
consider the second term. If k is any positive integer less than m, then since g(reiθ) =
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∑∞
n=0 anrneinθ, we can write the second term as

|
k∑

n=0

an(rn − 1)einθ +
m∑

n=k+1

an(rn − 1)einθ +
∞∑

n=m+1

anrneinθ|

≤
k∑

n=0

(1− rn)|an|+
m∑

n=k+1

(1− rn)|an|+
∞∑

n=m+1

|an|rn

≤
k∑

n=0

n(1− r)|an|+
m∑

n=k+1

n(1− r)|an|+
∞∑

n=m+1

|an|rn

(since 1−rn

1−r = 1 + r + · · · + rn−1 < n). We continue the bounding process by observing
that in the first of the three above terms, we have n ≤ k. In the second term, we write
n(1 − r)|an| = [

√
n(1 − r)][

√
n|an|] and apply Schwarz’s inequality. In the third term,

we write |an|rn = [
√

n|an|][rn/
√

n] and again apply Schwarz’s inequality. Our bound
becomes

k(1− r)
k∑

n=0

|an|+
{

m∑
n=k+1

n(1− r)2
}1/2 {

m∑
n=k+1

n|an|2
}1/2

+

{ ∞∑
n=m+1

n|an|2
}1/2 { ∞∑

n=m+1

r2n

n

}1/2

. (1)

Since
∑∞

n=0 n|an|2 is convergent, there exists k > 0 such that {
∑∞

n=k+1 n|an|2}1/2 < ε/3.
Fix such a k. For m > k put rm = (m − 1)/m. Now the first term in (1) is less
than ε/3 for m sufficiently large and r = rm. Also, since {

∑m
n=k+1 n(1 − rm)2}1/2 =

{
∑m

n=k+1 n(1/m)2}1/2 = (1/m){
∑m

n=k+1 n}1/2 < (1/m){m(m+1)/2}1/2 < 1, the middle
term in (1) is also less than ε/3. Finally, consider

{ ∞∑
n=m+1

r2n
m

n

}1/2

≤
{

r
2(m+1)
m

m + 1

∞∑
n=0

r2n
m

}1/2

≤
{

1
m + 1

∞∑
n=0

rn
m

}1/2

which evaluates to

{
1

m + 1
1

1− rm

}1/2

=
{

m

m + 1

}1/2

< 1.

Thus the last term in (1) is also less than ε/3 for all sufficiently large m > k and r =
rm = (m− 1)/m. Thus |g(eiθ)−

∑m
n=0 aneinθ| → 0 uniformly in θ as m→∞. ♣

The preceding theorem will be used to produce examples of uniformly convergent
power series that are not absolutely convergent. That is, power series that converge
uniformly, but to which the Weierstrass M -test does not apply. One additional result will
be needed.
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5.3.12 Theorem

Suppose f(z) =
∑∞

n=0 anzn for z ∈ D, and
∑∞

n=0 |an| < +∞. Then for each θ,

∫ 1−

0

|f ′(reiθ)| dr = lim
ρ→1−

∫ ρ

0

|f ′(reiθ)| dr < +∞.

Proof. If 0 ≤ r ≤ ρ < 1 then for any θ we have f ′(reiθ) =
∑∞

n=1 nanrn−1ei(n−1)θ. Thus

∫ ρ

0

|f ′(reiθ)| dr ≤
∞∑

n=1

|an|ρn ≤
∞∑

n=1

|an| < +∞. ♣

5.3.13 Remark

For each θ,
∫ 1

0
|f ′(reiθ)| dr is the length of the image under f of the radius [0, eiθ] of D.

For if γ(r) = reiθ, 0 ≤ r ≤ 1, then the length of f ◦ γ is given by

∫ 1

0

|(f ◦ γ)′(r)| dr =
∫ 1

0

|f ′(reiθ)eiθ| dr =
∫ 1

0

|f ′(reiθ)| dr.

Thus in geometric terms, the conclusion of (5.3.12) is that f maps every radius of D onto
an arc of finite length.

We can now give a method for constructing uniformly convergent power series that
are not absolutely convergent. Let Ω be the bounded, connected, simply connected region
that appears in Figure 5.3.6. Then each boundary point of Ω is simple with the possible
exception of 0, and the following argument shows that 0 is also a simple boundary point.
Let {zn} be any sequence in Ω such that zn → 0. For n = 1, 2, . . . put tn = (n−1)/n. Then
for each n there is a polygonal path γn : [tn, tn+1]→ Ω such that γn(tn) = zn, γn(tn+1) =
zn+1, and such that for tn ≤ t ≤ tn+1,Re γn(t) is between Re zn and Re zn+1. If we define
γ = ∪γn, then γ is a continuous map of [0, 1) into Ω, and γ(t) = γn(t) for tn ≤ t ≤ tn+1.
Furthermore, γ(t)→ 0 as t→ 1−. Thus by definition, 0 is simple boundary point of Ω.

Hence by (5.3.9) and the Riemann mapping theorem (5.2.2), there is a homeomorphism
f of D onto Ω such that f is analytic on D. Write f(z) =

∑
anzn, z ∈ D. By (5.3.11),

this series converges uniformly on D. Now let eiθ be that point in ∂D such that f(eiθ) = 0.
Since f is a homeomorphism, f maps the radius of D that terminates at eiθ onto an arc
in Ω ∪ {0} that terminates at 0. Further, the image arc in Ω ∪ {0} cannot have finite
length. Therefore by (5.3.12) we have

∑
|an| = +∞.

Additional applications of the results in this section appear in the exercises.

Problems

1. Let Ω be a bounded simply connected region such that every boundary point of Ω is
simple. Prove that the Dirichlet problem is solvable for Ω. That is, if u0 is a real-valued
continuous function on ∂Ω, then u0 has a continuous extension u to Ω such that u is
harmonic on Ω.
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''''
1/21/31/4

'

y = x

y = -x

0

Ω

Figure 5.3.6

2. Let Ω = {x + iy : 0 < x < 1 and − x2 < y < x2}. Show that
(a) The identity mapping z → z has a continuous argument u on Ω (necessarily har-
monic on Ω).
(b) There is a homeomorphism f of D onto Ω which is analytic on D.
(c) u ◦ f is continuous on D and harmonic on D.
(d) No harmonic conjugate V for u ◦ f can be bounded on D.

3. Let Ω be a bounded, simply connected region such that every boundary point of Ω
is simple. Show that every zero-free continuous function f on Ω has a continuous
logarithm g. In addition, show that if f is analytic on Ω, then so is g.
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Chapter 6

Factorization of Analytic
Functions

In this chapter we will consider the problems of factoring out the zeros of an analytic
function f on a region Ω (à la polynomials), and of decomposing a meromorphic function
(à la partial fractions for rational functions). Suppose f is analytic on a region Ω and
f �≡ 0. What can be said about Z(f)? Theorem 2.4.8, the identity theorem, asserts that
Z(f) has no limit point in Ω. It turns out that no more can be said in general. That
is, if A is any subset of Ω with no limit point in Ω, then there exists f ∈ A(Ω) whose
set of zeros is precisely A. Furthermore, we can prescribe the order of the zero which
f shall have at each point of A. Now if A is a finite subset of Ω, say {z1, . . . , zn}, and
m1, . . . , mn are the corresponding desired multiplicities, then the finite product

f(z) = (z − z1)m1 · · · (z − zn)mn

would be such a function. However, in general the construction of such an f is accom-
plished using infinite products, which we now study in detail.

6.1 Infinite Products

Let {zn} be a sequence of complex numbers and put Pn =
∏n

k=1 zk, the n-th partial
product. We say that the infinite product

∏∞
n=1 zn converges if the sequence {Pn} is

convergent to a complex number P , and in this case we write P =
∏∞

n=1 zn.

This particular definition of convergence of infinite products is a natural one if the
usual definition of convergence of infinite series is extended directly to products. Many
textbook authors, however, find this approach objectionable, primarily for the following
two reasons.

(a) If one of the factors is zero, then the product converges to zero, no matter what
the other factors are, and a “correct” notion of convergence should presumably depend
on all (but possibly finitely many) of the factors.

1
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(b) It is possible for a product to converge to zero without any of the factors being
zero, unlike the situation for a finite product.

Nevertheless, we have chosen to take the naive approach, and will deal with the above if
and when they are relevant.

Note that if Pn → P �= 0 , then zn = Pn/Pn−1 → P/P = 1 as n → ∞. Thus
a necessary (but not sufficient) condition for convergence of the infinite product to a
nonzero limit is that zn → 1.

A natural approach to the study of an infinite product is to formally convert the
product into a sum by taking logarithms. In fact this approach is quite fruitful, as the
next result shows.

6.1.1 Lemma

Suppose that zn �= 0, n = 1, 2, . . . . Then
∏∞

n=1 zn converges to a nonzero limit iff the series∑∞
n=1 Log zn converges. (Recall that Log denotes the particular branch of the logarithm

such that −π ≤ Im(Log z) < π.)

Proof. Let Pn =
∏n

k=1 zk and Sn =
∑n

k=1 Log zk. If Sn → S, then Pn = eSn → eS �= 0.
Conversely, suppose that Pn → P �= 0. Choose any θ such that argθ is continuous at P
(see Theorem 3.1.2). Then logθ Pn = ln |Pn| + i argθ(Pn) → ln |P | + i argθ(P ) = logθ P .
Since eSn = Pn, we have Sn = logθ Pn + 2πiln for some integer ln. But Sn − Sn−1 =
Log zn → Log 1 = 0. Consequently, logθ Pn − logθ Pn−1 + 2πi(ln − ln−1) → 0. Since
logθ Pn−logθ Pn−1 → logθ P−logθ P = 0 and ln−ln−1 is an integer, it follows that ln−ln−1

is eventually zero. Therefore ln is eventually a constant l. Thus Sn → logθ P + 2πil. ♣

6.1.2 Lemma

If an ≥ 0 for all n, then
∏∞

n=1(1 + an) converges iff
∑∞

n=1 an converges.

Proof. Since 1 + x ≤ ex, we have, for every n = 1, 2, . . . ,

a1 + · · ·+ an ≤ (1 + a1) · · · (1 + an) ≤ ea1+···+an . ♣

Lemma 6.1.2 suggests the following useful notion of absolute convergence for infinite
products.

6.1.3 Definition

The infinite product
∏∞

n=1(1 + zn) is said to converge absolutely if
∏∞

n=1(1 + |zn|) con-
verges. Thus by (6.1.2), absolute convergence of

∏∞
n=1(1 + zn) is equivalent to absolute

convergence of the series
∑∞

n=1 zn.

With this definition of absolute convergence, we can state and prove a result analogous
to a well known property of infinite series.
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6.1.4 Lemma

If the infinite product
∏∞

n=1(1 + zn) converges absolutely, then it converges.
Proof. By Lemma 6.1.2, convergence of

∏∞
n=1(1 + |zn|) implies that of

∑∞
n=1 |zn|, hence

|zn| → 0 in particular. So we can assume that |zn| < 1 for all n. Now for |z| < 1, we have

Log(1 + z) = z − z2

2
+

z3

3
− z4

4
+ · · · = zh(z)

where h(z) = 1− z
2 + z2

3 − z3

4 + · · · → 1 as z → 0. Consequently, for m ≤ p,

|
p∑

n=m

Log(1 + zn)| ≤
p∑

n=m

|zn||h(zn)|.

Since {h(zn) : n = 1, 2, . . . } is a bounded set and
∑∞

n=1 |zn| converges, it follows from the
preceding inequality that |

∑p
n=m Log(1+zn)| → 0 as m, p→∞. Thus

∑∞
n=1 Log(1+zn)

is convergent, which by (6.1.1) implies that
∏∞

n=1(1 + zn) converges.
The preceding result may be combined with (6.1.2) to obtain a rearrangement theorem

for absolutely convergent products.

6.1.5 Theorem

If
∏∞

n=1(1 + zn) converges absolutely, then so does every rearrangement, and to the
same limit. That is, if

∏∞
n=1(1 + |zn|) converges and P =

∏∞
n=1(1 + zn), then for every

permutation k → nk of the positive integers,
∏∞

k=1(1 + znk
) also converges to P .

Proof. Since
∏∞

n=1(1 + |zn|) converges, so does
∑∞

n=1 |zn| by (6.1.2). But then every
rearrangement of this series converges, so by (6.1.2) again,

∏∞
k=1(1+|znk

|) converges. Thus
it remains to show that

∏∞
k=1(1+ znk

) converges to the same limit as does
∏∞

n=1(1+ zn).
To this end let ε > 0 and for j = 1, 2, . . . , let Qj be the j-th partial product of

∏∞
k=1(1 +

znk
). Choose N so large that

∑∞
n=N+1 |zn| < ε and J so large that j ≥ J implies that

{1, 2, . . . , N} ⊆ {n1, n2, . . . , nj}. (The latter is possible because j → nj is a permutation
of the positive integers.) Then for j ≥ J we have

|Qj − P | ≤ |Qj − PN |+ |PN − P |
(1)

= |PN ||
∏
k

(1 + znk
)− 1|+ |PN − P |

where the product is taken over those k ≤ j such that nk > N . Now for any complex
numbers w1, . . . , wn we have (by induction) |

∏n
k=1(1 + wk) − 1| ≤

∏n
k=1(1 + |wk|) − 1.

Using this, we get from (1) that

|Qj − P | ≤ |PN |(
∏
k

(1 + |znk
|)− 1) + |PN − P |

≤ |PN |(eε − 1) + |PN − P |.
But the right side of the above inequality can be made as small as we wish by choosing
ε sufficiently small and N sufficiently large. Therefore Qj → P also, and the proof is
complete. ♣
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6.1.6 Proposition

Let g1, g2, . . . be a sequence of bounded complex-valued functions, each defined on a set
S. If the series

∑∞
n=1 |gn| converges uniformly on S, then the product

∏∞
n=1(1 + gn)

converges absolutely and uniformly on S. Furthermore, if f(z) =
∏∞

n=1(1+ gn(z)), z ∈ S,
then f(z) = 0 for some z ∈ S iff 1 + gn(z) = 0 for some n.
Proof. Absolute convergence of the product follows from (6.1.2). If

∑
|gn| converges

uniformly on S, there exists N such that n ≥ N implies |gn(z)| < 1 for all z ∈ S. Now
for any r ≥ N ,

r∏
n=1

(1 + gn(z)) =
N−1∏
n=1

(1 + gn(z))
r∏

n=N

(1 + gn(z)).

As in the proof of (6.1.4), with the same h and with m, p ≥ N ,

|
p∑

n=m

Log(1 + gn(z))| ≤
p∑

n=m

|gn(z)||h(gn(z))| → 0

uniformly on S as m, p → ∞. Therefore
∑∞

n=N Log(1 + gn(z)) converges uniformly
on S. Since the functions gN , gN+1, . . . are bounded on S, it follows that the series∑∞

n=N |gn(z)||h(gn(z))| is bounded on S and thus by the above inequality, the same is
true of

∑∞
n=N Log(1 + gn(z)). However, the exponential function is uniformly continuous

on bounded subsets of C, so we may infer that

exp

{
r∑

n=N

Log(1 + gn(z))

}
→ exp

{ ∞∑
n=N

Log(1 + gn(z))

}
�= 0

uniformly on S as r → ∞. This proves uniform convergence on S of
∏∞

n=N (1 + gn(z)).
Now 1 + gn(z) is never 0 on S for n ≥ N , so if f(z) =

∏∞
n=1(1 + gn(z)), then f(z) = 0 for

some z ∈ S iff 1 + gn(z) = 0 for some n < N . ♣

Remark

The product
∏∞

n=1(1+ |gn|) also converges uniformly on S, as follows from the inequality

p∏
n=m

(1 + |gn|) ≤ exp

{
p∑

n=m

|gn|
}

or by applying (6.1.6) to |g1|, |g2|, . . . .
Proposition (6.1.6) supplies the essential ingredients for an important theorem on

products of analytic functions.

6.1.7 Theorem

Let f1, f2, . . . be analytic on Ω. If
∑∞

n=1 |fn− 1| converges uniformly on compact subsets
of Ω, then f(z) =

∏∞
n=1 fn(z) defines a function f that is analytic on Ω. Furthermore,

for any z ∈ Ω we have f(z) = 0 iff fn = 0 for some n.
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Proof. By (6.1.6) with gn = fn − 1, the product
∏∞

n=1 fn(z) converges uniformly on
compact subsets of Ω, hence f is analytic on Ω. The last statement of the theorem is also
a direct consequence of (6.1.6). ♣

Problems

1. Let f1, f2, . . . and f be as in Theorem 6.1.7. Assume in addition that no fn is identically
zero on any component of Ω. Prove that for each z ∈ Ω, m(f, z) =

∑∞
n=1 m(fn, z).

(Recall that m(f, z) is the order of the zero of f at z; m(f, z) = 0 if f(z) �= 0.)

2. Show that − ln(1 − x) = x + g(x)x2, |x| < 1, where g(x) → 1/2 as x → 0. Conclude
that if a1, a2, . . . are real numbers and

∑∞
n=1 an converges, then the infinite product∏

n(1 − an) converges to a nonzero limit iff
∑∞

n=1 a2
n < ∞. Also, if

∑∞
n=1 a2

n < ∞,
then

∏
n(1− an) converges to a nonzero limit iff

∑∞
n=1 an converges.

3. Determine whether or not the following infinite products are convergent.
(a)

∏
n(1− 2−n), (b)

∏
n(1− 1

n+1 ), (c)
∏

n(1 + (−1)n

√
n

),
∏

n(1− 1
n2 ).

4. (a) Give an example of an infinite product
∏

n(1 + an) such that
∑

an converges but∏
n(1 + an) diverges.

(b) Give an example of an infinite product
∏

n(1 + an) such that
∑

an diverges but∏
n(1 + an) converges to a nonzero limit.

5. Show that the following infinite products define entire functions.
(a)

∏∞
n=1(1 + anz), |a| < 1, (b)

∏
n∈Z,n �=0(1− z/n)ez/n,

(c)
∏∞

n=2[1 + z
n(ln n)2 ].

6. Criticize the following argument. We know that
∏

n(1+zn) converges to a nonzero limit
iff

∑
n Log(1 + zn) converges. The Taylor expansion of Log(1 + z) yields Log(1 + z) =

zg(z), where g(z) → 1 as z → 0. If zn → 0, then g(zn) will be arbitrarily close to
1 for large n, and thus

∑
n zng(zn) will converge iff

∑
n zn converges. Consequently,∏

n(1 + zn) converges to a nonzero limit iff
∑

n zn converges.

6.2 Weierstrass Products

In this section we will consider the problem of constructing an analytic function f with
a prescribed sequence of complex numbers as its set of zeros, as was discussed at the
beginning of the chapter. A naive approach is simply to write

∏
n(z − an)mn where

a1, a2, . . . is the sequence of (distinct) desired zeros and mn is the specified multiplicity
of the zero, that is, m(f, an) = mn. But if a1, a2, . . . is an infinite sequence, then the
infinite product

∏
n(z−an)mn need not converge. A more subtle approach is required, one

that achieves convergence by using factors more elaborate than (z− an). These “primary
factors” were introduced by Weierstrass.



6 CHAPTER 6. FACTORIZATION OF ANALYTIC FUNCTIONS

6.2.1 Definition

Define E0(z) = 1− z and for m = 1, 2, . . . ,

Em(z) = (1− z) exp
[
z +

z2

2
+ · · ·+ zm

m

]
.

Note that if |z| < 1, then as m → ∞, Em(z) → (1 − z) exp[−Log(1 − z)] = 1. Indeed,
Em(z) → 1 uniformly on compact subsets of the unit disk D. Also, the Em are entire
functions, and Em has a zero of order 1 at z = 1, and no other zeros.

6.2.2 Lemma

|1− Em(z)| ≤ |z|m+1 for |z| ≤ 1.

Proof. If m = 0, equality holds, so assume m ≥ 1. Then a calculation shows that

E′m(z) = −zm exp
[
z +

z2

2
+ · · ·+ zm

m

]

so that

(1− Em(z))′ = zm exp
[
z +

z2

2
+ · · ·+ zm

m

]
. (1)

This shows that the derivative of 1−Em has a zero of order m at 0. Since 1−Em(0) = 0,
it follows that 1 − Em has a zero of order m + 1 at z = 0. Thus (1 − Em(z))/zm+1 has
a removable singularity at 0 and so has a Taylor expansion

∑∞
n=0 anzn valid everywhere

on C. Equation (1) shows also that the derivative of 1 − Em has nonnegative Taylor
coefficients and hence the same must be true of (1 − Em(z))/zm+1. Thus an ≥ 0 for all
n. Consequently,

∣∣∣∣1− Em(z)
zm+1

∣∣∣∣ ≤
∞∑

n=0

|an||z|n ≤
∞∑

n=0

an if |z| ≤ 1.

But
∑∞

n=0 an = [(1− Em(1)]/1m+1 = 1, and the result follows. ♣
Weierstrass’ primary factors Em will now be used to construct functions with pre-

scribed zeros. We begin by constructing entire functions with given zeros.

6.2.3 Theorem

Let {zn} be a sequence of nonzero complex numbers such that |zn| → ∞. Then there is
a sequence {mn} of nonnegative integers such that the infinite product

∏∞
n=1 Emn(z/zn)

defines an entire function f . Furthermore, f(z) = 0 iff z = zn for some n. Thus it is
possible to construct an entire function having zeros precisely at the zn, with prescribed
multiplicities. (If a appears k times in the sequence {zn}, then f has a zero of order k at
a. Also, a zero at the origin is handled by multiplying the product by zm.)
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Proof. Let {mn} be a sequence of nonnegative integers with the property that
∞∑

n=1

(
r

|zn|

)mn+1

<∞

for every r > 0. (One such sequence is mn = n−1 since for any r > 0, r/|zn|) is eventually
less than 1/2.) For fixed r > 0, (6.2.2) implies that

|1− Emn
(z/zn)| ≤ |z/zn|mn+1 ≤ (r/zn)mn+1

for all z ∈ D(0, r). Thus the series
∑
|1 − Emn(z/zn)| converges uniformly on D(0, r).

Since r is arbitrary, the series converges uniformly on compact subsets of C. The result
follows from (6.1.7). ♣

6.2.4 Remark

Let {zn} be as in (6.2.3). If |zn| grows sufficiently rapidly, it may be possible to take {mn}
to be a constant sequence. For example, if |zn| = n, then we may choose mn ≡ 1. The
corresponding product is

∏∞
n=1 E1(z/zn) =

∏∞
n=1(1 − z/zn)ez/zn . In this case, m = 1

is the smallest nonnegative integer for which
∑∞

n=1(r/|zn|)m+1 < ∞ for all r > 0, and∏∞
n=1 Em(z/zn) can be viewed as the canonical product associated with the sequence
{zn}. On the other hand, if |zn| = lnn, then

∑∞
n=1(1/|zn|)m = +∞ for every nonnegative

integer m, so no constant sequence suffices. These concepts arise in the study of the order
of growth of entire functions, but we will not pursue this area further.

Theorem 6.2.3 allows us to factor out the zeros of an entire function.Specifically, we
have a representation of an entire function as a product involving the primary factors Em.

6.2.5 Weierstrass Factorization Theorem

Let f be an entire function, f �≡ 0, and let k ≥ 0 be the order of the zero of f at 0.
Let the remaining zeros of f be at z1, z2, . . . , where each zn is repeated as often as its
multiplicity. Then

f(z) = eg(z)zk
∏
n

Emn(z/zn)

for some entire function g and nonnegative integers mn.
Proof. If f has finitely many zeros, the result is immediate, so assume that there are
infinitely many zn. Since f �≡ 0, |zn| → ∞. By (6.2.3) there is a sequence {mn} such that

h(z) = f(z)/[zk
∞∏

n=1

Emn(z/zn)]

has a zero-free extension to an entire function, which we will persist in calling h. But
now h has an analytic logarithm g on C, hence h(z) = eg(z) and we have the desired
representation. ♣

More generally, versions of (6.2.3) and its consequence (6.2.5) are available for any
proper open subset of Ĉ. We begin with the generalization of (6.2.3).
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6.2.6 Theorem

Let Ω be a proper open subset of Ĉ, A = {an : n = 1, 2, . . . } a set of distinct points in
Ω with no limit point in Ω, and {mn} a sequence of positive integers. Then there exists
f ∈ A(Ω) such that Z(f) = A and such that for each n we have m(f, an) = mn.

Proof. We first show that it is sufficient to prove the theorem in the special case where
Ω is a deleted neighborhood of ∞ in Ĉ and ∞ /∈ A. For suppose that the theorem has
been established in this special case. Then let Ω1 and A1 be arbitrary but as in the
hypothesis of the the theorem. Choose a point a �= ∞ in Ω1 \ A1 and define T (z) =
1/(z − a), z ∈ Ĉ. Then T is a linear fractional transformation of Ĉ onto Ĉ and thus
is a one-to-one continuous map of the open set Ω1 in Ĉ onto an open set Ω. Further,
if A = {T (an) : n = 1, 2 . . . } then Ω and A satisfy the hypotheses of the special case.
Having assumed the special case, there exists f analytic on Ω such that Z(f) = A and
m(f, T (an)) = mn. Now consider the function f1 = f ◦T . Since T is analytic on Ω1 \{a},
so is f1. But as z → a, T (z) → ∞, and since f is analytic at ∞, f(T (z)) approaches a
nonzero limit as z → a. Thus f1 has a removable singularity at a with f1(a) �= 0. The
statement regarding the zeros of f1 and their multiplicities follows from the fact that T
is one-to-one.

Now we must establish the special case. First, if A is a finite set {a1, . . . , an}, then
we can simply take

f(z) =
(z − a1)m1 · · · (z − an)mn

(z − b)m1+···+mn

where b ∈ C \ Ω. The purpose of the denominator is to assure that f is analytic and
nonzero at ∞.

Now suppose that A = {a1, a2, . . . } is an infinite set. Let {zn} be a sequence whose
range is A but such that for each j, we have zn = aj for exactly mj values of n. Since
C \Ω is a nonempty compact subset of C, for each n ≥ 1 there exists a point wn in C \Ω
such that |wn − zn| = dist(zn,C \ Ω). Note that |wn − zn| → 0 as n → ∞ because the
sequence {zn} has no limit point in Ω. Let {fn} be the sequence of functions on Ω defined
by

fn(z) = En

(
zn − wn

z − wn

)
,

where fn(∞) = En(0) = 1. Then fn has a simple zero at zn and no other zeros. Further-
more,

∑
|fn−1| converges uniformly on compact subsets of Ω. For if K ⊆ Ω, K compact,

then eventually |zn − wn|/|z − wn| is uniformly bounded by 1/2 on K. Thus by Lemma
6.2.2,

|fn(z)− 1| =
∣∣∣∣1− En

(
zn − wn

z − wn

)∣∣∣∣ ≤
∣∣∣∣zn − wn

z − wn

∣∣∣∣
n+1

≤ (1/2)n+1

for each z ∈ K. The statement of the theorem then follows from (6.1.7) by setting
f(z) =

∏∞
n=1 fn(z). ♣
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It is interesting to see what the preceding argument yields in the special case Ω = C, a
case which was established directly in (6.2.3). Specifically, suppose that A = {a1, a2, . . . }
is an infinite set of distinct points in C (with no limit point in C), and assume that 0 /∈ A.
Let {mj} and {zn} be as in the preceding proof. We are going to reconstruct the proof in
the case where ∞ ∈ Ω \ A. In order to do this, consider the transformation T (z) = 1/z.
This maps C onto Ĉ \ {0} and the sequence {zn} in C \ {0} onto the sequence {1/zn}
in T (C). The points wn obtained in the proof of (6.2.6) are all 0, and the corresponding
functions fn would be given by

fn(z) = En(1/znz), z ∈ C \ {0}.

Thus f(z) =
∏∞

n=1 fn(z) is analytic on C \ {0} and f has a zero of order mj at 1/aj .
Transforming Ĉ \ {0} back to C, it follows that

F (z) = f(1/z) =
∞∏

n=1

En(z/zn)

is an entire function with zeros of order mj at aj and no other zeros. That is, we obtain
(6.2.3) with mn = n. (Note that this mn from (6.2.3) is unrelated to the sequence {mj}
above.)

The fact that we can construct analytic functions with prescribed zeros has an inter-
esting consequence, which was referred to earlier in (4.2.5).

6.2.7 Theorem

Let h be meromorphic on the open set Ω ⊆ C. Then h = f/g where f and g are analytic
on Ω.

Proof. Let A be the set of poles of h in Ω. Then A satisfies the hypothesis in (6.2.6). Let
g be an analytic function on Ω with zeros precisely at the points in A and such that for
each a ∈ A, the order of the zero of g at a equals the order of the pole of h at a. Then gh
has only removable singularities in Ω and thus can be extended to an analytic function
f ∈ A(Ω). ♣

Problems

1. Determine the canonical products associated with each of the following sequences. [See
the discussion in (6.2.4).]
(a) zn = 2n, (b) zn = nb, b > 0, (c) zn = n(lnn)2.

2. Apply Theorem 6.2.6 to construct an analytic function f on the unit disk D such that
f has no proper analytic extension to a region Ω ⊃ D. (Hint: Construct a countable
set A = {an : n = 1, 2, . . . } in D such that every point in ∂D is an accumulation point
of A.) Compare this approach to that in Theorem 4.9.5, where essentially the same
result is obtained by quite different means.
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6.3 Mittag-Leffler’s Theorem and Applications

Let Ω be an open subset of C and let A = {an : n = 1, 2, . . . } be a set of distinct points in
Ω with no limit point in Ω. If {mn} is a sequence of positive integers, then Theorem 6.2.6
implies (by using 1/f) that there is a meromorphic function f on Ω such that f has poles
of order precisely mn at precisely the points an. The theorem of Mittag-Leffler, which we
will prove next, states that we can actually specify the coefficients of the principal part
at each pole an. The exact statement follows; the proof requires Runge’s theorem.

6.3.1 Mittag-Leffler’s Theorem

Let Ω be an open subset of C and B a subset of Ω with no limit point in Ω. Thus
B = {bj : j ∈ J} where J is some finite or countably infinite index set. Suppose that to
each j ∈ J there corresponds a rational function of the form

Sj(z) =
aj1

z − bj
+

aj2

(z − bj)2
+ · · ·+ ajnj

(z − bj)nj
.

Then there is a meromorphic function f on Ω such that f has poles at precisely the points
bj and such that the principal part of the Laurent expansion of f at bj is exactly Sj .
Proof. Let {Kn} be the sequence of compact sets defined in (5.1.1). Recall that {Kn}
has the properties that Kn ⊆ Ko

n+1 and ∪Kn = Ω. Furthermore, by Problem 5.2.5, each
component of C \ Kn contains a component of C \ Ω, in particular, C \ Ω meets each
component of C \Kn. Put K0 = ∅ and for n = 1, 2, . . . , define

Jn = {j ∈ J : bj ∈ Kn \Kn−1}.

The sets Jn are pairwise disjoint (possibly empty), each Jn is finite (since B has no limit
point in Ω), and ∪Jn = J . For each n, define Qn by

Qn(z) =
∑
j∈Jn

Sj(z)

where Qn ≡ 0 if Jn is empty. Then Qn is a rational function whose poles lie in Kn \Kn−1.
In particular, Qn is analytic on a neighborhood of Kn−1. Hence by Runge’s theorem
(5.2.8) with S = C \Ω, there is a rational function Rn whose poles lie in C \Ω such that

|Qn(z)−Rn(z)| ≤ (1/2)n, z ∈ Kn−1.

It follows that for any fixed m ≥ 1, the series
∑∞

n=m+1(Qn−Rn) converges uniformly on
Km to a function which is analytic on Ko

m ⊇ Km−1. Thus it is meaningful to define a
function f : Ω→ C by

f(z) = Q1(z) +
∞∑

n=2

(Qn(z)−Rn(z)), z ∈ Ω.

Indeed, note that for any fixed m, f is the sum of the rational function Q1+
∑m

n=2(Qn−Rn)
and the series

∑∞
n=m+1(Qn−Rn), which is analytic on Ko

m. Therefore f is meromorphic
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on Ω, as well as analytic on Ω \ B. It remains to show that f has the required principal
part at each point b ∈ B. But for any bj ∈ B, we have f(z) = Sj(z) plus a function that
is analytic on a neighborhood of bj . Thus f has a pole at bj with the required principal
part Sj . ♣

6.3.2 Remark

Suppose g is analytic at the complex number b and g has a zero of order m ≥ 1 at b. Let
c1, c2, . . . , cm be given complex numbers, and let R be the rational function given by

R(z) =
c1

z − b
+ · · ·+ cm

(z − b)m
.

Then gR has a removable singularity at b, so there exist complex numbers a0, a1, a2, . . .
such that for z in a neighborhood of b,

g(z)R(z) = a0 + a1(z − b) + · · ·+ am−1(z − b)m−1 + · · · .

Furthermore, if we write the Taylor series expansion

g(z) = b0(z − b)m + b1(z − b)m+1 + · · ·+ bm−1(z − b)2m−1 + · · · ,

then the coefficients a0, a1, . . . for gR must satisfy

a0 = b0cm

a1 = b0cm−1 + b1cm

...
am−1 = b0c1 + b1c2 + · · ·+ bm−1cm

That is, if c1, c2, . . . , cm are given, then a0, a1, . . . , am−1 are determined by the above
equations. Conversely, if g is given as above, and a0, a1, . . . , am−1 are given complex
numbers, then since b0 �= 0, one can sequentially solve the equations to obtain, in order,
cm, cm−1, . . . , c1. This observation plays a key role in the next result, where it is shown
that not only is it possible to construct analytic functions with prescribed zeros and with
prescribed orders at these zeros, as in (6.2.3) and (6.2.6), but we can specify the values
of f and finitely many of its derivatives in an arbitrary way. To be precise, we have the
following extension of (6.2.6).

6.3.3 Theorem

Let Ω be an open subset of C and B a subset of Ω with no limit point in Ω. Index B
by J , as in Mittag-Leffler’s theorem, so B = {bj : j ∈ J}. Suppose that corresponding
to each j ∈ J , there is a nonnegative integer nj and complex numbers a0j , a1j , . . . , anj ,j .
Then there exists f ∈ A(Ω) such that for each j ∈ J ,

f (k)(bj)
k!

= akj , 0 ≤ k ≤ nj .
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Proof. First apply (6.2.6) to produce a function g ∈ A(Ω) such that Z(g) = B and for
each j, m(g, bj) = nj + 1 = mj , say. Next apply the observations made above in (6.3.2)
to obtain, for each bj ∈ B, complex numbers c1j , c2j , . . . , cmj ,j such that

g(z)
mj∑
k=1

ckj

(z − bj)k
= a0j + a1j(z − bj) + · · ·+ anj ,j(z − bj)nj + · · ·

for z near bj . Finally, apply Mittag-Leffler’s theorem to obtain h, meromorphic on Ω,
such that for each j,

h−
mj∑
k=1

ckj

(z − bj)k

has a removable singularity at bj . It follows that the analytic extension of gh to Ω is the
required function f . (To see this, note that

gh = g

(
h−

mj∑
k=1

ckj

(z − bj)k

)
+ g

mj∑
k=1

ckj

(z − bj)k

and m(g, bj) > nj .) ♣

6.3.4 Remark

Theorem 6.3.3 will be used to obtain a number of algebraic properties of the ring A(Ω).
This theorem, together with most of results to follow, were obtained (in the case Ω = C)
by Olaf Helmer, Duke Mathematical Journal, volume 6, 1940, pp.345-356.

Assume in what follows that Ω is connected. Thus by Problem 2.4.11, A(Ω) is an
integral domain. Recall that in a ring, such as A(Ω), g divides f if f = gq for some
q ∈ A(Ω). Also, g is a greatest common divisor of a set F if g is a divisor of each f ∈ F
and if h divides each f ∈ F , then h divides g.

6.3.5 Proposition

Each nonempty subfamily F ⊆ A(Ω) has a greatest common divisor, provided F �= {0}.
Proof. Put B = ∩{Z(f) : f ∈ F}. Apply Theorem 6.2.6 to obtain g ∈ A(Ω) such that
Z(g) = B and for each b ∈ B, m(g, b) = min{m(f, b) : f ∈ F}. Then f ∈ F implies that
g|f (g divides f). Furthermore, if h ∈ A(Ω) and h|f for each f ∈ F , then Z(h) ⊆ B and
for each b ∈ B, m(h, b) ≤ min{m(f, b) : f ∈ F} = m(g, b). Thus h|g, and consequently g
is a greatest common divisor of F . ♣

6.3.6 Definitions

A unit in A(Ω) is a function f ∈ A(Ω) such that 1/f ∈ A(Ω). Thus f is a unit iff f has
no zeros in Ω. If f, g ∈ A(Ω), we say that f and g are relatively prime if each greatest
common divisor of f and g is a unit. It follows that f and g are relatively prime iff
Z(f)∩Z(g) = ∅. (Note that f and g have a common zero iff they have a nonunit common
factor.)
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6.3.7 Proposition

If the functions f1, f2 ∈ A(Ω) are relatively prime, then there exist g1, g2 ∈ A(Ω) such
that f1g1 + f2g2 ≡ 1.

Proof. By the remarks above, Z(f1) ∩ Z(f2) = ∅. By working backwards, i.e., solving
f1g1 +f2g2 = 1 for g1, we see that it suffices to obtain g2 such that (1−f2g2)/f1 has only
removable singularities. But this entails obtaining g2 such that Z(f1) ⊆ Z(1− f2g2) and
such that for each a ∈ Z(f1), m(f1, a) ≤ m(1 − f2g2, a). However, the latter condition
may be satisfied by invoking (6.3.3) to obtain g2 ∈ A(Ω) such that for each a ∈ Z(f1)
(recalling that f2(a) �= 0),

0 = 1− f2(a)g2(a) = (1− f2g2)(a)
0 = f2(a)g′2(a) + f ′2(a)g2(a) = (1− f2g2)′(a)
0 = f2(a)g′′2 (a) + 2f ′2(a)g′2(a) + f ′′2 (a)g2(a) = (1− f2g2)′′(a)
...

0 = f2(a)g(m−1)
2 (a) + · · ·+ f

(m−1)
2 (a)g2(a) = (1− f2g2)(m−1)(a)

where m = m(f1, a). [Note that these equations successively determine g2(a), g′2(a), . . . , g
(m−1)
2 (a).]

This completes the proof of the proposition. ♣
The preceding result can be generalized to an arbitrary finite collection of functions.

6.3.8 Proposition

If {f1, f2, . . . , fn} ⊆ A(Ω) and d is a greatest common divisor for this set, then there exist
g1, g2, . . . , gn ∈ A(Ω) such that f1g1 + f2g2 + · · ·+ fngn = d.

Proof. Use (6.3.7) and induction. The details are left as an exercise (Problem 1). ♣
Recall that an ideal I ⊆ A(Ω) is a subset that is closed under addition and subtraction

and has the property that if f ∈ A(Ω) and g ∈ I, then fg ∈ I.

We are now going to show that A(Ω) is what is referred to in the literature as a Bezout
domain. This means that each finitely generated ideal in the integral domain A(Ω) is a
principal ideal. A finitely generated ideal is an ideal of the form {f1g1 + · · · + fngn :
g1, . . . , gn ∈ A(Ω)} where {f1, . . . , fn} is some fixed finite set of elements in A(Ω). A
principal ideal is an ideal that is generated by a single element f1. Most of the work has
already been done in preceding two propositions.

6.3.9 Theorem

Let f1, . . . , fn ∈ A(Ω) and let I = {f1g1 + · · · + fngn : g1, . . . , gn ∈ A(Ω)} be the ideal
generated by f1, . . . , fn. Then there exists f ∈ A(Ω) such that I = {fg : g ∈ A(Ω)}. In
other words, I is a principal ideal.

Proof. If f ∈ I then f = f1h1 + · · ·+ fnhn for some h1, . . . , hn ∈ A(Ω). If d is a greatest
common divisor for {f1, . . . , fn}, then d divides each fj , hence d divides f . Thus f is
a multiple of d. On the other hand, by (6.3.8), there exist g1, . . . , gn ∈ A(Ω) such that
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d = f1g1 + · · ·+ fngn. Therefore d and hence every multiple of d belongs to I. Thus I is
the ideal generated by the single element d. ♣

A principal ideal domain is an integral domain in which every ideal is principal. Prob-
lem 2 asks you to show that A(Ω) is never a principal ideal domain, regardless of the
region Ω. There is another class of (commutative) rings called Noetherian; these are rings
in which every ideal is finitely generated. Problem 2, when combined with (6.3.9), also
shows that A(Ω) is never Noetherian.

Problems

1. Supply the details to the proof of (6.3.8). (Hint: Use induction, (6.3.7), and the
fact that if d is a greatest common divisor (gcd) for {f1, . . . , fn} and d1 is a gcd for
{f1, . . . , fn−1}, then d is a gcd for the set {d1, fn}. Also note that 1 is a gcd for
{f1/d, . . . , fn/d}.)

2. Show that A(Ω) is never a principal ideal domain. that is, there always exists ideals I
that are not principal ideals, and thus by (6.3.9) are not finitely generated. (Hint: Let
{an} be a sequence of distinct points in Ω with no limit point in Ω. For each n, apply
(6.2.6) to the set {an, an+1, . . . }.)



Chapter 7

The Prime Number Theorem

In this final chapter we will take advantage of an opportunity to apply many of the
ideas and results from earlier chapters in order to give an analytic proof of the famous
prime number theorem: If π(x) is the number of primes less than or equal to x, then
x−1π(x) lnx → 1 as x → ∞. That is, π(x) is asymptotically equal to x/ lnx as x → ∞.
(In the sequel, prime will be taken to mean positive prime.)

Perhaps the first recorded property of π(x) is that π(x)→∞ as x→∞, in other words,
the number of primes is infinite. This appears in Euclid’s “Elements”. A more precise
result that was established much later by Euler (1737) is that the series of reciprocals of
the prime numbers,

1
2

+
1
3

+
1
5

+
1
7

+
1
11

+ · · · ,

is a divergent series. This can be interpreted in a certain sense as a statement about
how fast π(x) → ∞ as x → ∞. Later, near the end of the 18-th century, mathemati-
cians, including Gauss and Legendre, through mainly empirical considerations, put forth
conjectures that are equivalent to the above statement of the prime number theorem
(PNT). However, it was not until nearly 100 years later, after much effort by numerous
19-th century mathematicians, that the theorem was finally established (independently)
by Hadamard and de la Vallée Poussin in 1896. The quest for a proof led Riemann, for
example, to develop complex variable methods to attack the PNT and related questions.
In the process, he made a remarkable and as yet unresolved conjecture known as the
Riemann hypothesis, whose precise statement will be given later. Now it is not clear on
the surface that there is a connection between complex analysis and the distribution of
prime numbers. But in fact, every proof of the PNT dating from Hadamard and de la
Vallée Poussin, up to 1949 when P. Erdös and A.Selberg succeeded in finding “elemen-
tary” proofs, has used the methods of complex variables in an essential way. In 1980, D.J.
Newman published a new proof of the PNT which, although still using complex analy-
sis, nevertheless represents a significant simplification of previous proofs. It is Newman’s
proof, as modified by J. Korevaar, that we present in this chapter.

There are a number of preliminaries that must be dealt with before Newman’s method
can be applied to produce the theorem. The proof remains far from trivial but the steps

1
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along the way are of great interest and importance in themselves. We begin by introducing
the Riemann zeta function, which arises via Euler’s product formula and forms a key link
between the sequence of prime numbers and the methods of complex variables.

7.1 The Riemann Zeta function

The Riemann zeta function is defined by

ζ(z) =
∞∑

n=1

1
nz

where nz = ez ln n. Since |nz| = nRe z, the given series converges absolutely on Re z > 1
and uniformly on {z : Re z ≥ 1 + δ} for every δ > 0. Let p1, p2, p3, . . . be the sequence
2,3,5, . . . of prime numbers and note that for j = 1, 2, . . . and Re z > 1, we have

1
1− 1/pz

j

= 1 +
1
pz

j

+
1

p2z
j

+ · · · .

Now consider the partial product

m∏
j=1

1
1− p−z

j

=
m∏

j=1

(1 +
1
pz

j

+
1

p2z
j

+ · · · ).

By multiplying the finitely many absolutely convergent series on the right together, rear-
ranging, and applying the fundamental theorem of arithmetic, we find that the product is
the same as the sum

∑
n∈Pm

1
nz , where Pm consists of 1 along with those positive integers

whose prime factorization uses only primes from the set {p1, . . . , pm}. Therefore

∞∏
j=1

1
1− p−z

j

=
∞∑

n=1

1
nz

, Re z > 1.

We now state this formally.

7.1.1 Euler’s Product formula

For Re z > 1, the Riemann zeta function ζ(z) =
∑∞

n=1 1/nz is given by the product

∞∏
j=1

(
1

1− p−z
j

)

where {pj} is the (increasing) sequence of prime numbers.
The above series and product converge uniformly on compact subsets of Re z > 1,

hence ζ is analytic on Re z > 1. Furthermore, the product representation of ζ shows that
ζ has no zeros in Re z > 1 (Theorem 6.1.7). Our proof of the PNT requires a number
of additional properties of ζ. The first result is concerned with extending ζ to a region
larger than Re z > 1.
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7.1.2 Extension Theorem for Zeta

The function ζ(z)− 1/(z − 1) has an analytic extension to the right half plane Re z > 0.
Thus ζ has an analytic extension to {z : Re z > 0, z 	= 1} and has a simple pole with
residue 1 at z = 1.
Proof. For Re z > 1, apply the summation by parts formula (Problem 2.2.7) with an = n
and bn = 1/nz to obtain

k−1∑
n=1

n

[
1

(n + 1)z
− 1

nz

]
=

1
kz−1

− 1−
k−1∑
n=1

1
(n + 1)z

.

Thus

1 +
k−1∑
n=1

1
(n + 1)z

=
1

kz−1
−

k−1∑
n=1

n

[
1

(n + 1)z
− 1

nz

]
.

But

n

[
1

(n + 1)z
− 1

nz

]
= −nz

∫ n+1

n

t−z−1 dt = −z

∫ n+1

n

[t]t−z−1 dt

where [t] is the largest integer less than or equal to t. Hence we have

k∑
n=1

1
nz

= 1 +
k−1∑
n=1

1
(n + 1)z

=
1

kz−1
+ z

k−1∑
n=1

∫ n+1

n

[t]t−z−1 dt

=
1

kz−1
+ z

∫ k

1

[t]t−z−1 dt.

Letting k →∞, we obtain the integral formula

ζ(z) = z

∫ ∞
1

[t]t−z−1 dt (1)

for Re z > 1. Consider, however, the closely related integral

z

∫ ∞
1

tt−z−1 dt = z

∫ ∞
1

t−z dt =
z

z − 1
= 1 +

1
z − 1

.

Combining this with (1) we can write

ζ(z)− 1
z − 1

= 1 + z

∫ ∞
1

([t]− t)t−z−1 dt.

Now fix k > 1 and consider the integral
∫ k

1
([t]− t)t−z−1 dt. By (3.3.3), this integral is an

entire function of z. furthermore, if Re z > 0, then

|
∫ k

1

([t]− t)t−z−1 dt| ≤
∫ k

1

t−Re(z+1) dt ≤
∫ ∞

1

t−1−Re z dt =
1

Re z
.
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This implies that the sequence fk(z) =
∫ k

1
([t]−t)t−z−1 dt of analytic functions on Re z > 0

is uniformly bounded on compact subsets. Hence by Vitali’s theorem (5.1.14), the limit
function

f(z) =
∫ ∞

1

([t]− t)t−z−1 dt

(as the uniform limit on compact subsets of Re z > 0) is analytic, and thus the function

1 + z

∫ ∞
1

([t]− t)t−z−1 dt

is also analytic on Re z > 0. But this function agrees with ζ(z) − 1
z−1 for Re z > 1, and

consequently provides the required analytic extension of ζ to Re z > 0. This completes
the proof of the theorem. ♣

We have seen that Euler’s formula (7.1.1) implies that ζ has no zeros in the half plane
Re z > 1, but how about zeros of (the extension of) ζ in 0 < Re z ≤ 1? The next theorem
asserts that ζ has no zeros on the line Re z = 1. This fact is crucial to our proof of the
PNT.

7.1.3 Theorem

The Riemann zeta function has no zeros on Re z = 1, so (z − 1)ζ(z) is analytic and
zero-free on a neighborhood of Re z ≥ 1.
Proof. Fix a real number y 	= 0 and consider the auxiliary function

h(x) = ζ3(x)ζ4(x + iy)ζ(x + i2y)

for x real and x > 1. By Euler’s product formula, if Re z > 1 then

ln |ζ(z)| = −
∞∑

j=1

ln |1− p−z
j | = −Re

∞∑
j=1

Log(1− p−z
j ) = Re

∞∑
j=1

∞∑
n=1

1
n

p−nz
j

where we have used the expansion −Log(1− w) =
∑∞

n=1 wn/n, valid for |w| < 1. Hence

ln |h(x)| = 3 ln |ζ(x)|+ 4 ln |ζ(x + iy)|+ ln |ζ(x + i2y)|

= 3 Re
∞∑

j=1

∞∑
n=1

1
n

p−nx
j + 4 Re

∞∑
j=1

∞∑
n=1

1
n

p−nx−iny
j

+ Re
∞∑

j=1

∞∑
n=1

1
n

p−nx−i2ny
j

=
∞∑

j=1

∞∑
n=1

1
n

p−nx
j Re(3 + 4p−iny

j + p−i2ny
j ).

But p−iny
j = e−iny ln pj and p−i2ny

j = e−i2ny ln pj . Thus Re(3 + 4p−iny
j + p−i2ny

j ) has the
form

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2(1 + cos θ)2 ≥ 0.
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Therefore ln |h(x)| ≥ 0 and consequently

|h(x)| = |ζ3(x)||ζ4(x + iy)||ζ(x + i2y)| ≥ 1.

Thus

|h(x)|
x− 1

= |(x− 1)ζ(x)|3
∣∣∣∣ζ(x + iy)

x− 1

∣∣∣∣
4

|ζ(x + i2y)| ≥ 1
x− 1

.

But if ζ(1+iy) = 0, then the left hand side of this inequality would approach a finite limit
|ζ ′(1+ iy)|4|ζ(1+ i2y)| as x→ 1+ since ζ has a simple pole at 1 with residue 1. However,
the right hand side of the inequality contradicts this. We conclude that ζ(1 + iy) 	= 0.
Since y is an arbitrary nonzero real number, ζ has no zeros on Re z = 1. ♣

Remark

The ingenious introduction of the auxiliary function h is due to Mertens (1898). We
now have shown that any zeros of ζ in Re z > 0 must lie in the strip 0 < Re z < 1.
The study of the zeros of ζ has long been the subject of intensive investigation by many
mathematicians. Riemann had stated in his seminal 1859 paper that he considered it
“very likely” that all the zeros of ζ in the above strip, called the critical strip, lie on the
line Re z = 1/2. This assertion is now known as the Riemann hypothesis, and remains
as yet unresolved. However, a great deal is known about the distribution of the zeros
of ζ in the critical strip, and the subject continues to capture the attention of eminent
mathematicians. To state just one such result, G.H. Hardy proved in 1915 that ζ has
infinitely many zeros on the line Re z = 1/2. Those interested in learning more about this
fascinating subject may consult, for example, the book Riemann’s Zeta Function by H.M.
Edwards. Another source is http://mathworld.wolfram.com/RiemannHypothesis.html.

We turn next to zeta’s logarithmic derivative ζ ′/ζ, which we know is analytic on
Re z > 1. In fact, more is true, for by (7.1.3), ζ ′/ζ is analytic on a neighborhood of
{z : Re z ≥ 1 and z 	= 1}. Since ζ has a simple pole at z = 1, so does ζ ′/ζ, with residue
Res(ζ ′/ζ, 1) = −1. [See the proof of (4.2.7).] We next obtain an integral representation
for ζ ′/ζ that is similar to the representation (1) above for ζ. [See the proof of (7.1.2).]
But first, we must introduce the von Mangoldt function Λ, which is defined by

Λ(n) =

{
ln p if n = pm for some m,

0 otherwise.

Thus Λ(n) is ln p if n is a power of the prime p, and is 0 if not. Next define ψ on x ≥ 0 by

ψ(x) =
∑
n≤x

Λ(n). (2)

An equivalent expression for ψ is

ψ(x) =
∑
p≤x

mp(x) ln p,
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where the sum is over primes p ≤ x and mp(x) is the largest integer such that pmp(x) ≤ x.
(For example, ψ(10.4) = 3 ln 2 + 2 ln 3 + ln 5 + ln 7.) Note that pmp(x) ≤ x iff mp(x) ln p ≤
lnx iff mp(x) ≤ ln x

ln p . Thus mp(x) =
[

ln x
ln p

]
where as before, [ ] denotes the greatest integer

function. The function ψ will be used to obtain the desired integral representation for
ζ ′/ζ.

7.1.4 Theorem

For Re z > 1,

−ζ ′(z)
ζ(z)

= z

∫ ∞
1

ψ(t)t−z−1 dt (3)

where ψ is defined as above.
Proof. In the formulas below, p and q range over primes. If Re z > 1, we have ζ(z) =∏

p(1− p−z)−1 by (7.1.1), hence

ζ ′(z) =
∑

p

−p−z ln p

(1− p−z)2
∏
q �=p

1
1− q−z

= ζ(z)
∑

p

−p−z ln p

(1− p−z)2
(1− p−z)

= ζ(z)
∑

p

−p−z ln p

1− p−z
.

Thus

−ζ ′(z)
ζ(z)

=
∑

p

p−z ln p

1− p−z
=

∑
p

∞∑
n=1

p−nz ln p.

The iterated sum is absolutely convergent for Re z > 1, so it can be rearranged as a double
sum ∑

(p,n),n≥1

(pn)−z ln p =
∑

k

k−z ln p

where k = pn for some n. Consequently,

−ζ ′(z)
ζ(z)

=
∞∑

k=1

k−zΛ(k) =
∞∑

k=1

k−z(ψ(k)− ψ(k − 1))

by the definitions of Λ and ψ. But using partial summation once again we obtain, with
ak = k−z, bk+1 = ψ(k), and b1 = ψ(0) = 0 in Problem 2.2.7,

M∑
k=1

k−z(ψ(k)− ψ(k − 1)) = ψ(M)(M + 1)−z +
M∑

k=1

ψ(k)(k−z − (k + 1)−z).
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Now from the definition (2) of ψ(x) we have ψ(x) ≤ x lnx, so if Re z > 1 we have
ψ(M)(M + 1)−z → 0 as M →∞. Moreover, we can write

M∑
k=1

ψ(k)(k−z − (k + 1)−z) =
M∑

k=1

ψ(k)z
∫ k+1

k

t−z−1 dt

=
M∑

k=1

z

∫ k+1

k

ψ(t)t−z−1 dt

= z

∫ M

1

ψ(t)t−z−1 dt

because ψ is constant on each interval [k, k + 1). Taking limits as M →∞, we finally get

−ζ ′(z)
ζ(z)

= z

∫ ∞
1

ψ(t)t−z−1 dt, Re z > 1. ♣

7.2 An Equivalent Version of the Prime Number The-
orem

The function ψ defined in (2) above provides yet another connection, through (3), between
the Riemann zeta function and properties of the prime numbers. The integral that appears
in (3) is called the Mellin transform of ψ and is studied in its own right. We next establish
a reduction, due to Chebyshev, of the prime number theorem to a statement involving
the function ψ.

7.2.1 Theorem

The prime number theorem holds, that is, x−1π(x) lnx→ 1, iff x−1ψ(x)→ 1 as x→∞.

Proof. Recall that

ψ(x) =
∑
p≤x

[
lnx

ln p

]
ln p

≤
∑
p≤x

lnx

ln p
ln p (1)

= lnx
∑
p≤x

1

= (lnx)π(x).
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However, if 1 < y < x, then

π(x) = π(y) +
∑

y<p≤x

1

≤ π(y) +
∑

y<p≤x

ln p

ln y
(2)

< y +
1

ln y

∑
y<p≤x

ln p

≤ y +
1

ln y
ψ(x).

Now take y = x/(lnx)2 in (2), and we get

π(x) ≤ x

(lnx)2
+

1
lnx− 2 ln lnx

ψ(x).

Thus

π(x)
lnx

x
≤ 1

lnx
+

lnx

lnx− 2 ln lnx

ψ(x)
x

. (3)

It now follows from (1) and (3) that

ψ(x)
x
≤ lnx

x
π(x) ≤ 1

lnx
+

lnx

lnx− 2 ln lnx

ψ(x)
x

and from this we can see that x−1ψ(x)→ 1 iff x−1π(x) lnx→ 1 as x→∞. ♣
The goal will now be to show that ψ(x)/x → 1 as x → ∞. A necessary intermediate

step for our proof is to establish the following weaker estimate on the asymptotic behavior
of ψ(x).

7.2.2 Lemma

There exists C > 0 such that ψ(x) ≤ Cx, x > 0. For short, ψ(x) = O(x).
Proof. Again recall that ψ(x) =

∑
p≤x[ ln x

ln p ] ln p, x > 0. Fix x > 0 and let m be an integer
such that 2m < x ≤ 2m+1. Then

ψ(x) = ψ(2m) + ψ(x)− ψ(2m)

≤ ψ(2m) + ψ(2m+1)− ψ(2m)

=
∑

p≤2m

[
ln 2m

ln p

]
ln p +

∑
2m<p≤2m+1

[
ln 2m+1

ln p

]
ln p.

Consider, for any positive integer n,∑
n<p≤2n

ln p = ln
∏

n<p≤2n

p.



7.3. PROOF OF THE PRIME NUMBER THEOREM 9

Now for any prime p such that n < p ≤ 2n, p divides (2n)!/n! = n!
(
2n
n

)
. Since such a p

does not divide n!, it follows that p divides
(
2n
n

)
. Hence

∏
n<p≤2n

p ≤
(

2n

n

)
< (1 + 1)2n = 22n,

and we arrive at ∑
n<p≤2n

ln p < 2n ln 2.

Therefore

∑
p≤2m

ln p =
m∑

k=1


 ∑

2k−1<p≤2k

ln p


 <

m∑
k=1

2k ln 2 < 2m+1 ln 2

and ∑
2m<p≤2m+1

ln p < 2m+1 ln 2.

But if p ≤ x is such that
[

ln x
ln p

]
> 1, then ln x

ln p ≥ 2 and hence x ≥ p2 so that
√

x ≥ p.

Thus those terms in the sum
∑

p≤x

[
ln x
ln p

]
ln p where

[
ln x
ln p

]
> 1 occur only when p ≤ √x,

and the sum of terms of this form contribute no more than∑
p≤√x

lnx

ln p
ln p = π(

√
x) lnx.

It follows from the above discussion that if 2m < x ≤ 2m+1, then

ψ(x) ≤ 2m+1 ln 2 + 2m+1 ln 2 + π(
√

x) lnx

= 2m+2 ln 2 + π(
√

x) lnx

< 4x ln 2 + π(
√

x) lnx

≤ 4x ln 2 +
√

x lnx

= (4 ln 2 +
1√
x

lnx)x.

Since 1√
x

lnx→ 0 as x→∞, we conclude that ψ(x) = O(x), which proves the lemma. ♣

7.3 Proof of the Prime Number Theorem

Our approach to the prime number theorem has been along traditional lines, but at this
stage we will apply D.J. Newman’s method (Simple Analytic Proof of the Prime Number
Theorem, American Math. Monthly 87 (1980), 693-696) as modified by J. Korevaar (On
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Newman’s Quick Way to the Prime Number Theorem, Math. Intelligencer 4 (1982), 108-
115). Korevaar’s approach is to apply Newman’s ideas to obtain properties of certain
Laplace integrals that lead to the prime number theorem.

Our plan is to deduce the prime number theorem from a “Tauberian” theorem (7.3.1)
and its corollary (7.3.2). Then we will prove (7.3.1) and (7.3.2).

7.3.1 Auxiliary Tauberian Theorem

Let F be bounded and piecewise continuous on [0,+∞), so that its Laplace transform

G(z) =
∫ ∞

0

F (t)e−zt dt

exists and is analytic on Re z > 0. Assume that G has an analytic extension to a neigh-
borhood of the imaginary axis, Re z = 0. Then

∫∞
0

F (t) dt exists as an improper integral
and is equal to G(0). [In fact,

∫∞
0

F (t)e−iyt dt converges for every y ∈ R to G(iy).]
Results like (7.3.1) are named for A. Tauber, who is credited with proving the first

theorem of this type near the end of the 19th century. The phrase “Tauberian theorem”
was coined by G.H. Hardy, who along with J.E. Littlewood made a number of contri-
butions in this area. Generally, Tauberian theorems are those in which some type of
“ordinary” convergence (e.g., convergence of

∫∞
0

F (t)e−iyt dt for each y ∈ R), is deduced
from some “weaker” type of convergence (e.g., convergence of

∫∞
0

F (t)e−zt dt for each z
with Re z > 0) provided additional conditions are satisfied (e.g., G has an analytic exten-
sion to a neighborhood of each point on the imaginary axis). Tauber’s original theorem
can be found in The Elements of Real Analysis by R.G. Bartle.

7.3.2 Corollary

Let f be a nonnegative, piecewise continuous and nondecreasing function on [1,∞) such
that f(x) = O(x). Then its Mellin transform

g(z) = z

∫ ∞
1

f(x)x−z−1 dx

exists for Re z > 1 and defines an analytic function g. Assume that for some constant c,
the function

g(z)− c

z − 1

has an analytic extension to a neighborhood of the line Re z = 1. Then as x→∞,

f(x)
x
→ c.

As stated earlier, we are first going to see how the prime number theorem follows from
(7.3.1) and (7.3.2). To this end, let ψ be as above, namely

ψ(x) =
∑
p≤x

[
lnx

ln p

]
ln p.
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Then ψ is a nonnegative, piecewise continuous, nondecreasing function on [1,∞). Fur-
thermore, by (7.2.2), ψ(x) = O(x), so by (7.3.2) we may take f = ψ and consider the
Mellin transform

g(z) = z

∫ ∞
1

ψ(x)x−z−1 dx.

But by (7.1.4), actually g(z) = −ζ ′(z)/ζ(z), and by the discussion leading up to the
statement of (7.1.4), ζ′(z)

ζ(z) + 1
z−1 has an analytic extension to a neighborhood of each

point of Re z = 1, hence so does g(z) − 1
z−1 . Consequently, by (7.3.2), we can conclude

that ψ(x)/x → 1, which, by (7.2.1), is equivalent to the PNT. Thus we are left with the
proof of (7.3.1) and its corollary (7.3.2).

Proof of (7.3.1)

Let F be as in the statement of the theorem. Then it follows just as in the proof of (7.1.2),
the extension theorem for zeta, that F ’s Laplace transform G is defined and analytic
on Re z > 0. Assume that G has been extended to an analytic function on a region
containing Re z ≥ 0. Since F is bounded we may as well assume that |F (t)| ≤ 1, t ≥ 0.
For 0 < λ <∞, define

Gλ(z) =
∫ λ

0

F (t)e−zt dt.

By (3.3.3), each function Gλ is entire, and the conclusion of our theorem may be expressed
as

lim
λ→∞

Gλ(0) = G(0).

That is, the improper integral
∫∞
0

F (t) dt exists and converges to G(0). We begin the
analysis by using Cauchy’s integral formula to get a preliminary estimate of |Gλ(0)−G(0)|.
For each R > 0, let δ(R) > 0 be so small that G is analytic inside and on the closed path

..

.

.
-iR

iR

−δ(R
) −δ1

γ -
R γ +R

γ -
Rγ +Rγ R = +

Figure 7.3.1

γR in Figure 7.3.1. (Note that since G is analytic on an open set containing Re z ≥ 0,
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such a δ(R) > 0 must exist, although it may well be the case that δ(R)→ 0 as R→ +∞.)
Let γ+

R denote that portion of γR that lies in Re z > 0, and γ−R the portion that lies in
Re z < 0. By Cauchy’s integral formula,

G(0)−Gλ(0) =
1

2πi

∫
γR

(G(z)−Gλ(z))
1
z

dz. (1)

Let us consider the consequences of estimating |G(0)−Gλ(0)| by applying the usual M-
L estimates to the integral on the right hand side of (1) above. First, for z ∈ γ+

R and
x = Re z, we have ∣∣∣∣G(z)−Gλ(z)

z

∣∣∣∣ =
1
R

∣∣∣∣
∫ ∞

λ

F (t)e−zt dt

∣∣∣∣
≤ 1

R

∫ ∞
λ

|F (t)|e−xt dt

≤ 1
R

∫ ∞
λ

e−xt dt

=
1
R

e−λx

x
(2)

≤ 1
R

1
x

=
1
R

1
Re z

.

But 1/ Re z is unbounded on γ+
R , so we see that a more delicate approach is required to

shows that G(0) − Gλ(0) → 0 as λ → ∞. Indeed, it is here that Newman’s ingenuity
comes to the fore, and provides us with a modification of the above integral representation
for G(0)−Gλ(0). This will furnish the appropriate estimate. Newman’s idea is to replace
the factor 1/z by (1/z) + (z/R2) in the path integral in (1). Since (G(z)−Gλ(z))z/R2 is
analytic, the value of the path integral along γR remains unchanged. We further modify
(1) by replacing G(z) and Gλ(z) by their respective products with eλz. Since eλz is entire
and has the value 1 at z = 0, we can write

G(0)−Gλ(0) =
1

2πi

∫
γR

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz.

Note that for |z| = R we have (1/z) + (z/R2) = (z/|z|2) + (z/R2) = (2 Re z)/R2, so that
if z ∈ γ+

R , (recalling (2) above),

|(G(z)−Gλ(z))eλz(
1
z

+
z

R2
)| ≤ 1

Re z
e−λ Re zeλ Re z 2 Re z

R2
=

2
R2

.

Consequently, ∣∣∣∣∣ 1
2πi

∫
γ+

R

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ ≤ 1
R

by the M-L theorem. Note that this estimate of the integral along the path γ+
R is inde-

pendent of λ. Now let us consider the contribution to the integral along γR of the integral
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along γ−R . First we use the triangle inequality to obtain the estimate∣∣∣∣∣ 1
2πi

∫
γ−R

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣
≤

∣∣∣∣∣ 1
2πi

∫
γ−R

G(z)eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ +

∣∣∣∣∣ 1
2πi

∫
γ−R

Gλ(z)eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣
= |I1(R)|+ |I2(R)|.

First consider I2(R). Since Gλ(z) is an entire function, we can replace the path of inte-
gration γ−R by the semicircular path from iR to −iR in the left half plane. For z on this
semicircular arc, the modulus of the integrand in I2(R) is

|(
∫ λ

0

F (t)e−zt dt)eλz 2 Re z

R2
)| ≤ 1

|Re z|
2|Re z|

R2
=

2
R2

.

(Note that |F | ≤ 1, we can replace the upper limit of integration by ∞, and eλx ≤ 1 for
x ≤ 0.) This inequality also holds if Re z = 0 (let z → iy). Thus by the M-L theorem we
get |I2(R)| ≤ (1/2π)(2/R2)(πR) = 1/R, again.

Finally, we consider |I1(R)|. This will be the trickiest of all since we only know that on
γ−R , G is an analytic extension of the explicitly defined G in the right half plane. To deal
with this case, first choose a constant M(R) > 0 such that |G(z)| ≤ M(R) for z ∈ γ−R .
Choose δ1 such that 0 < δ1 < δ(R) and break up the integral defining I1(R) into two
parts, corresponding to Re z < −δ1 and Re z ≥ −δ1. The first contribution is bounded in
modulus by

1
2π

M(R)e−λδ1(
1

δ(R)
+

1
R

)πR =
1
2
RM(R)(

1
δ(R)

+
1
R

)e−λδ1 ,

which for fixed R and δ1 tends to 0 as λ→∞. On the other hand, the second contribution
is bounded in modulus by

1
2π

M(R)(
1

δ(R)
+

1
R

)2R arcsin
δ1

R
,

the last factor arising from summing the lengths of two short circular arcs on the path
of integration. Thus for fixed R and δ(R) we can make the above expression as small
as we please by taking δ1 sufficiently close to 0. So at last we are ready to establish the
conclusion of this theorem. Let ε > 0 be given. Take R = 4/ε and fix δ(R), 0 < δ(R) < R,
such that G is analytic inside and on γR. Then as we saw above, for all λ,∣∣∣∣∣ 1

2πi

∫
γ+

R

(G(z)−Gλ(z))eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ ≤ 1
R

=
ε

4

and also ∣∣∣∣∣ 1
2πi

∫
γ−R

(Gλ(z)eλz(
1
z

+
z

R2
) dz

∣∣∣∣∣ ≤ 1
R

=
ε

4
.
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Now choose δ1 such that 0 < δ1 < δ(R) and such that

1
2π

M(R)(
1

δ(R)
+

1
R

)2R arcsin
δ1

R
<

ε

4
.

Since

1
2
RM(R)(

1
δ(R)

+
1
R

)e−λδ1 <
ε

4

for all λ sufficiently large, say λ ≥ λ0, it follows that

|Gλ(0)−G(0)| < ε, λ ≥ λ0

which completes the proof. ♣

Proof of (7.3.2)

Let f(x) and g(z) be as in the statement of the corollary. Define F on [0,+∞) by

F (t) = e−tf(et)− c.

Then F satisfies the first part of the hypothesis of the auxiliary Tauberian theorem, so
let us consider its Laplace transform,

G(z) =
∫ ∞

0

(e−tf(et)− c)e−zt dt,

which via the change of variables x = et becomes

G(z) =
∫ ∞

1

(
1
x

f(x)− c)x−z dx

x

=
∫ ∞

1

f(x)x−z−2 dx− c

∫ ∞
1

x−z−1 dx

=
∫ ∞

1

f(x)x−z−2 dx− c

z

=
g(z + 1)
z + 1

− c

z

=
1

z + 1
[g(z + 1)− c

z
− c].

It follows from the hypothesis that g(z + 1)− (c/z) has an analytic extension to a neigh-
borhood of the line Re z = 0, and consequently the same is true of the above function G.
Thus the hypotheses of the auxiliary Tauberian theorem are satisfied, and we conclude
that the improper integral

∫∞
0

F (t) dt exists and converges to G(0). In terms of f , this
says that

∫∞
0

(e−tf(et) − c) dt exists, or equivalently (via the change of variables x = et

once more) that ∫ ∞
1

(
f(x)

x
− c)

dx

x
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exists. Recalling that f is nondecreasing, we can infer that f(x)/x → c as x → ∞. For
let ε > 0 be given, and suppose that for some x0 > 0, [f(x0)/x0]− c ≥ 2ε. It follows that

f(x) ≥ f(x0) ≥ x0(c + 2ε) ≥ x(c + ε) for x0 ≤ x ≤ c + 2ε

c + ε
x0.

Hence,

∫ c+2ε
c+ε x0

x0

(
f(x)

x
− c)

dx

x
≥

∫ c+2ε
c+ε x0

x0

ε

x
dx = ε ln(

c + 2ε

c + ε
).

But
∫ x2

x1
( f(x)

x − c)dx
x → 0 as x1, x2 →∞, because the integral from 1 to ∞ is convergent.

Thus for all x0 sufficiently large,

∫ c+2ε
c+ε x0

x0

(
f(x)

x
− c)

dx

x
< ε ln(

c + 2ε

c + ε
).

However, reasoning from the assumption that [f(x0)/x0]−c ≥ 2ε, we have just deduced the
opposite inequality. We must conclude that for all x0 sufficiently large, [f(x0)/x0]−c < 2ε.
Similarly, [f(x0)/x0] − c > −2ε for all x0 sufficiently large. [Say [f(x0)/x0] − c ≤ −2ε.
The key inequality now becomes

f(x) ≤ f(x0) ≤ x0(c− 2ε) ≤ x(c− ε) for (
c− 2ε

c− ε
)x0 ≤ x ≤ x0

and the limits of integration in the next step are from c−2ε
c−ε x0 to x0.] Therefore f(x)/x→ c

as x→∞, completing the proof of both the corollary and the prime number theorem. ♣
The prime number theorem has a long and interesting history. We have mentioned

just a few of the many historical issues related to the PNT in this chapter. There are
several other number theoretic functions related to π(x), in addition to the function ψ(x)
that was introduced earlier. A nice discussion of some of these issues can be found in Eric
W. Weisstein, “Prime Number Theorem”, from MathWorld—A Wolfram Web Resource,
http://mathworld.wolfram.com/PrimeNumberTheorem.html. This source also includes a
number of references on PNT related matters.
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Solutions

Chapter 1

1. |z1 + z2|2 + |z1 − z2|2 = (z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2) = 2|z1|2 + 2|z2|2. A
diagram similar to Fig. 1.1.1 illustrates the geometric interpretation that the sum of
the squares of the lengths of the diagonals of a parallelogram equals twice the sum of
the squares of the lengths of the sides.

2. Again, use a diagram similar to Fig. 1.1.1.

3. (a) Let z1 = a + bi, z2 = c + di; then |z1||z2| cos θ is the dot product of the vectors
(a, b) and (c, d), that is, ac+bd = Re z1z2. Also, |z1||z2| sin θ is the length of the cross
product of these vectors, that is, |ad− bc| = | Im z1z2|. [Strictly speaking, we should
take the cross product of the 3-dimensional vectors (a, b, 0) and (c, d, 0).]
(b) The area of the triangle is half the area of the parallelogram determined by z1

and z2. The area of the parallelogram is the length of the cross product of the vectors
(a, b) and (c, d), which is | Im z1z2|.

4. Say ∂g
∂x exists near (x0, y0) and is continuous at (x0, y0), while ∂g

∂y merely exists at
(x0, y0). Write, as in (1.4.1),

g(x, y)− g(x0, y0) = g(x, y)− g(x0, y) + g(x0, y)− g(x0, y0).

Apply the mean value theorem to the first difference and the definition of ∂g
∂y (x0, y0)

to the second difference to obtain

∂g

∂x
(x, y)(x− x0) +

∂g

∂y
(x0, y0)(y − y0) + ε(y)(y − y0)

where x is between x0 and x and ε(y)→ 0 as y → y0. In (1.4.1) we may take

A =
∂g

∂x
(x0, y0), ε1(x, y) =

∂g

∂x
(x, y)− ∂g

∂x
(x0, y0),

B =
∂g

∂y
(x0, y0), ε2(x, y) = ε(y).

5. We have u(x, y) = x, v(x, y) = −y, hence ∂u
∂x = 1, ∂v

∂y = −1. Thus the Cauchy-
Riemann equations are never satisfied.

1
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6. Since u(x, y) = x2 + y2, v(x, y) = 0, the Cauchy-Riemann equations are satisfied
at x = y = 0, but nowhere else. The result follows from (1.4.2) and Problem 4.
(Differentiability at z = 0 can also be verified directly, using the definition of the
derivative.)

7. Since u(0, y) = u(x, 0) = 0 for all x, y, ∂u
∂x (0, 0) = ∂u

∂y (0, 0) = 0. Take v to be identi-
cally 0. If u is real-differentiable at (0,0), then f = u + iv is complex-differentiable at
(0,0) by (1.4.2). Now differentiability of f at z0 requires that (f(z)− f(z0))/(z − z0)
approach a unique limit as z approaches z0 along an arbitrary path. In the present
case, let z → 0 along the line y = x. The difference quotient is

√
x2

x + ix
=

{
1

1+i if x > 0
−1
1+i if x < 0.

Therefore f is not complex-differentiable at the origin, hence u cannot be real-
differentiable there.

8. Let Mab =
[

a b
−b a

]
, and let h(a + bi) = Mab. Then h is 1-1 onto and h(z1 + z2) =

h(z1) + h(z2), h(z1z2) = h(z1)h(z2). The result follows.

9. By (b), either 1 ∈ P or −1 ∈ P . Since i2 = (−i)2 = −1, we have −1 ∈ P by (a),
hence 1 ∈ P by (a) again. But −1 ∈ P and 1 ∈ P contradicts (b).

10. If α(z) < 0, let w2 = z; by (ii), (α(w))2 = α(z) < 0, contradicting α(w) ∈ R. Thus
α(z) ≥ 0 for all z. Since α(zn) = [α(z)]n by (ii), it follows from (iii) that α(z) ≤ 1 for
|z| = 1. By (i) and (ii), |z|2 = a(|z|2) = α(z)α(z), so for z on the unit circle, α(z) < 1
implies α(z) > 1, and therefore α(z) = 1 for |z| = 1. Thus for arbitrary z �= 0 we
have α(z) = α(z/|z|)α(|z|) = α(|z|) = |z|.

11. As in Problem 10, α(z) ≥ 0 for all z. Also, x2 = α(x2) = α(−x)α(x), and con-
sequently α(−x) = x, x ≥ 0. Thus α(x) = |x| for real x. If z = x + iy, then
α(z) ≤ α(x) + α(i)α(y) = |x| + |y|. (Note that (α(i))2 = α(i2) = α(−1) = 1, so
α(i) = 1.) Therefore α is bounded on the unit circle, and the result follows from
Problem 10.

12. Since |z−α|2 = (z−α)(z−α) and |1−αz|2 = (1−αz)(1−αz), we have |z−α| = |1−αz|
iff zz − αz − αz + αα = 1− αz − αz + ααzz iff zz − 1 = αα(zz − 1). Since |α| < 1,
this can happen iff zz = 1, that is, |z| = 1.

13. If z = r cos θ+ir sin θ, then 1/z = (1/r) cos θ−i(1/r) sin θ, so z+1/z = (r+1/r) cos θ+
i(r − 1/r) sin θ, which is real iff sin θ = 0 or r − 1/r = 0. The result follows.

14. To show that u is harmonic, verify directly that ∂2u/∂x2 + ∂2u/∂y2 = 0. To find v,
use the technique of (1.6.2). In part (i) we have

∂v

∂x
= −∂u

∂y
= −ey cos x,

∂v

∂y
=

∂u

∂x
= −ey sinx.

Thus (using calculus) v(x, y) = −ey sinx. In part (ii) we have

∂v

∂x
= −∂u

∂y
= −6xy,

∂v

∂y
=

∂u

∂x
= 2− 3x2 + 3y2
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so v(x, y) = −3x2y + 2y + y3. Note that if z = x + iy, then u + iv can be written as
−z3 +2z. After complex exponentials are studied further in Section 2.3, it will follow
that in part (i), u + iv = e−iz.

15. (i) Note that |z − z0| = r iff |az + b− (az0 + b)| = r|a|.
(ii) T (0) = 1 + i, so b = 1 + i; r|a| = |a| = 2, so T (z) = az + 1 + i, |a| = 2.
(iii) Since | − 2 + 2i| > 2, the desired result cannot be accomplished.

16. Since u = ex, v = 0, the Cauchy-Riemann equations are never satisfied.
17. We have

g(z + h)− g(z)
h

=
f(z + h)− f(z)

h
=

[
f(z + h)− f(z)

h

]
.

Thus g is analytic at z iff f is analytic at z, and in this case, g′(z) = f ′(z). Since
z ∈ Ω iff z ∈ Ω, the result follows.

18. The circle is described by |z − z0|2 = r2, or, equivalently, (z − z0)(z − z0) = r2; the
result follows.

19. If P (z) = 0 for some z ∈ D(0, 1), then (1− z)P (z) = 0, that is,
(1− z)(a0 + a1z + · · ·+ anzn) = 0, which implies that

a0 = (a0 − a1)z + (a1 − a2)z2 + · · ·+ (an−1 − an)zn + anzn+1. (1)

Since ai− ai+1 ≥ 0, the absolute value of the right side of (1) is at most |z|(a0− a1 +
a1−a2 + · · ·+an−1−an +an) = a0|z|. If |z| < 1, this is less than a0, a contradiction.

20. If P (z) = 0 for some z with |z| ≤ 1, then |z| = 1 by Problem 19. The only way for
(1) in Problem 19 to be satisfied is if all terms (a0 − a1)z, . . . , (an−1 − an)zn, anzn+1

are nonnegative multiples of one another (cf. Problem 2), and this requires that z be
real, i.e., z = 1. But P (1) = a0 + · · ·+ an > 0, so there are no roots in D(0, 1).

Chapter 2

Section 2.1

1. We have γ(t) = (1− t)(−i) + t(1 + 2i) = t + i(3t− 1), 0 ≤ t ≤ 1; thus∫
γ

y dz =
∫ 1

0

(Im γ(t))γ′(t) dt =
∫ 1

0

(3t− 1)(1 + 3i) dt =
1
2

+ i
3
2
.

2. We have γ(t) = t + it2, 1 ≤ t ≤ 2; thus∫
γ

z dz =
∫ 2

1

γ(t) γ′(t) dt =
∫ 2

1

(t− it2)(1 + i2t) dt = 9 + i
7
3
.

Intuitively,∫
γ

z dz =
∫

γ

(x− iy)(dx + idy) =
∫

γ

x dx + y dy + i(x dy − y dx).
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Since y = x2 on γ∗, this becomes

∫ 2

1

[x dx + x2(2x dx) + ix(2x dx)− ix2 dx]

as above. Note also that, for example,
∫

γ
x dy =

∫ 4

2

√
y dy.

3. The first segment may be parametrized as (1−t)(−i)+t(2+5i) = 2t+i(6t−1), 0 ≤ t ≤ 1,
and the second segment as (1− t)(2 + 5i) + t5i = 2− 2t + 5i, 0 ≤ t ≤ 1. Thus

∫
γ

f(z) dz =
∫ 1

0

[i Im γ(t) + (Re γ(t))2]γ′(t) dt

=
∫ 1

0

[i(6t− 1) + 4t2](2 + 6i) dt

+
∫ 1

0

[5i + (2− 2t)2](−2) dt

= −28
3

+ 12i− 8
3
− 10i = −12 + 2i.

4. Since γ is a path and h is continuously differentiable, it follows that γ1 is a path. We
have, with s = h(t),

∫
γ1

f(z) dz =
∫ d

c

f(γ1(t))γ′1(t) dt =
∫ d

c

f(γ(h(t)))γ′(h(t))h′(t) dt

= f(γ(s))γ′(s) ds =
∫

γ

f(z) dz.

(Strictly speaking, this argument is to be applied separately to the subintervals on
which γ′1 is continuous.)

5. (a) By (2.1.6), f(z2) − f(z1) =
∫
[z1,z2]

f ′(w) dw. If w = (1 − t)z1 + tz2, we obtain

f(z2) − f(z1) = (z2 − z1)
∫ 1

0
f ′((1 − t)z1 + tz2) dt. Since Re f ′ > 0 by hypothesis, we

have Re[(f(z2)− f(z1))/(z2 − z1)] > 0. In particular, f(z1) �= f(z2).
(b) For f(z) = z + 1/z, we have f ′(z) = 1 − 1/z2, so in polar form, Re f ′(reiθ) =
1 − (cos 2θ)/r2, which is greater than 0 iff r2 > cos 2θ. By examining the graph of
r2 = cos 2θ (a two-leaved rose), w see that for a > 0 and sufficiently large, and δ > 0
and sufficiently small, we have Re f ′ > 0 on Ω = C\A, where A is the set of points inside
or on the boundary of the infinite “triangle” determined by the rays [a, (1 − δ)i,∞)
and [a, (1 − δ)(−i),∞). Now Ω is starlike and contains ±i, with f(i) = f(−i), which
proves that (a) does not generalize to starlike regions.
(c) Since f ′(z0) �= 0, either Re f ′(z0) �= 0 or Im f ′(z0) �= 0. If the real part is nonzero,
then Re f ′ must be of constant sign (positive or negative) on a sufficiently small disk
centered at z0. The result then follows from (a). The remaining case is handled by
observing that Im f ′ = Re(−if ′) = Re[(−if)′].
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Section 2.2

1. The statement about pointwise convergence follows because C is a complete metric
space. If fn → f uniformly on S, then |fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |f(z) −
fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy,
it is pointwise Cauchy and therefore converges pointwise to a limit function f . If
|fn(z) − fm(z)| ≤ ε for all n, m ≥ N and all z ∈ S, let m → ∞ to show that
|fn(z)− f(z)| ≤ ε for n ≥ N and all z ∈ S. Thus fn → f uniformly on S.

2. This is immediate from (2.2.7).

3. We have f ′(x) = (2/x3)e−1/x2
for x �= 0, and f ′(0) = limh→0(1/h)e−1/h2

= 0. Since
f (n)(x) is of the form pn(1/x)e−1/x2

for x �= 0, where pn is a polynomial, an induction
argument shows that f (n)(0) = 0 for all n. If g is analytic on D(0, r) and g = f on
(−r, r), then by (2.2.16), g(z) =

∑∞
n=0 f (n)(0)zn/n!, z ∈ D(0, r). [Note that f (n)(0)

is determined once f is specified on (−r, r).] Thus g, hence f , is 0 on (−r, r), a
contradiction.

4. (a) The radius of convergence is at least 1/α. For if α = ∞, this is trivial, and if
α < ∞, then for a given ε > 0, eventually |an+1/an| < α + ε, say for n ≥ N . Thus
|aN+kzN+k| ≤ |aN ||z|N |(α + ε)z|k, k = 0, 1, . . . . By comparison with a geometric
series, the radius of convergence is a least 1/(α + ε). Since ε is arbitrary, the result
follows.
Note that the radius of convergence may be greater than 1/α. for example, let
an = 2 if n is even, and an = 1 if n is odd. The radius of convergence is 1, but
lim supn→∞ |an+1/an| = 2, so 1/α = 1/2.
(b) The radius of convergence r is exactly 1/α. For r ≥ 1/α by (a), and on the other
hand we have limn→∞ |an+1z

n+1/anzn| = α|z|, which is greater than 1 if |z| > 1/α.
Thus limn→∞ anzn cannot be 0, and hence the series cannot converge, for |z| > 1/α.
[This is just the ratio test; see (2.2.2).]

5. Since an = f (n)(z0)/n!, we have lim supn→∞ |an|1/n ≥ lim supn→∞(bn)1/n. The
radius of convergence of the Taylor expansion bout z0 is therefore 0, a contradiction.

6. (a) As in (2.2.16), write

f(z) =
1

2πi

∫
Γ

f(w)
w − z0

[
1

1− z−z0
w−z0

]
dw.

The term in brackets is

1 +
z − z0

w − z0
+ · · ·+

(
z − z0

w − z0

)n

+

(
z−z0
w−z0

)n+1

1− z−z0
w−z0

.

By (2.2.11), f(z) =
∑n

k=0[f
(k)(z0)(z − z0)k/k!] + Rn(z), where

Rn(z) =
(z − z0)n+1

2πi

∫
Γ

f(w)
(w − z)(w − z0)n+1

dw.
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(b) If |z − z0| ≤ s < r1, then |w − z| ≥ r1 − s for all w ∈ Γ, hence by (2.1.5),

|Rn(z)| ≤ |z − z0|n+1

2π

Mf (Γ)
(r1 − s)rn+1

1

2πr1 ≤Mf (Γ)
r1

r1 − s

(
s

r1

)n+1

.

7. We compute
∑s

k=r ak∆bk = ar(br+1 − br) + · · ·+ as(bs+1 − bs) = −arbr + br+1(ar −
ar+1) + · · ·+ bs(as−1 − as) + asbs+1 − as+1bs+1 + as+1bs+1, and the result follows.

8. (a) If |bn| ≤ M for all n, then
∑s

k=r |bk+1∆ak| ≤ M
∑s

k=r |∆ak| = M(ar − ar+1 +
ar+1 − ar+2 + · · ·+ as − as+1) = M(ar − as+1)→ 0 as r, s→∞. The result follows
from Problem 7.
(b) By the argument of (a),

∑s
k=r ak∆bk(z)→ 0 as r, s→∞, uniformly for z ∈ S.

9. (a) Let an = 1/n, bn(z) =
∑n−1

k=0 zk = (1− zn)/(1− z) if z �= 1. For any fixed z with
|z| = 1, z �= 1, we have |bn(z)| ≤ 2/|1−z| <∞ for all n, and the desired result follows
from Problem 8(a).
(b) Let an = 1/n and bn =

∑n−1
k=0 sin kx = Im(1 + eix + ei2x + · · · + ei(n−1)x) =

Im[(1− einx)/(1− eix)] (if x is not an integral multiple of 2π; the series converges to
0 in that case). Now∣∣∣∣1− einx

1− eix

∣∣∣∣
2

=
1− cos nx

1− cos x
=

sin2(nx/2)
sin2(x/2)

≤ 1
sin2(x/2)

which is uniformly bounded on {x : 2kπ + δ ≤ x ≤ (2k + 2)π− δ}. The result follows
from Problem 8(b).
(c) Let sin nz = sinn(x+iy) = (einz−e−inz)/2i = (einxe−ny−e−inxeny)/2i. If y �= 0,
then (1/n) sinnz →∞ as n→∞, hence

∑
n(1/n) sinnz cannot converge.

10. If z /∈ C+ ∪ R, then

f∗(z + h)− f∗(z)
h

=
f(z + h)− f(z)

h
=

[
f(z + h)− f(z)

h

]
→ f ′(z) as h→ 0.

Thus f∗ is analytic on C \ R. On R we have z = z and f(z) = f(z) = f(z), so f∗ is
continuous on C.

11. The idea is similar to (2.1.12). If T is a triangle in C, express
∫

T
f∗(z) dz as a sum of

integrals along polygons whose interiors are entirely contained in C+ or in the open
lower half plane C−, and at worst have a boundary segment on R. But, for example,∫
[a+iδ,b+iδ]

f∗(z) dz →
∫
[a,b]

f∗(z) dz as δ → 0 (use the M-L theorem). It follows that∫
T

f∗(z) dz = 0, and f∗ is analytic on C by Morera’s theorem.
12. (a) By (2.2.10), F is analytic on C \ C(z0, r) and F ′(z) =

∫
C(z0,r)

(w − z)−2 dw. But
for any fixed z, the function h given by h(w) = 1/(w − z)2 has a primitive, namely
1/(w − z), on C \ {z}. Thus by (2.1.6), F ′(z) = 0. By (2.1.7b), F is constant on
D(z0, r).
(b) We have F (z0) = 2πi [see the end of the proof of (2.2.9)] and thus by (a),
F (z) = 2πi for all z ∈ D(z0, r). As in the proof of (2.2.9),

1
2πi

∫
C(z0,r)

f(w)
w − z

dw =
f(z)
2πi

∫
C(z0,r)

1
w − z

dw = f(z) by part (b).
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13. (a) This follows from (2.2.11), (2.1.4) and (2.1.2).
(b) By part (a) with a = 0, |f (n)(0)/n!| ≤ Mrk/rn → 0 as r → ∞, if n > k. Thus
the Taylor coefficient an is 0 for n > k, and the result follows.
(c) The statement and proof of (b) go through even if k is a nonnegative number, not
necessarily an integer. Take k = 3/2 to obtain (c).

14. If |z| < 1, then
∑∞

n=0 |anzn| < ∞, hence the radius of convergence r is at least 1. If
r > 1, then the series for f ′(z), namely

∑∞
n=1 nanzn−1, will converge absolutely when

|z| = 1, so
∑∞

n=1 n|an| <∞, a contradiction. Thus r = 1.

15. Let T be a triangle such that T̂ ⊆ Ω. By (2.1.8),
∫

T
fn(z) dz = 0 for every n. Since

fn → f uniformly on T , we have
∫

T
f(z) dz = 0. By Morera’s theorem, f is analytic

on Ω.

Section 2.3

1. If u + iv = sin(x + iy), then u = sinx cosh y and v = cos x sinh y. If y = b, then
(u2/ cosh2 b) + (v2/ sinh2 b) = 1. Thus {x + iy : −π/2 < x < π/2, y > 0} is mapped
onto {u+iv : v > 0}, {x+iy : −π/2 < x < π/2, y < 0} is mapped onto {u+iv : v < 0},
{x + iy : x = π/2, y ≥ 0} is mapped onto {u + iv : v = 0, u ≥ 1}, and finally
{x + iy : x = −π/2, y ≤ 0} is mapped onto {u + iv : v = 0, u ≤ −1}, and the mapping
is one-to-one in each case. Since sin(z + π) = − sin z, the statement of the problem
follows.

2. If sin(x + iy) = 3, then sinx cosh y = 3, cos x sinh y = 0. If sinh y = 0 then y =
0, cosh y = 1, sinx = 3, which is impossible. Thus cos x = 0, x = (2n + 1)π/2. If n is
odd then sinx = −1, cosh y = −3, again impossible. Thus the solutions are z = x + iy
where x = (4m + 1)π/2, m an integer, y such that cosh y = 3 (two possibilities, one
the negative of the other).

3. Since sin z = z − z3/3! + x5/5! − · · · , the only nonzero contribution to the integral is
the single term −

∫
C(0,1)

dz/3!z = −2πi/6 = −πi/3.

4. This follows from two observations:
(a) 1 + z + z2/2! + · · ·+ zn/n!→ ez as n→∞, uniformly for |z| ≤ r;
(b) min|z|≤r |ez| > 0.

5. If f(z) =
∑∞

n=0 anzn, then since f ′′+f = 0 we have n(n−1)an+an−2 = 0, n = 2, 3 . . . .
Since f(0) = 0 and f ′(0) = 1, we have a0 = 0, a1 = 1, hence a2 = 0, a3 = −1/3!, a4 =
0, a5 = 1/5!, and so on. Thus f(z) = z − z3/3! + z5/5!− z7/7! + · · · = sin z.

6. As in Problem 5, nan − an−1 = 0, a0 = 1. Therefore f(z) = 1 + z + z2/2! + · · · = ez.

Section 2.4

1. Take f(z) = sin(1/z),Ω = C \ {0}; then f has zeros at 1/nπ → 0 /∈ Ω.
2. If f(z) = (z − z0)mg(z) on Ω with g(z0) �= 0, expand g in a Taylor series about z0

to conclude that aj = 0 for j < m and am �= 0. Conversely, if a0 = · · · = am−1 =
0, am �= 0, then f(z) =

∑∞
n=m an(z − z0)n = (z − z0)mg(z) with g(z0) �= 0. (Strictly

speaking, this holds only on some disk D(z0, r), but g may be extended to all of Ω by
the formula f(z)/(z−z0)m.) The remaining statement of (2.4.5) follows from (2.2.16).



8

3. Let f be continuous on the region Ω.
(i) If f satisfies (b) of the maximum principle, f need not satisfy (a). For example,
let Ω = D(0, 2) and f(z) = 1, |z| ≤ 1; f(z) = |z|, 1 < |z| < 2.
(ii) If f satisfies (c), then f satisfies (b), hence (b) and (c) are equivalent (assuming Ω
is bounded). This is because f must satisfy (c) if we take M = λ, and consequently
f satisfies (b).
(iii) If Ω is bounded and f is continuous on Ω, then (d) implies (b), hence in this case
(b), (c) and (d) are equivalent. For let z0 be a point on the boundary of Ω such that
|f(z0)| = M0 = max{|f(z)| : x ∈ ∂Ω}. Since z0 ∈ ∂Ω, there is a sequence of points
zn ∈ Ω with zn → z0, hence |f(zn)| → |f(z0)| = M0. Thus λ = sup{|f(z)| : z ∈ Ω} ≥
M0. If |f | < M0 on Ω, then |f | < λ on Ω.

4. In a neighborhood of z0, we have

f(z)
g(z)

=
am(z − z0)m + am+1(z − z0)m+1 + · · ·
bn(z − z0)n + bn+1(z − z0)n+1 + · · ·

where am �= 0, bn �= 0 (that is, f has a zero of order m and g a zero of order n at z0).
Then

lim
z→z0

f(z)
g(z)

= lim
z→z0

f ′(z)
g′(z)

=




am/bm if m = n

0 if m > n

∞ if m < n

.

(To handle the last case, apply the second case to g/f .)
5. Immediate from (2.4.12).
6. Im f = 0 on ∂D, hence by part (d) of the maximum and minimum principles for

harmonic functions (see (2.4.15) and its accompanying remark), Im f(z) = 0 for all
z ∈ D. Thus f is constant on D by the Cauchy-Riemann equations.

7. By the maximum principle, we need only consider ∂K. Now sin(x+iy) = sinx cosh y+
i cos x sinh y. If x = 0 or 2π, then sin(x + iy) = i sinh y. If y = 0, then sin(x +
iy) = sinx. If y = 2π, then sin(x + iy) = cosh 2π sinx + i sinh 2π cos x. Since
cosh 2π > sinh 2π > 1, it follows that the maximum modulus is attained at x = π/2
or 3π/2, y = 2π, and max |f | = cosh 2π.

8. Choose z0 ∈ K such that |f(z0)| = max{|f(z)| : z ∈ K}. If z0 ∈ ∂K, we are finished,
so assume that z0 ∈ K0. By (2.4.12a), f is constant on the component Ω0 of Ω that
contains z0, which proves the “furthermore” part. To see that |f(z0)| = max{|f(z)| :
z ∈ ∂K}, note that by continuity, f must also be constant on Ω0 ⊆ K0 ⊆ K. Since
Ω0 is bounded, its boundary is not empty. Choose any z1 ∈ ∂Ω0. Then f(z0) = f(z1)
since z1 ∈ Ω0, so |f(z1)| = max{|f(z)| : z ∈ K}. But z1 ∈ K and z1 is not an
interior point of K. (If z1 ∈ K0 then D(z1, r) ⊆ K0 for some r > 0, and it would
not be possible for z1 to be a boundary point of a component of K0.) Consequently,
z1 ∈ ∂K, and

max{|f(z)| : z ∈ K} = |f(z1)| ≤ max{|f(z)| : z ∈ ∂K} ≤ max{|f(z)| : z ∈ K}.

The result follows.
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9. By Problem 8, maxz∈Ω |f(z)| = maxz∈∂Ω |f(z)|. But ∂Ω = Ω\Ω = ∂Ω, and the result
follows.

10. Take u = Im f where f is a nonconstant entire function that is real-valued on R. For
example, f(z) = ez, u(x + iy) = ex sin y; or f(z) = z, u(x + iy) = y.

11. If Ω is disconnected and A is a component of Ω, let f(z) = 1 if z ∈ A, and f(z) = 0
if z /∈ A. Let g(z) = 0 if z ∈ A, and g(z) = 1 if z /∈ A. Then fg ≡ 0 but f �≡ 0, g �≡ 0.
Assume Ω connected, and let f, g be analytic on Ω with fg ≡ 0. If f(z0) �= 0, then f
is nonzero on some disk D(z0, r), hence g ≡ 0 on D(z0, r). By (2.4.8), g ≡ 0 on Ω.

12. The given function can be extended to a function f∗ analytic on S ∪ {z : Im z < 0}
by the technique of the Schwarz reflection principle (2.2.15). Since f∗(z) = z4 − 2z2

for z ∈ (0, 1), the identity theorem (2.4.8) implies that this relation holds for all
z ∈ S ∪ {z : Im z < 0}. Thus if z ∈ S we have f(z) = z4 − 2z2, and in particular,
f(i) = 3.

13. Apply Liouville’s theorem to 1/f .

14. No, by the identity theorem. If S is an uncountable set, then infinitely many points
of S must lie in some disk D(0, r), hence S has a limit point.

15. Fix the real number α. Then sin(α+β)−sinα cos β−cos α sinβ is an analytic function
of β, and is zero for real β, hence is identically zero by the identity theorem. A
repetition of this argument with fixed β and variable α completes the demonstration.

16. If f = u + iv, then |eif | = e−v ≤ 1 (because v ≥ 0 by hypothesis). By Liouville’s
theorem, eif is constant, hence |eif | = e−v is constant, so v is constant. But then by
the Cauchy-Riemann equations, u is constant, so f is constant.

17. We have (f/g)′ = (gf ′− fg′)/g2, and by the identity theorem, gf ′− fg′ is identically
zero on D(0, 1). The result follows.

18. By Liouville’s theorem, f(z) − ez sin z = c where |c| < 4. Since f(0) = 0 we have
c = 0, so f(z) = ez sin z.

19. By the maximum and minimum principles for harmonic functions, Re(f − g) is iden-
tically zero. Therefore f − g is constant.

20. If f is never 0 and {f(zn)} is unbounded whenever |zn| → 1, then 1/f(z) → 0 as
|z| → 1. By the maximum principle, 1/f ≡ 0, a contradiction.

21. Let f = u + iv with f analytic on C. Then |ef | = eu ≥ e0 = 1, hence |e−f | ≤ 1. By
Liouville’s theorem, e−f is constant. But then |e−f |, hence |ef |, is constant. Since
|ef | = eu, the result follows.

22. If f is never 0 in D(0, 1) then by the maximum principle, max|z|≤1 |1/f(z)| < 1, hence
|1/f(0)| < 1. This contradicts f(0) = i.

23. If z = x + iy then u = Re z3 = x3 − 3xy2. By the maximum principle, it suffices to
consider u on each of the four line segments forming the boundary of the square. By
elementary calculus we find that the maximum value is 1 and occurs at x = 1, y = 0.

24. If K is a compact subset of D(0, 1), then K ⊆ D(0, r) for some r ∈ (0, 1). If M =
max{|f(z)| : |z| ≤ r}, then [|f(rz)|/M ] ≤ 1 on D(0, 1). By (2.4.16), [|f(rz)|/M ] ≤ |z|
on D(0, 1). Make the substitution z = w/r to obtain |f(w)| ≤ M |w|/r on D(0, r),
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hence on K. The result now follows from the uniform convergence of the series∑
|w|n, |w| ≤ r.

25. If zn → z ∈ C(0, 1), then for some k, eikβz ∈ A1, so f(eikβzn) → 0, and therefore
F (zn)→ 0. By (2.4.12c), F ≡ 0. Now for any z ∈ D(0, 1), F (z) = 0, so f(eihβz) = 0
for some h = 0, 1, . . . , n. Thus f has uncountably many zeros, hence a limit point of
zeros, in D(0, 1). By the identity theorem, f ≡ 0.

26. (a) By Problem 9, {fn} is uniformly Cauchy on Ω, hence by (2.2.4), {fn} converges
uniformly on Ω. By (2.2.17), f is analytic on Ω (and continuous on Ω by the uni-
form convergence). The proof of (2.2.17), in particular the formula (2.2.11), may be
adapted to show that each derivative f

(k)
n extends to a continuous function on Ω, and

that f
(k)
n → f (k) uniformly on Ω for all k.

(b) If p1, p2, . . . are polynomials and pn → f uniformly on C(0, 1), then by (a), pn

converges uniformly on D(0, 1) to a limit function g, where g is analytic on D(0, 1)
and continuous on D(0, 1) (and of course g = f on C(0, 1). Conversely, if f is the
restriction to C(0, 1) of such a function g, then f can be uniformly approximated by
polynomials. To see this, let {rn} be an increasing sequence of positive reals converg-
ing to 1, and consider gn(z) = g(rnz), |z| < 1/rn. Since gn is analytic on D(0, 1/rn),
there is a (Taylor) polynomial pn such that |pn(z)− gn(z)| < 1/n for |z| ≤ 1. But gn

converges uniformly to g on D(0, 1) by uniform continuity of g on D(0, 1). The result
follows.

Chapter 3

Sections 3.1 and 3.2

1. (a) This follows because logα is discontinuous on the ray Rα [see (3.1.2b)].
(b) Let U be as indicated in Figure S3.2.1, and define

g(z) =

{
ln |z|+ iθ(z), 0 ≤ θ < 2π, for z ∈ Ω1

ln |z|+ iθ(z), π ≤ θ < 3π, for z ∈ Ω2.

Locally, g(z) coincides with one of the elementary branches of log z, hence g is an
analytic version of log z on Ω.

2. First, we show that f does not have an analytic logarithm on Ω. For f ′(z)/f(z) =
[1/(z − a)] + [1/(z − b)], so that if γ describes a circle enclosing both a and b, (3.2.3)
yields

∫
γ
[f ′(z)/f(z)] dz = 2πi(n(γ, a)+n(γ, b)) = 4πi �= 0. By (3.1.9), f does not have

an analytic logarithm on Ω. However, f has an analytic square root. For if θ0 is the
angle of [a, b] (see Figure S3.2.2), then define

(z − a)1/2 = |z − a|1/2 exp(i
1
2

arg(z − a))

(z − b)1/2 = |z − b|1/2 exp(i
1
2

arg(z − b))
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Ω2

Ω1

Figure S3.2.1

•

•a

b

S

θο

Figure S3.2.2
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where the angles are chosen in the interval [θ0, θ0+2π). Then g(z) = (z−a)1/2(z−b)1/2

is the desired analytic square root. The key intuitive point is that if z traverses a circle
enclosing both a and b, then the arguments of (z − a)1/2 and (z − b)1/2 each change
by π, so that g(z) returns to its initial value. This shows that the set S = {z : z− a =
reiθ0 , r > |b− a|} is not a barrier to analyticity.

Remark

f(z) = z2 on D(0, 1) \ {0} gives an easier example of an analytic function that is never
0 and has an analytic square root, but not an analytic logarithm.

3. By (3.1.11) we have (a) implies (b), and (b) implies (c) is obvious. To prove that (c)
implies (a), let gk be analytic on Ω with gk

k = f . Then f ′/f = kg′k/gk, so that if γ is
a closed path in Ω, we have

1
2πi

∫
γ

g′k(z)
gk(z)

dz =
1

2πik

∫
γ

f ′(z)
f(z)

dz → 0

as k →∞ through an appropriate subsequence. By (3.2.3), n(gk ◦γ, 0)→ 0 as k →∞.
Since the index must be an integer, n(gk◦γ, 0) = 0 for large k. Therefore

∫
γ

f ′(z)
f(z) dz = 0,

and the result follows from (3.1.9).

4. As in (3.2.4d), 0 /∈ γ∗1 ∪ γ∗2 . If γ = γ2/γ1, then |1 − γ| < 1 + |γ|, which implies that
γ(t) can never be real and negative. Thus Arg ◦γ is a continuous argument of γ, hence
n(γ, 0) = 0. As in (3.2.4d), n(γ1, 0) = n(γ2, 0).

The hypothesis is satisfied by all possible values of γ1(t) and γ2(t) except those lying on
a line through the origin, with γ1(t) and γ2(t) on opposite sides of the origin. Thus if
initially the angle between γ1(t) and γ2(t) (visualizing a complex number z as a vector
in the plane pointing from 0 to z) is less than π and remains less than π for all t, then
γ1 and γ2 have the same net number of revolutions about 0.

The interpretation of the hypothesis is that the length of the leash is always less than
the sum of the distances of man and dog from the tree.

5. Suppose θ is a continuous argument of f . Let γ(t) = eit, 0 ≤ t ≤ 2π. Since z =
|z|eiθ(z) = eiθ(z) when |z| = 1, we have

eit = eiθ(eit), 0 ≤ t ≤ 2π.

Thus t and θ(eit) are each continuous arguments of γ, so by (3.1.6c), θ(eit) = t + 2πk
for some integer k. Let t → 0 to obtain θ(1) = 2πk, and let t → 2π to obtain
θ(1) = 2π + 2πk, a contradiction.

Note that θ(z), z ∈ S, if it is to exist, must be a continuous function of z, that is, a
continuous function of position in the plane, as opposed to θ(eit), 0 ≤ t ≤ 1, which
is a continuous function of the “time parameter” t. If we specify θ(1) = 0 and move
around the circle, continuity requires that θ(1) = 2π, which produces a contradiction.
(“A function is a function is a function.”)
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6. Since f is (uniformly) continuous on S, m = min{|f(z)| : z ∈ S} > 0, and for some
δ > 0 we have |f(z) − f(z′)| < m whenever z, z′ ∈ S, |z − z′| < δ. Break up S into
closed squares whose diagonal is less than δ. Let A be a particular square, and pick
any z0 ∈ A. Then |z − z0| < δ for every z ∈ A, hence |f(z) − f(z0)| < m. Thus
f(z) ∈ D(f(z0), m), and it follows just as in (3.1.7) that f has a continuous logarithm
on A.

Now let A and B be adjacent squares having a common side. If eg1 = f on A and
eg2 = f on B, then for some integer k, g1 − g2 = 2πik on the common side. If we
replace g2 by g2 +2πik, we produce a continuous logarithm of f on A∪B. Continuing
in this fashion, we may construct a continuous logarithm on each horizontal strip of S,
and then piece the horizontal strips together to cover all of S. Formal details are not
difficult to supply.

Remark: The same technique works if S is an infinite rectangular strip.

7. If D is a disk contained in Ω, then f has an analytic logarithm h on D. Thus g − h is
constant on D, so g is analytic on D, hence on all of Ω.

8. We will show that f and g are entire functions such that f2 +g2 = 1 iff for some entire
function h, we have f = cos h and g = sinh. The “if” part is immediate, so consider
the “only if” assertion. Since f + ig is entire and never 0, f + ig has an analytic
logarithm h0 on C. If h = −ih0, then f + ig = eih and f − ig = (f + ig)−1 = e−ih.
Consequently, f = (eih + e−ih)/2 = cos h and g = (eih − e−ih)/2i = sinh.

9. (a) Since (f/g)n = 1, f/g is a continuous map of S into {ei2πk/n : k = 0, 1, . . . , n− 1}.
Since S is connected, the image must be connected. Therefore the image consists of a
single point, so f/g = ei2πk/n for some fixed k.
(b) Take S = [−1, 1] and let f(x) = g(x) =

√
x, 0 ≤ x ≤ 1; f(x) = i

√
|x|,−1 ≤ x ≤ 0;

g(x) = −i
√
|x|,−1 ≤ x ≤ 0. Then f2(x) = g2(x) = x for all x ∈ S.

Section 3.3

1. By (i) of (3.3.1),
∫

γ
[ f(w)−f(z)

w−z ] dw = 0, and the result follows from (3.2.3).

2. In order to reproduce the proof in the text, two key observations must be made.
(a) Theorem 3.2.3 holds when γ is a cycle [this was noted in (3.3.5)].
(b) For any cycle γ = k1γ1+· · ·+kmγm, we have n(γ, z) = 0 for all sufficiently large |z|.
This holds because if |z| is large enough, then for each j, z will be in the unbounded
component of C \ γ∗j . Thus n(γ, z) = 0 by (3.2.5).

With these modifications, the proof in the text goes through.

3. By (3.2.5), n(γ, z) is locally constant, and the result then follows from (2.2.10) and (ii)
of (3.3.1).

4. By partial fraction expansion,

1
z2 − 1

=
1

(z − 1)(z + 1)
=

1/2
z − 1

− 1/2
z + 1

.
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By the Cauchy integral formula [(ii) of (3.3.1)],∫
γ

1
z2 − 1

dz = 2πi(
1
2
− 1

2
) = 0.

5. Apply Problem 3 with k = 3, f(w) = ew + cos w, z = 0, to obtain∫
γj

ez + cos z

z4
dz =

2πi

3!
n(γj , 0)f (3)(0) =

πi

3
n(γj , 0).

Since n(γ1, 0) = −1, n(γ2, 0) = −2, the integral on γ1 is −πi/3 and the integral on γ2

is −2πi/3.

6. By (3.3.7), we may replace γ by γ0(t) = cos t + i sin t, hence
∫

γ
dz/z =

∫
γ0

dz/z = 2πi.
But ∫

γ

dz

z
=

∫ 2π

0

−a sin t + ib cos t

a cos t + ib sin t
dt.

Take imaginary parts to obtain

2π = ab

∫ 2π

0

cos2 t + sin2 t

a2 cos2 t + b2 sin2 t
dt,

and the result follows.

Section 3.4

1. (a) Let Ω = C \ {0}. Then Ĉ \ Ω = {0,∞}, which is not connected. If f(z) = 1/z on
Ω and γ describes any circle with center at 0, then

∫
γ

f(z) dz = 2πi �= 0.
(b) Let Ω be the union of two disjoint disks D1 and D2. Then Ω is disconnected, but
Ĉ \ Ω is connected.

2. No. For example, the situation illustrated in Figure 3.4.4 can occur even if Ω is
connected. In this case, there is no way to replace the cycle γ by a single closed path.

3. (a) Since 1− z is analytic and never 0 on the simply connected open set C \ Γ1, it has
an analytic square root f . If we specify that

√
1 = 1, then f is determined uniquely,

by Problem 9(a) of Section 3.2. A similar analysis applies to g.
(b) Since f2 = g2 and f(0) = g(0) = 1, f = g on any connected open set containing
0, by Problem 9(a) of Section 3.2. In particular, f = g below Γ. Suppose f = g above
Γ. Since f is analytic on Γ2 \ {1} and g is analytic on Γ1 \ {1}, f can be extended
to a function analytic on C \ {1}. Thus 1 − z has an analytic square root on C \ {1},
so that z has an analytic square root on C \ {0}, a contradiction. (If h2(z) = z with
h continuous on C \ {0}, then h(eit) = eit/2k(t), where k(t) = ±1. A connectedness
argument shows that either k(t) ≡ 1 or k(t) ≡ −1, and in either case we obtain a
contradiction by letting t→ 0 and t→ 2π.) It follows that f(z0) = −g(z0) for at least
one point z0 above Γ, and as above, we must have f = −g at all points above Γ.
(c) The function h may be obtained by expanding g in a Taylor series on D(0, 1). Thus
h(z) = f(z), z ∈ D(0, 1), z below Γ1, and h(z) = −f(z), z ∈ D(0, 1), z above Γ1.
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4. It follows from part (a) of (3.4.3) that if Ω ⊆ C, then Ω is open in C iff Ω is open in Ĉ.
If K is a compact subset of C, then Ĉ \K is open in Ĉ. On the other hand, if ∞ ∈ V ,
where V is open in Ĉ, then Ĉ\V is a closed and bounded (hence compact) subset of C.
Thus the open sets in Ĉ are of two types: (i) open subsets of C, and (ii) complements
of compact subsets of C. Consequently, Ĉ (with the topology induced by the chordal
metric) is homeomorphic (via the identity map) to the one point compactification of C.

Chapter 4

Section 4.1

1. (a) If f has a removable singularity at z0, then as in the proof of (4.1.5), f can be
defined or redefined at z0 so as to be analytic on D(z0, r) for some r > 0. Thus f is
bounded on D′(z0, δ) for some δ > 0, in fact f is bounded on D(z0, δ). Conversely, if
f is bounded on D′(z0, δ), let g(z) = (z − z0)f(z). Then g(z) → 0 as z → z0, so by
the first equivalence of (4.1.5a), g has a removable singularity at z0. Since the Laurent
expansion of g has only nonnegative powers of z − z0, it follows that f has either a
removable singularity or a pole of order 1 at z = z0. The second case is impossible by
the first equivalence of (4.1.5b), and the result follows.
(b) If f has a pole of order m at z0, then (z − z0)mf(z) → K �= 0 as z → z0, so
|f(z)| → ∞. Conversely, if |f(z)| → ∞ as z → z0, then by (4.1.5a) and (4.1.6) (which
we use instead of (4.1.5c) to avoid circularity), f cannot have a removable or essential
singularity at z0, so f must have a pole.

2. (a) Since limz→nπ(z − nπ)z/ sin z = nπ/ cos nπ = (−1)nnπ, there are, by (4.1.5),
simple poles at z = nπ, n a nonzero integer. Since z/ sin z → 1 as z → 0, there is a
removable singularity at z = 0. Now f(1/z) = 1/z sin 1/z has poles at z = 1/nπ, n =
±1,±2, . . . , so 0 is a nonisolated singularity of f(1/z), hence ∞ is a nonisolated
singularity of f(z).
(b) There is an isolated essential singularity at 0 since e1/x →∞ as x→ 0+, e1/x → 0
as x→ 0−. There is a removable singularity at ∞ since ez is analytic at 0.
(c) There is an isolated essential singularity at 0 since z cos 1/z = z(1 − 1/2!z2 +
1/4!z4− · · · ), z �= 0. There is a simple pole at ∞ because (1/z) cos z has a simple pole
at 0.
(d) There is a pole of order 2 at 0 since z2f(z)→ 1 as z → 0. There are poles of order 1
at z = i2nπ, n = ±1,±2, . . . since (z− i2nπ)/z(ez−1)→ (1/i2nπ)(1/ei2nπ) = 1/i2nπ
as z → i2nπ.
(e) There are simple poles at z = nπ, n = 0,±1,±2, . . . since (z − nπ) cos z/ sin z →
cos nπ/ cos nπ = 1 as z → nπ. There is a non-isolated singularity at ∞ because ∞ is
a limit point of poles.

3. We have f(z) = 1
z − 3

z+1 + 2
z−2 , and

1
z

=
1

(z + 1)− 1
=

−1
1− (z + 1)

= −
∞∑

n=0

(z + 1)n, |z + 1| < 1;
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2
z − 2

=
2

(z + 1)− 3
=

−2/3
1− 1

3 (z + 1)
= −2

3

∞∑
n=0

(1/3)n(z + 1)n, |z + 1| < 3.

Thus

f(z) = − 3
z + 1

−
∞∑

n=0

[
1 +

2
3n+1

]
(z + 1)n, 0 < |z + 1| < 1.

We may obtain a Laurent expansion for 1 < |z + 1| < 3 by modifying the expansion
of 1/z, as follows:

1
z

=
1

(z + 1)− 1
=

1
z+1

1− 1
z+1

=
1

z + 1

∞∑
n=0

1
(z + 1)n

, |z + 1| > 1.

Therefore

f(z) = − 2
z + 1

+
∞∑

k=1

1
(z + 1)k

− 2
3

∞∑
n=0

(1/3)n(z + 1)n, 1 < |z + 1| < 3.

For |z+1| > 3, the expansion 1/z =
∑∞

n=0 1/(z+1)n+1 is acceptable, but the expansion
of 2/(z − 2) must be modified:

2
z − 2

=
2

(z + 1)− 3
=

2
z+1

1− 3
z+1

=
2

z + 1

∞∑
n=0

3n(z + 1)−n.

Thus

f(z) = − 3
z + 1

+
∞∑

n=1

1
(z + 1)n

+ 2
∞∑

n=1

3n−1

(z + 1)n
=
∞∑

n=2

[
1 + 2(3n−1)

(z + 1)n

]
, |z + 1| > 3.

4. We have

1
z + 2

=
1/2

1 + z/2
=
∞∑

n=0

(−1)nzn/2n+1, |z| < 2

and

1
z + 2

=
1/z

1 + 2/z
=
∞∑

n=0

(−1)n2n/zn+1, |z| > 2.

Now 1/(1 − z) =
∑∞

n=0 zn, |z| < 1, and therefore by differentiation, 1/(1 − z)2 =∑∞
n=1 nzn−1, |z| < 1. Also

1
1− z

=
−1/z

1− 1/z
= −

∞∑
n=0

1
zn+1

, |z| > 1,
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hence

1
(1− z)2

=
∞∑

n=0

n + 1
zn+2

, |z| > 1.

Thus

f(z) =
1
z

+
∞∑

n=0

[n + 1 + (−1)n2−(n+1)]zn, 0 < |z| < 1

=
1
z

+
∞∑

n=0

n + 1
zn+2

+
∞∑

n=0

(−1)n2−(n+1)zn, 1 < |z| < 2

=
2
z

+
∞∑

n=2

[n− 1 + (−1)n−12n−1]
1
zn

, |z| > 2.

Remark

The coefficients of the Taylor expansion of f(1/z) about z = 0 are the same as the
coefficients of the Laurent expansion of f(z) valid for |z| > 2, that is, in a neighborhood
of ∞. For this reason, the expansion of f(z) for |z| > 2 may be called the “Taylor
expansion of f about ∞.”

5. Since g(z) = z/(ez − e−z) → 1/2 as z → 0, g has a removable singularity at z = 0.
We may compute the derivatives of g at z = 0 to form the Taylor expansion g(z) =
(1/2)− (1/12)z2 + (7/720)z4 − · · · , 0 < |z| < π. Thus

f(z) =
1

z2(ez − e−z)
=

1
2z3
− 1

12z
+

7
720

z + · · · , 0 < |z| < π.

Alternatively,

g(z) =
1
2

(
1 +

z2

3!
+

z4

5!
+ · · ·

)−1

=
∞∑

n=0

anzn,

and the Taylor coefficients may be found by ordinary long division, or by matching
coefficients in the equation(

1 +
z2

3!
+

z4

5!
+ · · ·

)
(a0 + a1z + a2z

2 + · · · ) =
1
2
.

6. The function

1
sin z

− 1
z

+
1

z − π
+

1
z + π

is analytic for |z| < 2π, hence has a Taylor expansion
∑∞

n=0 anzn. Also,

1
z
− 1

z − π
− 1

z + π
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has a Laurent expansion
∑∞

n=−∞ bnzn, π < |z| < 2π; the expansion may be found by
the procedure illustrated in Problems 3 and 4. Addition of these two series gives the
Laurent expansion of 1/ sin z, π < |z| < π.

7. Expand R(z) in a Laurent series about z = z1:

R(z) =
A1,0

(z − z1)n1
+

A1,1

(z − z1)n1−1
+ · · ·+ A1,n1−1

z − z1
+ R∗1(z),

where R∗1 is analytic at z1 and the representation is valid in some deleted neighborhood
of z1. Define

R1(z) = R(z)−
n1−1∑
i=0

A1,i

(z − z1)n1−i
.

Then R1 is a rational function whose poles are at z2, . . . , zk with orders n2, . . . , nk,
and R1 has a removable singularity at z1 since R1 = R∗1 near z1. Similarly, expand
R1(z) in a Laurent series about z2 to obtain

R2(z) = R1(z)−
n2−1∑
i=0

A2,i

(z − z2)n2−i
,

where R2 is a rational function with poles at z3, . . . , zk with orders n3, . . . , nk. Con-
tinue in this fashion until we reach Rk:

Rk(z) = Rk−1(z)−
nk−1∑
i=0

Ak,i

(z − zk)nk−i
= R(z)−

k∑
i=1

Bi(z).

Now Rk−1 has a pole only at zk, so Rk is a rational function with no poles, that is, a
polynomial. But R(z)→ 0 as z →∞ by hypothesis (deg P < deg Q), and Bi(z)→ 0
as z →∞ by construction. Thus Rk(z) ≡ 0. Finally,

lim
z→zj

dr

dzr
[(z − zj)nj Bm(z)] = 0, m �= j,

and when m = j, the limit is

lim
z→zj

dr

dzr

nj−1∑
i=0

Aj,i(z − zj)i = r!Aj,r.

Hence

r!Aj,r = lim
z→zj

dr

dzr
[(z − zj)nj R(z)]

as desired. Now

1
z(z + i)3

=
A

z
+

B

(z + i)3
+

C

(z + i)2
+

D

z + i
, where
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A = [zR(z)]z→0 =
1
i3

= i

B = (z + i)3R(z)]z→−i =
1
−i

= i

C =
[

d

dz
[(z + i)3R(z)]

]
z→−i

=
[−1

z2

]
z→−i

= 1

D =
1
2!

[
d2

dz2
[(z + i)3R(z)]

]
z→−i

=
[

1
z3

]
z→−i

= −i.

Thus

1
z(z + i)3

=
i

z
+

i

(z + i)3
+

1
(z + i)2

− i

z + i
.

8. The series converges absolutely on U = {x + iy : −1 < y < 1}, uniformly on {x + iy :
−1 + ε ≤ y ≤ 1 − ε} for every ε > 0, hence uniformly on compact subsets of U . The
series diverges for z /∈ U . For

∞∑
n=0

e−neinz =
∞∑

n=0

e(iz−1)n =
1

1− eiz−1

if |eiz−1| < 1, that is, e−(y+1) < 1, or y > −1; this series diverges if |eiz−1| ≥ 1, that is,
y ≤ −1. The convergence is uniform for |eiz−1| ≤ r < 1, that is, y ≥ −1− ε. Similarly,

∞∑
n=0

e−ne−inz =
1

1− e−iz−1

if |e−iz−1| < 1, that is, y < 1, with uniform convergence for y ≤ 1 − ε. The result
follows; explicitly, we have

∞∑
n=0

e−n sinnz =
1
2i

[
1

1− eiz−1
− 1

1− e−iz−1

]
, z ∈ U.

9. (a) Since Ĉ is compact, f is bounded. The result follows from Liouville’s theorem.
(b) If f(z) =

∑∞
m=0 bmzm, z ∈ C, then g(z) = f(1/z) =

∑∞
m=0 bmz−m, z ∈ C, z �= 0, a

Laurent expansion of g about z = 0. By (4.1.3),

bm =
1

2πi

∫
|z|=1/r

g(w)wm−1 dw,

hence

|bm| ≤ max{|g(z)| : |z| = 1/r}(1/r)m = max{|f(z)| : |z| = r}(1/r)m,
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which approaches 0 as r → ∞ if m > k. Thus bm = 0 for m > k, and the result
follows.
(c) The argument is the same as in (b), except now we know by hypothesis that bm is
nonzero for only finitely many m, so it is not necessary to use (4.1.3).
(d) Let the poles of f in C be at z1, . . . , zk, with orders n1, . . . , nk. (If f had infinitely
many poles, there would be a nonisolated singularity somewhere in Ĉ. Let g(z) =
f(z)

∏k
j=1(z− zj)nj . Then g is analytic on C and has a nonessential singularity at∞.

By (c), g is a polynomial, hence f is a rational function.

10. (a) Pole of order 2 at z = 0, isolated essential singularity at ∞.
(b) Isolated essential singularity at z = 0, pole of order 1 at z = −1, removable singu-
larity at ∞.
(c) z csc z → 1 as z → 0, hence csc z − k/z has poles of order 1 at z = nπ, n =
±1,±2, . . . , and a pole of order 1 at z = 0 as long as k �= 1. If k = 1, there is a
removable singularity at z = 0. The point at ∞ is a nonisolated singularity.
(d) If z is real and near 2/[(2n + 1)π], n = 0,±1,±2, . . . , then exp[sin(1/z)(cos(1/z)]
will be near∞ or 0 depending on the sign of z−[2/(2n+1)π]. By (4.1.5), exp[tan(1/z)]
has an isolated essential singularity at z = [2/(2n + 1)π]. There is a nonisolated sin-
gularity at 0 and a removable singularity at ∞.
(e) sin(x + iy) = nπ when sinx cosh y + i cos x sinh y = nπ + i0. Thus if n = 1, 2, . . . ,
then y = cosh−1 nπ, x = (4k + 1)π/2, k an integer. (cosh−1 nπ refers to the two num-
bers u and −u such that cosh u = nπ.) If n = −1,−2, . . . , then y = cosh−1(−nπ), x =
(4k + 3)π/2, k an integer. If n = 0, then x = kπ, y = 0, k an integer. If z0 = x0 + iy0

is any of these points, then by Problem 4 of Section 2.4,

lim
z→z0

z − z0

sin(sin z)
=

1
cos(sin z0) cos z0

=
1

cos nπ cos z0
.

Now cos(x0 + iy0) = cos x0 cosh y0 − i sinx0 sinh y0, and this is nonzero, by the above
argument. Thus all the points are poles of order 1. The point at ∞ is a nonisolated
singularity.

11. Let f(z) = (z − a)/(z − b) and U = C \ [a, b]. For any closed path γ in U ,

1
2πi

∫
γ

f ′(z)
f(z)

dz =
1

2πi

∫
γ

(
1

z − a
− 1

z − b

)
dz = n(γ, a)− n(γ, b) = 0

because a and b lie in the same component of C \ γ∗. (Note that γ∗ ⊆ U , hence
[a, b] ∩ γ∗ = ∅.) By (3.1.9), f has an analytic logarithm g on U . Now g′ = f ′/f [see
(3.1.9)], hence

g′(z) =
1

z − a
− 1

z − b

=
∞∑

n=0

(an − bn)
zn+1

, |z| > max(|a|., |b|)

=
∞∑

n=0

(
1

bn+1
− 1

an+1

)
zn, |z| < min(|a|, |b|).
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Thus

g(z) = log
(

z − a

z − b

)
= k +

∞∑
n=1

bn − an

nzn
, |z| > max(|a|, |b|), z ∈ U

and

g(z) = k′ +
∞∑

n=1

1
n

(
1
bn
− 1

an

)
, |z| < min(|a|, |b|), z ∈ U

where k is any logarithm of 1 and k′ is any logarithm of a/b.

12. If f(C) is not dense in C, then there is a disk D(z0, r) such that D(z0, r)∩ f(C) = ∅.
Thus for all z ∈ C, |f(z)−z0| ≥ r, and the result now follows from Liouville’s theorem
applied to 1/[f(z)− z0].

13. If P (z) =
∑n

j=0 ajz
j , then P (f(z)) = an[f(z)]n + · · · + a1f(z) + a0. By hypothesis,

(z−α)mf(z) approaches a finite nonzero limit as z → α, hence so does (z−α)mn[f(z)]n.
But if j < n, then (z − α)mnf(z)j = (z − α)mnf(z)n/[f(z)]n−j → 0 as z → α; the
result follows.

Section 4.2

1. By (4.2.7), n(f ◦ γ, 0) = −1. Geometrically, as z traverses γ once in the positive
sense, the argument of z − 1 changes by 2π, the argument of z + 2i also changes by
2π, and the argument of z − 3 + 4i has a net change of 0. Thus the total change in
the argument of f(z) is 2π − 2(2π) = −2π, hence n(f ◦ γ, 0) = −1.

2. Let γ describe the contour of Figure S4.2.1, with r “very large”. Now f(z) = z3 −
z2 + 3z + 5, so f(iy) = 5 + y2 + i(3y − y3). Thus f ◦ γ is as indicated in Figure
S4.2.2. Note that in moving from B to C, the argument of z changes by π. Since
f(z) = z3(1− z−1 + 3z−2 + 5z−3) = z3g(z) where g(z)→ 1 as z →∞, the argument
of f(z) changes by approximately 3π. Note also that f(z) = f(z), so that f ◦ γ is
symmetrical about the real axis. It follows that n(f ◦ γ, 0) = 2, so that f has two
roots in the right half plane. (In fact f(z) = (z + 1)[(z − 1)2 + 4], with roots at
−1, 1 + 2i, 1− 2i.)

r

y

A

B

C

x

Figure S4.2.1
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A'

C'

v

u

B'

Figure S4.2.2

3. Let f(z) = anzn+· · ·+a1z+a0, an �= 0, g(z) = anzn. Then if γ describes a sufficiently
large circle centered at the origin, |f − g| < |g| on γ∗, so by Rouché’s theorem, f has
exactly n zeros inside γ, counting multiplicity.

4. (a) Integrate f(z) = zeiaz/(z4 + 4) around the contour γ indicated in Figure S4.2.3.
Then

∫
γ

f(z) dz = 2πi
∑

residues of f at poles in the upper half plane. The poles of
f are at

√
2eiπ/4,

√
2ei3π/4,

√
2ei5π/4,

√
2ei7π/4. The residue at z = z0 is

lim
z→z0

(z − z0)zeiaz

z4 + 4
=

z0e
iaz0

4z3
0

.

Thus

∫
γ

f(z) dz =
2πi

4

[
exp(ia

√
2eiπ/4)

2eiπ/2
+

exp(ia
√

2ei3π/4)
2ei3π/2

]

which reduces to

π

4
[exp(ia

√
2(
√

2/2 + i
√

2/2))− exp(ia
√

2(−
√

2/2 + i
√

2/2))]

=
π

4
e−a(eia − e−ia) =

π

2
ie−a sin a.

An application of (2.1.5) shows that the integral of f around the semicircle approaches
0 as r →∞. Thus in the expression∫ r

−r

f(x) dx +
∫

z=reit,
0≤t≤π

f(z) dz =
π

2
ie−a sin a,
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we may let r →∞ to obtain∫ ∞
−∞

xeiax

x4 + 4
dx =

π

2
ie−a sin a.

Take imaginary parts to obtain∫ ∞
−∞

x sin ax

x4 + 4
dx =

π

2
e−a sin a.

(b) By the analysis of (a), the integral is 2πi times the sum of the residues in the

x

y

-r r

Figure S4.2.3

upper half plane of

z

(z2 + 1)(z2 + 2z + 2)
=

z

(z − i)(z + i)(z − (−1 + i))(z − (−1− i))
.

The residue at z = i is

i

2i(i2 + 2i + 2)
=

1
2(1 + 2i)

=
1− 2i

10
.

The residue at −1 + i is

−1 + i

[(−1 + i)2 + 1]
1
2i

=
−1 + i

4 + 2i
=
−1 + 3i

10
.

Thus the integral is 2πi(i/10) = −π/5.

(c) The integral is 2πi
∑

residues of 1/(z2 − 4z + 5)2 in the upper half plane. Now
z2− 4z +5 = (z− 2)2 +1, so there are poles of order 2 at 2+ i and 2− i. By (4.2.2d),
he residue at 2 + i is

d

dz

[
1

(z − (2− i))2

]
z=2+i

=
[ −2
(z − (2− i))3

]
z=2+i

=
−2
8i3

.

The integral is 2πi/4i = π/2.

(d) The integral is∫ 2π

0

eiθ + e−iθ

2(5 + 2(eiθ + e−iθ))
dθ =

∫
|z|=1

z + z−1

2(5 + 2(z + z−1))
dz

iz
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which is 2πi times the sum of the residues of the integrand inside the unit circle.
Multiply numerator and denominator of the integrand by z to get

z2 + 1
2iz(2z2 + 5z + 2)

=
z2 + 1

2iz(2z + 1)(z + 2)
.

The residue at z = 0 is 1/4i, and the residue at z = −1/2 is

5/4
2i(−1/2)2(3/2)

=
−5
12i

.

Thus the integral is 2πi(−2/12i) = −π/3.

(e) Since the integrand is an even function, we may integrate from−∞ to∞ and divide
by 2 to get πi

∑
residues of 1/(z4 + a4) in the upper half plane. By a computation

similar to (a), the residue at aeiπ/4 is 1/(4a3ei3π/4), and the residue at aei3π/4 is
1/(4a3ei9π/4). Thus the integral is

πi

4a3
(e−iπ/4 + e−i3π/4) =

π

4a3
(sin

π

4
+ sin

3π

4
) =
√

2
π

4a3
.

(f) We may integrate eix/(x2 +1) from −∞ to ∞, divide by 2, and take the real part
to get Re(πi

∑
residues of eiz/(z2 + 1) in the upper half plane). The residue at z = i

is e−1/2i, hence the integral is Re(πie−1/2i) = π/2e.

(g) The integral is

∫ 2π

0

(
eiθ − e−iθ

2i

)2n

dθ =
∫
|z|=1

(
z − z−1

2i

)2n
dz

iz

which is 2πi times the residue of (z2 − 1)2n/(i22nz2n+1)(−1)n at z = 0. But the
Taylor expansion of (1− z2)2n is

1− 2nz2 +
(

2n

2

)
z4 −

(
2n

3

)
z6 + · · ·+ (−1)n

(
2n

n

)
z2n + · · ·+ z4n.

Thus the coefficient of 1/z in the Laurent expansion of (z2−1)2n/z2n+1 is (−1)n
(
2n
n

)
.

Therefore ∫ 2π

0

(sin θ)2n dθ =
2π

(
2n
n

)
22n

=
2π(2n)!
(2nn!)2

.

Remark : In these examples [except for (d) and (g)] we needed a result of the form∫
z=reit

0≤t≤π

f(z) dz → 0 as r →∞.

By (2.1.5), this will hold if zf(z)→ 0 as z →∞ in the upper half plane.
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5. When z = i(2n + 1)π, n an integer, 1 + ez = 0. These are simple poles of f(z) =
(Log z)/(1 + ez) with residues Log(i(2n + 1)π)/ei(2n+1)π = −Log i(2n + 1)π. Since
n(γ,−iπ) = −1, the integral is

2πi[Res(f, i3π)− Res(f,−iπ)] = 2πi[−Log(i3π) + Log(−iπ)]

= 2πi[− ln 3− iπ] = 2π2 − i2π ln 3.

6. (a) The Taylor expansion of sin2 z has no term of degree 3, so the residue is 0.
(b) The Taylor expansion of z3 sin z2 is

z5[1− z4

3!
+

z8

5!
− z12

7!
+ · · · ]

and by long division, the reciprocal of the expression in brackets has a z4 term with
coefficient 1/3! = 1/6. The residue is therefore 1/6.
(c) We have

z cos
1
z

= z

[
1− 1

2!z2
+

1
4!z4

− · · ·
]

and the residue is therefore -1/2.

7. We have

sin(
ez

z
) =

ez

z
− e3z

3!z3
+

e5z

5!z5
− · · · =

∞∑
n=1

fn(z), z �= 0,

where

fn(z) = [(−1)(n−1)/2]
enz

n!zn
, n odd

and fn(z) = 0 for n even. Now for n odd,

fn(z) =
(−1)(n−1)/2

n!zn
(1 + nz +

n2z2

2!
+ · · · ) =

∞∑
k=−∞

aknzk, z �= 0,

where akn = 0, k < −n, and the series is the Laurent expansion of fn about z = 0.
Now

∞∑
n=1

∞∑
k=−∞

|aknzk| =
∞∑

n=1
n odd

en|z|

n!|z|n = sinh
(

e|z|

|z|

)
<∞.

Thus we may reverse the order of summation to obtain

sin(ez/z) =
∞∑

k=−∞

( ∞∑
n=1

akn

)
zk, z �= 0.
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This is the Laurent expansion of sin(ez/z) about z = 0. The residue at z = 0 is
therefore

∑∞
n=1 a−1,n. But a−1,n = 0 for n even, and for n odd we have a−1,n =

(−1)(n−1)/2nn−1/(n− 1)!n!. Thus the residue is

∑
n=1,3,5,···

(−1)(n−1)/2nn−1

(n− 1)!n!
.

8. (a) Since sin θ lies above the line segment joining (0,0) to (π/2, 1), we have sin θ ≥
2θ/π, 0 ≤ θ ≤ π/2. Thus∫ π/2

0

e−r sin θ dθ ≤
∫ π/2

0

e−2rθ/π dθ =
π

2r
(1− e−r).

(b) Let γ be the path of Figure 4.2.3, traversed in the positive sense; γ consists of
a radial path γ1 away from z0, followed by γε, and completed by a radial path γ2

toward z0. If g(z) = f(z) − [k/(z − z0)], k = Res(f, z0), then g is analytic at z0, so∫
γ

g(z) dz = 0 by Cauchy’s theorem. Now∫
γε

f(z) dz =
∫

γε

g(z) dz + k

∫
γε

dz

z − z0

= −
∫

γ1

g(z) dz −
∫

γ2

g(z) dz + k

∫
γε

dz

z − z0.

Since the integrals along γ1 and γ2 approach 0 as ε → 0 by (uniform) continuity of
g, we must show that

∫
γε

dz
z−z0

dz → αi. In fact, if θ0 is the angle between γ1 and the
horizontal, then ∫

γε

dz

z − z0
=

∫ θ0+α

θ0

iεeiθ

εeiθ
dθ = αi.

9. (a) By Problem 8a, the integral around the large semicircle approaches 0 as the
radius approaches ∞. By Problem 8b, the integral around the small semicircle
approaches −iπ Res(eiz/z, 0) = −iπ as the radius approaches 0. It follows that∫∞
−∞(eix/x) dx − iπ = 0 (where the integral is interpreted as a Cauchy principal

value), or
∫∞
−∞[(sinx)/x] dx = π.

(b) By Cauchy’s theorem,

0 =
∫ r

0

eix2
dx +

∫ π/4

0

exp(ir2ei2t)ireit dt +
∫ 0

r

exp(is2eiπ/2)eiπ/4 ds.

The second integral is, in absolute value, less than or equal to

r

∫ π/4

0

e−r2 sin 2t dt→ 0 as r →∞

(sin θ ≥ 2θ/π, 0 ≤ θ ≤ π/2; see Problem 8 for details). Thus∫ ∞
0

eix2
dx =

∫ ∞
0

e−s2
eiπ/4 ds =

1
2
√

πeiπ/4,
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and therefore
∫∞
0

cos x2 dx =
∫∞
0

sinx2 dx = 1
2

√
π
2 .

(c) The integral of [Log(z + i)]/(z2 + 1) on γ is 2πi times the residue at z = i of
[Log(z + i)]/(z2 + 1), which is 2πi(Log 2i)/2i = π ln 2 + iπ2/2. (Note that Log(z + i)
is analytic except for z = −i− x, x ≥ 0.) Thus∫ 0

−r

Log(x + i)
x2 + 1

dx +
∫ r

0

Log(x + i)
x2 + 1

dx→ π ln 2 +
iπ2

2
.

(The integral around the large semicircle approaches 0 as r → ∞, by the M-L theo-
rem.) Now let x′ = −x in the first integral to obtain∫ r

0

[Log(i− x) + Log(i + x)]
x2 + 1

dx→ π ln 2 + i
π2

2
.

But Log(i − x) + Log(i + x) = ln[|i − x||i + x|] + i(θ1 + θ2) = ln(x2 + 1) + iπ (see
Figure S4.2.4). Hence∫ ∞

0

ln(x2 + 1)
x2 + 1

dx + iπ

∫ ∞
0

dx

x2 + 1
= π ln 2 +

iπ2

2

or ∫ ∞
0

ln(x2 + 1)
x2 + 1

dx = π ln 2.

.

x-x

i

i + x i - x

θ2 θ2 θ1

Figure S4.2.4

(d) In (c) let x = tan θ to obtain

π ln 2 =
∫ π/2

0

ln(tan2 θ + 1)
tan2 θ + 1

sec2 θ dθ = −2
∫ π/2

0

ln cos θ dθ

so ∫ π/2

0

ln cos θ dθ = −π

2
ln 2.

Set θ = π
2 − x to get

−π

2
ln 2 = −

∫ 0

π/2

ln cos(
π

2
− x) dx =

∫ π/2

0

ln sinx dx.
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10. Let f(z) = z4, g(z) = z4 + 6z + 3. Then |f(z)− g(z)| = |6z + 3|; if |z| = 2, this is less
than or equal to 12 + 3 < |z|4 = |f(z)|. Since f has all its zeros inside {z : |z| = 2},
so does g.

Now let f(z) = 6z, g(z) = z4 + 6z + 3. Then |f(z) − g(z)| = |z4 + 3| ≤ 4 < 6|z|
for |z| = 1. Thus g has one root inside {z : |z| = 1}, hence there are 3 roots in
{z : 1 < |z| < 2}. (Since |f − g| < |f | when |z| = 1, g cannot be 0 when |z| = 1.)

11. Apply Rouché’s theorem to f(z)− zn and −zn . We have |f(z)− zn + zn| = |f(z)| <
| − zn| when |z| = 1. Since −zn has n zeros inside the unit circle, so does f(z)− zn.

12. Apply the hexagon lemma (3.4.5) to the compact set K0 = {z : |f(z)+g(z)| = |f(z)|+
|g(z)|}. If γ1, . . . , γm are the polygonal paths given by the lemma, let γ =

∑m
j=1 γj .

Then γ∗ ⊆ Ω \ K0, so |f + g| < |f | + |g| on γ∗. Since Z(f) ∪ Z(g) ⊆ K0, we have
n(γ, z) = 1 for each z ∈ Z(f) ∪ Z(g). Again by (3.4.5), γ is Ω-homologous to 0. The
result now follows from (4.2.9).

13. First let u ≥ 0. Then the integral is 2πi times the residue of eiuz/[π(1+ z2)] at z = i,
which is 2πie−u/2πi = e−u. Now let u < 0. Then |eiu(x+iy)| = e−uy is bounded on
{x + iy : y ≤ 0} but not on {x + iy : y ≥ 0}. Thus we must complete the contour
in the lower half plane, as indicated in Figure S4.2.5. Therefore the integral is −2πi
times the residue of eiuz/[π(1 + z2)] at z = −i, which is −2πieu/− 2πi = eu.

x

y

Figure S4.2.5

14. We have

esin 1/z =
∞∑

k=0

[sin(1/z)]k

k!
.

Since | sin 1/z| is bounded on {z : |z| = 1}, the Weierstrass M -test shows that the
series converges uniformly on this set and may therefore be integrated term by term.
The residue theorem yields

∫
|z|=1

esin 1/z dz = 2πi

∞∑
n=0

1
n!

Res(sinn 1/z, 0).

But

sin
1
z

=
1
z
− 1

3!z3
+

1
5!z5

− · · · , z �= 0,
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and thus all residues of (sin 1/z)n at z = 0 are 0 except for n = 1, in which case the
residue is 1. The integral is therefore 2πi.

15. (a) Near z0 we have

f(z)
g(z)

=
(z − z0)k[ak + ak+1(z − z0) + · · · ]

(z − z0)k+1[bk+1 + bk+2(z − z0) + · · · ] .

The residue is therefore

ak

bk+1
=

f (k)(z0)/k!
g(k+1)(z0)/(k + 1)!

= (k + 1)
f (k)(z0)

g(k+1)(z0)
.

(b) Near z0 we have f(z)/g(z) = [a0 + a1(z − z0) + · · · ]/[(z − z0)2h(z)] where h(z) =
b0 + b1(z − z0) + · · · . The residue is therefore

d

dz
[f(z)/h(z)]z=z0 =

h(z0)f ′(z0)− f(z0)h′(z0)
h2(z0)

= [f ′(z0)/b0]− [f(z0)b1/b2
0].

But g(z) = b0(z− z0)2 + b1(z− z0)3 + · · · , so b0 = g′′(z0)/2! and b1 = g′′′(z0)/3!, and
the result follows.

16. let f(z) = 3z, g(z) = 3z − e−z. then

|f(z)− g(z)| = |e−z| = |e−(x+iy)| = e−x ≤ e < 3 = |f(z)| for |z| = 1.

The result follows from Rouché’s theorem.
17. If w ∈ D(0, ε), we must show that w = f(z) for some z ∈ D(0, r), that is, f − w has

a zero in D(0, r). Now when |z| = r we have |(f(z) − w) − f(z)| = |w| < ε ≤ |f(z)|
by hypothesis. By Rouché’s theorem, f −w and f have the same number of zeros in
D(0, r). But f has at least one zero in D(0, r) since f(0) = 0, and the result follows.

18. The analytic function 1/ez contributes zero to the integral, as does cos 1/z, whose
residue at 0 is 0. Since +i is inside the circle C(1 + i, 2) but −i is outside, the
integral is 2πi times the residue of eπz/[(z − i)(z + i)] at z = i. Thus the integral is
2πi(eiπ/2i) = −π.

19. Let γr be the contour formed by traveling from −r to r along the real axis, and then
returning to −r on the semicircle S(0, r) (in the upper half plane) with center at 0
and radius r. The integral of P (z)/Q(z) on the semicircle approaches 0 as r → ∞,
by the M-L theorem. For r sufficiently large, γr encloses all the poles of P/Q in the
upper half plane, so∫

γr

P (z)
Q(z)

dz =
∫ r

−r

P (x)
Q(x)

dx +
∫

S(0,r)

P (z)
Q(z)

dz

and we may let r →∞ to get the desired result. For the specific example, note that
the poles of z2/(1 + z4) in the upper half plane are at z = eiπ/4 and ei3π/4. The
residues are

lim
z→eiπ/4

(z − eiπ/4)z2

z4 + 1
= eiπ/2 lim

z→eiπ/4

(z − eiπ/4)
z4 + 1

=
eiπ/2

4ei3π/4
=

1
4
e−iπ/4
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and

lim
z→ei3π/4

(z − ei3π/4)z2

z4 + 1
=

ei3π/2

4ei9π/4
=

1
4
e−i3π/4.

Thus the integral is

2πi

4
(e−iπ/4 + e−i3π/4) =

πi

2
(−i sin

π

4
− i sin

3π

4
) =

πi

2
(−i
√

2) =
1
2
π
√

2.

20. Apply Rouché’s theorem with f(z) = azn and g(z) = azn − ez. Then for |z| = 1,
|f(z)− g(z)| = |ez| ≤ e|z| = e < |a| = |f(z)|, and the result follows.

21. Let f(z) = 2z, g(z) = 2z + 1− ez. then for |z| = 1,

|f(z)− g(z)| = |ez − 1| = |z +
z2

2!
+

z3

3!
+ · · · |

so

|f(z)− g(z)| ≤ 1 +
1
2!

+
1
3!

+ · · · = e− 1 < 2 = |f(z)|

and Rouché’s theorem applies.
22. Let g(z) = −5z4. If |z| = 1, then |f(z) − g(z)| = |z7 + z2 − 2| ≤ 1 + 1 + 2 < |g(z)|

and Rouché’s theorem applies.
23. If g(z) = z5, then for |z| = 2 we have |f(z)− g(z)| = |15z + 1| ≤ 31 < 25 = |g(z)|. If

h(z) = 15z, then for |z| = 1/2, |f(z)− h(z)| = |z5 + 1| ≤ (1/2)5 + 1 < 15/2 = |h(z)|.
The result follows from Rouché’s theorem.

24. Apply Rouché’s theorem with f(z) = z5, g(z) = z5 + z + 1. We have, for |z| =
5/4, |f(z)− g(z)| = |z + 1| ≤ (5/4) + 1 = 9/4. But |f(z)| = (5/4)5 = 3.05 > 9/4, and
the result follows.

25. If fn(zn) = 0 for all n and zn → 0, then |f(z0)| ≤ |f(z0)− f(zn)|+ |f(zn)− fn(zn)|+
|fn(zn)| → 0 as n → ∞ by the uniform convergence of fn on compact subsets and
the continuity of f at z0. Thus f(z0) = 0. Conversely, assume f(z0) = 0. Since
f is not identically zero, there is a disk D(z0, r) containing no zero of f except z0.
Let δ = min{|f(z)| : |z − z0| = r} > 0. For sufficiently large m, |f(z) − fm(z)| < δ
for all z ∈ D(z0, r), hence on C(z0, r) we have |f(z) − fm(z)| < |f(z)|. By Rouché’s
theorem, fm has a zero in D(z0, r), say at zm. We may repeat this process using the
disks D(z0, 2−nr), n = 1, 2, 3, . . . to find the desired subsequence.

26. (a) This is a direct calculation.
(b) By hypothesis, p must have n−k zeros in |z| > 1, and the result follows from (a).
(c) This follows from (a) if we note that for |z| = 1, we have zz = 1, hence 1/z = z.
(d) Assume |a0| > |an|. If g(z) = a0p(z), then |f(z)− g(z)| = |anq(z)| < |a0p(z)| by
part (c), so |f(z)−g(z)| < |g(z)|. By Rouché’s theorem, f has k zeros in |z| < 1. Now
assume |a0| < |an|. If h(z) = −anq(z), then for |z| = 1, |f(z) − h(z)| = |a0p(z)| <
| − anq(z)| = |h(z)|. By Rouché’s theorem and part (b), f has n− k zeros in |z| < 1.
(e) If |a0| > |an| and p has no zeros in |z| > 1, then p has n zeros in |z| < 1, hence so
does f , by (d). If |a0| < |an| and p has no zeros in |z| < 1, then by (d), f has n zeros
in |z| < 1. In either case there is a contradiction, because f is a polynomial of degree
at most n− 1.
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Section 4.3

1. Near z0 we have f(z) =
∑∞

n=−1 an(z−z0)n and g(z) =
∑∞

m=0 bm(z−z0)m. The Laurent
expansion of g(z)f(z) is found by multiplying the two series, and Res(gf, z0) = b0a

−1 =
g(z0) Res(f, z0), as desired. For the counterexample, take z0 = 0, f(z) = (1/z2) +
(1/z), g(z) = 1 + z. Then Res(gf, 0) = 2; on the other hand, g(0) = 1,Res(f, 0) = 1.

2. If f(z0) = w0, then since f is one-to-one, k = minz∈C(z0,r) |f(z) − w0| > 0. Thus if
|w − w0| < k, we may expand

1
f(z)− w

=
1

f(z)− w0 − (w − w0)
=

1
f(z)− w0

[
1

1− w−w0
f(z)−w0

]

in a geometric series. Term by term integration shows that f−1 is analytic at w0.

3. Let z0 ∈ P . If r is sufficiently small, then V = {1/f(z) : z ∈ D(z0, r)} is open in Ĉ by
(4.3.1). Also, W = {1/z : z ∈ V } is open in Ĉ because the image under 1/z of a disk
containing 0 is a neighborhood of ∞. But W = f(D(z0, r)), and the result follows.

4. By the residue theorem, the integral is
∑n

j=1 Res(gf ′/f, aj). Since Res(gf ′/f, aj) =
m(f, aj)g(aj) by (4.2.2e) and Problem 1 of this section, the result follows.

5. If z0 ∈ Ω and D(z0, r) ⊆ Ω, then the image of D(z0, r) under f will contain a
disk D(f(z0), s). Since D(f(z0), s) will contain points w1, w2, w3 such that |w1| >
|f(z0)|,Re w2 > Re f(z0), and Imw3 > Im f(z0), it follows that |f |,Re f , and Im f
cannot take on a local maximum at z0.

Sections 4.4 and 4.5

1. For the inverse, solve w = (az + b)/(cz + d) for z. For the composition, consider
w = (au + b)/(cu + d), u = (αz + β)/(γz + δ) and substitute. Alternatively, use the
fact that a linear fractional transformation is a composition of maps of types (i)-(iv)
of (4.4.1).

2. (a) If w = (1 + z)/(1− z) then z = (w − 1)/(w + 1), so T−1(w) = (w − 1)/(w + 1).
(b) It is easier to deal with T−1. Figure S4.5.1 shows that T−1 maps Re w > 0 onto
|w| < 1, {Re w = 0}∪{∞} onto |w| = 1, and Rew < 0 onto |w| > 1; the result follows.

.
-1 1

ω+1 ω−1

ωRe

ωIm

.

.

Figure S4.5.1
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3. (a) Possibly motivated by the analysis of Problem 2, try T (z) = k(z− i)/(z + i). Since
T (1) = 1 we have k = (1 + i)/(1− i), and this does yield T (−1) = −1, as desired.
(b) The desired transformation is accomplished by an inversion followed by a 180 degree
rotation, in other words, T (z) = −1/z.

4. (a) T must be of the form T (z) = k(z − z1)/(z − z3). Since T (z2) = 1 we have
1 = k(z2 − z1)/(z2 − z3), which determines k uniquely.
(b) If z1 =∞ then T (z) = (z2− z3)/(z− z3). If z2 =∞ then T (z) = (z− z1)/(z− z3),
and if z3 =∞ then T (z) = (z − z1)/(z2 − z1).
(c) If T1 is the unique linear fractional transformation mapping z1, z2, z3 to 0, 1,∞,
and T2 is the unique linear fractional transformation mapping w1, w2, w3 to 0, 1,∞,
then T = T−1

2 ◦T1. (If T ∗ is another linear fractional transformation mapping z1, z2, z3

to w1, w2, w3, then T2 ◦ T ∗ maps z1, z2, z3 to 0, 1,∞. Thus T2 ◦ T ∗ = T1, hence
T ∗ = T−1

2 ◦ T1 = T , proving T unique.)

5. (a) This follows from the fact that f is one-to-one.
(b) This is a consequence of the open mapping theorem for meromorphic functions
(Section 4.3, Problem 3).
(c) Let w ∈ f(D(0, 1)), which is open in Ĉ by part (b). If∞ is an essential singularity,
then by the Casorati-Weierstrass theorem we find zn →∞ with f(zn)→ w. Thus for
large n, zn /∈ D(0, 1) but f(zn) ∈ f(D(0, 1)), contradicting the assumption that f is
one-to-one.
(d) If f is analytic on Ĉ, then f is constant by Liouville’s theorem. Thus by part
(a), there is only one remaining case to consider, in which f has poles at ∞ and at
z0 ∈ C. As in (b), f(D(z0, 1)) and f(Ĉ \D(z0, 1)) are disjoint open sets in Ĉ. Since
∞ ∈ f(D(z0, 1)) (because f(z0) = ∞), f(Ĉ \ D(z0, 1))is a bounded set, that is, f is
bounded on the complement of D(z0, 1). This contradicts the assumption that ∞ is a
pole.
(e) If z0 = ∞, then by Problem 9(c) of Section 4.1, f is a polynomial, and deg f = 1
because f is one-to-one. If z0 ∈ C, then since f has a pole at z0, g is analytic at z0.
By the open mapping theorem (4.3.1), g′(z0) �= 0. (If g′(z0) = 0 then g, hence f , is
not one-to-one.
(f) If z0 = ∞, this follows from (e), so assume z0 ∈ C. By (e), g′(z0) �= 0, hence
(z − z0)f(z) = (z − z0)/(g(z)− g(z0))→ 1/g′(z0) as z → z0. By part (b) of (4.1.5), f
has a simple pole at z0.
(g) Let h(z) = f(z)− [Res(f, z0)/(z−z0)]. By (4.2.2d), limz→z0(z−z0)h(z) = 0. Thus
h(z) has only removable singularities in Ĉ and is therefore constant.

Section 4.6

1. By (4.6.3i),

∣∣∣∣f(z)− f(a)
z − a

∣∣∣∣ ≤
∣∣∣∣∣1− f(a)f(z)

1− az

∣∣∣∣∣ ;

let z → a to obtain (4.6.3ii).
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2. Since Re z > 0, we have |w − f(0)| < |w − (−f(0))| for Rew > 0 (draw a picture).
Thus T maps {w : Re w > 0} into D(0, 1), so T ◦ f is an analytic map of D(0, 1) into
itself. Since T (f(0)) = 0, Schwarz’s lemma implies that |T (f(z)| ≤ |z|, z ∈ D(0, 1),
that is, |f(z)−f(0)| ≤ |z||f(z)+f(0)|. Thus both |f(z)|−|f(0)| and |f(0)|−|f(z)| are
less than or equal to |z|[|f(z)|+ |f(0)|]. This yields the first statement of the problem.
Now

d

dz
T (f(z)) =

f(z) + f(0)− (f(z)− f(0))
[f(z) + f(0)]2

f ′(z),

and this is at most 1 in absolute value when z = 0, by Schwarz’s lemma. Thus

|2 Re f(0)|
|2 Re f(0)|2 |f

′(0)| ≤ 1

and the result follows.
3. If f(z0) = z0 and f(a) = a, with z0 �= a, then equality holds at z0 in (4.6.3i). In this

case b = f(a) = a, so f = ϕ−1
a ◦ λϕa with |λ| = 1. Now z0 = f(z0) = ϕ−1

a (λϕa(z0)),
hence ϕa(z0) = λϕa(z0)). Since z0 �= a, we have ϕa(z0) �= 0, so λ = 1 and f = ϕ−1

a ◦ϕa,
the identity function.

4. (a) The function f must have the form given in (4.6.6) in D(0, 1), hence on C by the
identity theorem. Since f is entire, the only possibility is n = 1, a1 = 0, so f(z) = λzk

for some unimodular λ and nonnegative integer k.
(b) Let the poles of f in D(0, 1) be at b1, . . . , bm, with orders l1, . . . , lm respectively.
Then by (4.6.6), f is of the form

f(z) =
λ

∏n
j=1

(
z−aj)
1−ajz

)kj

∏m
j=1

(
z−bj)

1−bjz

)lj

with |λ| = 1; aj , bj ∈ D(0, 1); kj , lj = 0, 1, . . . .
(Note that f(z) times the denominator of the above fraction has only removable sin-
gularities in D(0, 1).)

5. The function g satisfies the hypothesis of (4.6.3), so by (4.6.3i),∣∣∣∣∣ g(z)− g(a)
1− g(a)g(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − a

1− az

∣∣∣∣ , a, z ∈ D,

that is, ∣∣∣∣∣M(f(Rz)− f(Ra))
M2 − f(Ra)f(Rz)

∣∣∣∣∣ ≤
∣∣∣∣ z − a

1− az

∣∣∣∣ .

Let w = Rz, w0 = Ra, to obtain∣∣∣∣∣M(f(w)− f(w0))
M2 − f(w0)f(w)

∣∣∣∣∣ ≤
∣∣∣∣R(w − w0)
R2 − w0w

∣∣∣∣ , w, w0 ∈ D(0, R)
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which is the desired generalization of (i). By (4.6.3ii), |g′(a)| ≤ (1− |g(a)|2)/(1− |a|2),
that is,

R

M
|f ′(Ra)| ≤ 1− [|f(Ra)|2/M2]

1− |a|2 .

Thus

|f ′(w0)| ≤
(M/R)− [|f(w0)|2/MR]

1− |w0/R|2 ,

or

|f ′(w0)| ≤
R(M2 − |f(w0)|2)

M(R2 − |w0|2)

which generalizes (ii).
6. Let

g(z) =
f(z)∏n

j=1

(
z−zj

1−zjz

)kj
.

Then g is analytic on D(0, 1), continuous on D(0, 1), and |g(z)| = |f(z)| ≤ 1 when
|z| = 1. The assertion now follows from the maximum principle. If equality holds at
some point z0 in D(0, 1) (other than the zj), then |g(z0)| = 1, so g is constant by the
maximum principle. Thus

f(z) = c

n∏
j=1

(
z − zj

1− zjz

)kj

where c is a constant with |c| ≤ 1.

Section 4.7

1. If |z| < 1, then (2πi)−1
∫
|w|=1

w+z
w(w−z) dw = −1 + 2 = 1 by the residue theorem. Thus

(2π)−1 =
∫ π

−π
eit+z
eit−z dt = 1, as desired.

2. Since −1 ≤ cos(θ − t) ≤ 1, we have

1− r

1 + r
=

1− r2

(1 + r)2
≤ Pr(θ − t) ≤ 1− r2

(1− r)2
=

1 + r

1− r
.

The result now follows from (4.7.8) and the observation that by (4.7.9),

u(0) =
1
2π

∫ 2π

0

u(eit) dt.

3. If D(z0, R) ⊆ Ω, then by (4.7.8) with r = 0, un(z0) = (2π)−1
∫ 2π

0
un(z0 + Reit) dt. Let

n→∞ to obtain u(z0) = (2π)−1
∫ 2π

0
u(z0 + Reit) dt. By (4.7.10), u is harmonic on Ω.
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4. It is sufficient to consider the case where u is continuous on D(0, 1) and analytic
on D(0, 1). Then by (4.7.8), u(z) = (2π)−1

∫ 2π

0
Pz(t)u(eit) dt, |z| < 1. Let f(z) =

(2π)−1
∫ 2π

0
Qz(t)u(eit) dt. Then f is analytic on D(0, 1) by (3.3.3), and Re f = u by

(4.7.2), as desired.
5. (i) We have

[z0, z,∞) = ([z0, z,∞) ∩ Ω) ∪ ([z0, z,∞) ∩ ∂Ω) ∪ ([z0, z,∞) ∩ (C \ Ω)).

The first and third sets on the right are nonempty, relatively open subsets of [z0, z,∞).
Since [z0, z,∞) is connected, [z0, z,∞)∩∂Ω �= ∅. Let β be any point in [z0, z,∞)∩∂Ω.
It follows from (a) and (b) that [z0, β) ⊆ Ω. (See Figure 4.7.1 to visualize this.)

Now either z ∈ (z0, β) or β ∈ (z0, z). If β ∈ (z0, z), we can repeat the above argument
with z0 replaced by β to get β1 ∈ ∂Ω such that β1 ∈ (β, z,∞). But then (a) and (b)
imply that β ∈ Ω, a contradiction. Thus z ∈ (z0, β), hence [z0, z] ⊆ [z0, β) ⊆ Ω.
(ii) We have

∫
γδ

f(w) dw = 0 by (3.3.1). Since |γ(t) − γδ(t)| = (1 − δ)|γ(t) − z0| → 0
as δ → 1, uniformly in t, it follows from the uniform continuity of f on compact
sets that we may let δ → 1 to obtain

∫
γ

f(w) dw = 0. The result n(γ, z)f(z) =
(2πi)−1

∫
γ
[f(w)/(w − z)] dw is obtained similarly. (Note that n(γδ, z) = n(γ, z) for all

δ sufficiently close to 1, by (3.2.3) and (3.2.5).]
6. The two equations given in the outline follow immediately from Problem 5. Subtract

the second equation from the first to obtain

f(z) =
1

2πi

∫
γ

f(w)
[

1
w − z

− 1
w − z

]
dw.

If z = x + iy, w = t + iβ, then

1
w − z

− 1
w − z

=
z − z

(w − z)(w − z)
=

2iy

[t− x + i(β − y)][t− x + i(β + y)]
.

If w is real, so that β = 0, this becomes 2iy/[(t− x)2 + y2]. Thus

f(z) =
1
π

∫ R

−R

yf(t)
(t− x)2 + y2

dt +
1
π

∫
ΓR

yf(w)
(w − z)(w − z)

dw

where ΓR is the semicircular part of the contour. Let Mf (R) be the maximum value
of |f | on ΓR. By the M-L theorem, for large R the integral around ΓR is bounded in
absolute value by a constant times Mf (R)/R, so that if Mf (R)/R→ 0 as R→∞, we
obtain

f(z) = lim
R→∞

1
π

∫ R

−R

yf(t)
(t− x)2 + y2

dt.

If |f(z)|/|z|1−δ → 0 as z →∞ for some δ > 0, then we may write

f(z) =
1
π

∫ ∞
−∞

yf(t)
(t− x)2 + y2

dt

where the integral exists in the improper Riemann sense, not simply as a Cauchy
principal value. Take real parts to get the desired result.
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Section 4.8

1. We may write f(z) = czk + ak+1z
k+1 + ak+2z

k+2 + · · · where c �= 0. Apply Jensen’s
formula (4.8.2b) to f(z)/zk to obtain

ln |c| =
n(r)∑
j=1

ln
∣∣∣aj

r

∣∣∣ +
1
2π

∫ 2π

0

ln
∣∣∣∣f(reit)

rk

∣∣∣∣ dt.

Thus

k ln r + ln |c| =
n(r)∑
j=1

ln
∣∣∣aj

r

∣∣∣ +
1
2π

∫ 2π

0

ln |f(reit)| dt.

But c = f (k)(0)/k!, and the result follows.

2. The statement is

ln |f(0)| =
n∑

j=1

kj ln
∣∣∣aj

R

∣∣∣− m∑
j=1

lj ln
∣∣∣∣bj

R

∣∣∣∣ +
1
2π

∫ 2π

0

ln |f(Reit)| dt.

To prove the statement, note that we may write f = g/h, where g has zeros at
a1, . . . , an, h has zeros at b1, . . . , bm, and g and h each satisfy the hypothesis of (4.8.1).
Since ln |f | = ln |g| − ln |h|, the result follows.

3. First note that if 0 < r < R, then n(t) is a step function on [0, r] which is left
continuous, having jumps only at the radii of those circles that pass through zeros of
f . To avoid cumbersome notation, we illustrate the ideas with a concrete example
Suppose 0 < |a1| = |a2| = |a3| < |a4| < |a5| = |a6| < |a7| < r ≤ |a8|. Then the graph
of n(t), 0 ≤ t ≤ r, is shown in Figure S4.8.1. Since n(t) is constant between jumps and∫

(1/t) dt = ln t, we have

∫ r

0

n(t)
t

dt = n(|a3|) ln |a3|+ n(|a4|)(ln |a4| − ln |a3|)

+ n(|a6|)(ln |a6| − ln |a4|) + n(|a7|)(ln |a7| − ln |a6|)
+ n(r)(ln r − ln |a7|).

If we observe that |a7| < r ≤ |a8|, so that n(r)− n(|a8|), we may write∫ r

0

n(t)
t

dt =− ln |a3|[n(|a4|)− n(|a3|)]

− ln |a4|[n(|a6|)− n(|a4)]− ln |a6|[n(|a7|)− n(|a6|)]
− ln |a7|[n(|a8|)− n(|a7|)] + n(r) ln r.

Now

− ln |a6|[n(|a7|)− n(|a6|)] = −2 ln |a6| = − ln |a5| − ln |a6|
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Figure S4.8.1

and similarly for the other terms. Thus

∫ r

0

n(t)
t

dt = −
n(r)∑
j=1

ln |aj |+ n(r) ln r =
n(r)∑
j=1

ln
r

|aj |

as desired.
4. By Problem 3,

∫ r

0

n(t)
t

dt =
n(r)∑
j=1

ln
r

|aj |
.

Also,

ln[|f (k)(0)|rk/k!] = k ln r + ln[|f (k)(0)|/k!].

The result now follows from (4.8.5) if we observe that

1
2π

∫ 2π

0

ln |f(reit| dt ≤ 1
2π

∫ 2π

0

lnM(r) dt = lnM(r).

5. By (4.8.5) and Problem 3,

1
2π

∫ 2π

0

ln |f(reit| dt = k ln r + ln[|f (k)(0)/k!] +
∫ r

0

n(t)
t

dt,

which is a continuous, increasing function of r. Each time n(t) has a jump, say a jump
of size c at t = r0 (see Figure S4.8.1),

∫ r

0
[n(t)/t] dt contributes a term of the form

c(ln r − ln r0), r > r0.
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Section 4.9

1. If z = rei2πp/q, then zn! = rn!ei2πn!p/q = rn! if n ≥ q, and rn! → 1 as r → 1.
It follows that any analytic function that agrees with f on D(0, 1) cannot approach
a finite limit as z approaches a point on C(0, 1) of the form ei2πp/q. Since these
points are dense in C(0, 1), there can be no extension of f to a function analytic on
D(0, 1) ∪D(w, ε), |w| = 1.

2. (a) Let S = {x + iy : y = 0, x ≤ 0}. If z1 /∈ S, let D1, . . . , Dn be disks such that
Di ∩ Di+1 �= ∅, i = 1, . . . , n − 1, 1 ∈ D1, z1 ∈ Dn, and Di ∩ S = ∅, i = 1, . . . , n. Let
fi(z) = Log z, z ∈ Di. Then (fn, Dn) is a continuation of (f1, D1) = (f, D) relative to
Ω, so fn, Dn) ∈ Φ.
If, say, z1 is in the second quadrant, then Log z1 = ln |z1| + iθ(z1) where θ can be be
chosen in the interval [0, 2π). If z2 ∈ S, z2 �= 0, let E1, . . . , Em be disks such that E1 =
Dn (so z1 ∈ E1), Ei∩Ei+1 �= ∅, i = 1, . . . , m−1, z2 ∈ Em, and Ei∩T = ∅, i = 1, . . . , m,
where T = {x+ iy : y = 0, x ≥ 0}. Let gi(z) = log z = ln |z|+ iθ(z), 0 ≤ θ < 2π, z ∈ Ei.
Then (gm, Em) is a continuation of (g1, E1) = fn, Dn) relative to Ω, so (gm, Em) ∈ Φ.
(b) By the argument of (a), if there were such an h, then h(z) = Log z, z /∈ S, and
hence h must be discontinuous on the negative real axis, a contradiction.

3. The reasoning beginning with “since power series converge absolutely” is faulty. If∑∞
k=0 bk(z− z1)k converges absolutely at some point z /∈ D(z0, r), this does not imply

that the original series converges at z. For
∞∑

k=0

|bk| |z − z1|k =
∞∑

k=0

∣∣∣∣∣
∞∑

n=k

(
n

k

)
an(z1 − z0)n−k

∣∣∣∣∣ |z − z1|k <∞

does not imply that
∞∑

k=0

∞∑
n=k

|an| |z1 − z0|n−k |z − z1|k <∞,

and the latter is what is needed to reverse the order of summation.
4. If g1, . . . , gk are analytic on Ω, so is h(z) = F (z, g1(z), . . . , gk(z)), z ∈ Ω. (The deriva-

tive of h may be calculated explicitly by the chain rule.) It follows that if hj(z) =
F (z, f1j(z), . . . , fkj(z)), then hj is analytic on Dj , j = 1, . . . , n. Thus (h1, D1), . . . , (hn, Dn)
forms a continuation. But D1 = D and h1 = 0 on D, by hypothesis. By successive
application of the identity theorem (2.4.8), we have hn = 0 on Dn, as desired.

5. If (fi+1, Di+1) is a direct continuation of (fi, Di), then fi = fi+1 on Di ∩Di+1, hence
f ′i = f ′i+1 on Di∩Di+1. Therefore (f ′i+1, Di+1) is a direct continuation of (f ′i , Di), and
the result follows.

Chapter 5

Section 5.1

1. Since |f(z)| ≤ 1+|z|
1−|z| |f(0)|, F is bounded, hence F is closed and bounded, and therefore

compact. thus F is relatively compact. To show that F is not compact, let fn(z) =
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1
n

1+z
1−z , f(z) ≡ 0. By Section 4.5, Problem 2, fn ∈ F ; since fn → f uniformly on

compact subsets of D(0, 1) but f /∈ F , F is not closed, and therefore not compact.

2. We may take a = 0 (if not, consider f − a). Since 1/|f(z)| ≤ 1/r for all f ∈ F
and z ∈ Ω, by (5.1.10) we have a subsequence {fnk

} such that 1/fnk
→ g ∈ A(Ω),

uniformly on compact subsets. If g is not identically 0, then g is never 0 by (5.1.4),
and it follows that fnk

→ 1/g uniformly on compact subsets. If g ≡ 0, then fnk
→∞

uniformly on compact subsets.

3. (a) If F is relatively compact then F is compact, so if fn ∈ F , n = 1, 2, . . . , there is a
subsequence {fnk

} converging to a limit in F (not necessarily in F). Conversely, if each
sequence in F has a convergent subsequence, the same is true for F . (If fn ∈ F , choose
gn ∈ F with d(fn, gn) < 1/n; if the subsequence {gnk

} converges, so does {fnk
}). Thus

F is compact.
(b) F is bounded iff F is bounded (by definition of boundedness), iff F is closed and
bounded (since F is always closed), iff F is compact (by the first statement of (5.1.11)),
iff F is relatively compact.

4. Let F be relatively compact. If f ∈ F and f(z) =
∑∞

n=0 anzn, then by (2.4.1),
|an| ≤ r−n max{|f(z)| : |z| = r}, 0 < r < 1. But by compactness, max{|f(z)| : |z| = r}
is bounded by a constant M(r) independent of the particular f ∈ F . Thus

Mn = sup{|an(f)| : f ∈ F} ≤M(r)/rn.

Consequently,
∑

Mnzn converges if |z| < r, so by (2.2.7), (lim supn→∞M
1/n
n )−1 ≥ r.

Let r → 1 to obtain lim supn→∞M
1/n
n ≤ 1. Conversely, if the desired Mn exist, then

if f ∈ F and |z| ≤ r < 1, we have |f(z)| ≤ |an||z|n ≤
∑∞

n=0 Mnrn < ∞. Thus F is
bounded, hence relatively compact.

5. (a) Apply Cauchy’s formula for a circle to the function f2 to get, for 0 ≤ r < R,

f2(a) =
1
2π

∫ 2π

0

f2(a + reit) dt

(the mean value of f2). Thus

|f(a)|2 = |f2(a)| ≤ 1
2π

∫ 2π

0

|f(a + reit)|2 dt.

Now multiply on both sides by r and integrate with respect to r from 0 to R to obtain

R2

2
|f(a)|2 ≤ 1

2π

∫ R

0

r

∫ 2π

0

|f(a + reit)|2 dt dr

and the result follows.
(b) By part (a), F is bounded, and the result follows from (5.1.10).

6. Let f → H(f) be the suggested map. Since |f | ≤ 1 on Ω and f = 0 on the boundary of
K, the integral over K is greater than 0 and H is well defined. If fn ∈ F and fn → f ,
that is, d(fn, f) → 0, then fn → f uniformly on K, hence H(fn) → H(f), so that H
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is continuous. If F were compact, then H(F) would be a compact, hence bounded,
subset of the reals.

If 0 < r < R, let f be a continuous function from Ω to [0, 1] such that f = 1 on
D = D(a, r) and f = 0 off K (Urysohn’s lemma). Then∫

K

∫
|f(x + iy)| dx dy ≥

∫
D

∫
1 dx dy →

∫
K

∫
1 dx dy

as r → R. Thus H(F) is unbounded, a contradiction.

7. If z is a point on the open radial line S from 0 to eiθ, then eiθ + (1/n)(z − eiθ) =
(1 − 1/n)eiθ + (1/n)z also lies on S, and approaches eiθ as n → ∞. By hypothesis,
fn converges pointwise on S. Since S certainly has a limit point in S(θ, α), Vitali’s
theorem implies that fn converges uniformly on compact subsets. Given ε > 0 there
exists δ > 0 such that if z ∈ S(θ, α) and |z− eiθ| < δ, then |z−w| < ε for some w ∈ S.
It follows that by choosing z sufficiently close to eiθ, we can make f(z) as close as we
wish to L, as desired.

8. If k is a complex number, then k will also be used to denote the function that is
identically k. Since L(1) = L(12) = L(1)L(1), L(1) must be 0 or 1. But if L(1) = 0,
then for any f ∈ A(Ω), L(f) = L(f1) = L(f)L(1) = 0, hence L ≡ 0, a contradiction.
Thus L(1) = 1, so L(k) = L(k1) = kL(1) = k. Now let z0 = L(I). If z0 /∈ Ω, then
h(z) = 1/(z − z0) gives h ∈ A(Ω). Thus h(I − z0) = 1, hence L(h)(z0 − z0) = 1, a
contradiction. Therefore z0 ∈ Ω. If f ∈ A(Ω) and g is as defined in the outline, then
g ∈ A(Ω) and g(I − z0) = f − f(z0). It follows that L(f)− f(z0) = L(g)(L(I)− z0) =
L(g)(z0 − z0) = 0.

9. Define An as suggested. Then each An is a closed subset of Ω, and since for each
z ∈ Ω, fk(z) converges to a finite limit as k →∞, we have ∪∞n=1An = Ω. By the Baire
category theorem, some An contains a disk D. The fk are uniformly bounded on D,
hence by Vitali’s theorem, fn → f uniformly on compact subsets of D. (Note that D
is connected, although Ω need not be.) Thus f is analytic on D. Finally, let U be the
union of all disks D ⊆ Ω such that fn → f uniformly on compact subsets of D. Then
U is an open subset of Ω and fn → f uniformly on any compact K ⊆ U (because K is
covered by finitely many disks). If W is an open subset of Ω, the first part of the proof
shows that W contains one of the disks D whose union is U . Thus U is dense in Ω.

Section 5.2

1. For j = 1, 2, let gj be the unique analytic map of Ωj onto D such that gj(zj) = 0 and
g′j(zj) > 0 (5.2.3d). Then f = g−1

2 ◦ g1 satisfies f(z1) = z2 and f ′(z1) > 0. If h is
another such map, then g2 ◦ h = g1 by (5.2.3d), so h = f .

2. From the definition, h is a continuous map of C into D(0, 1). To prove that h is
one-to-one and onto, note that h(reiθ) = reiθ/(1 + r). If h(zn) → h(z), then h(z) ∈
D(0, r/(1 + r)) for r sufficiently close to 1. But since h maps D(0, r) one-to-one onto
D(0, r/(1 + r)), it follows by compactness that h is a homeomorphism of these sets.
Thus zn → z, so h−1 is continuous.
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3. By convexity, H(t, s) ∈ Ω for all t ∈ [a, b] and all s ∈ [0, 1]. Since H(t, 0) = γ(t) and
H(t, 1) = γ(a), the result follows.

4. Proceed as in Problem 3, with the initial point γ(a) replaced by the star center, to
obtain an Ω-homotopy of the given curve γ to a point (namely the star center).

5. Let Ωn = Ĉ \Kn. By definition of Kn, we have

Ωn = {∞} ∪ {z : |z| > n} ∪
⋃

w∈C\Ω
D(w, 1/n).

Now consider any component T of Ωn. Since T is a maximal connected subset of Ωn,
it follows that T ⊇ {∞}∪{z : |z| > n} or T ⊇ D(w, 1/n) for some w ∈ C\Ω. In either
case, T meets Ĉ \ Ω. Since Ωn ⊇ Ĉ \ Ω, T must contain any component of Ĉ \ Ω that
it meets, and such a component exists by the preceding sentence.

6. (a) Form the sets Kn as in (5.1.1), and find by (5.2.8) a rational function Rn with
poles in S such that |f −Rn| < 1/n on Kn. For any compact subset K of Ω, K ⊆ Kn

for sufficiently large n, so that Rn → f uniformly on compact subsets of Ω.
(b) By Problem 5, each component of Ĉ \ Kn contains a component of Ĉ \ Ω, so if
Ω is simply connected, i.e., Ĉ \ Ω is connected, then Ĉ \ Kn is connected for all n.
Therefore in part (a), the Rn can be taken to be polynomials. Conversely, assume that
for every f ∈ A(Ω) there is a sequence of polynomials Pn converging to f uniformly on
compact subsets of Ω. If γ is a closed path in Ω, then

∫
γ

Pn(z) dz = 0 for all n, hence∫
γ

f(z) dz = 0 because γ∗ is compact. Thus Ω is simply connected.

7. (a) By Runge’s theorem (see part (b) of Problem 6) there are polynomials pn such that
|pn(z) − fn(z)| < 1/n for all z ∈ Kn ∪ Ln ∪Mn. Then pn → 0 pointwise. But if K
is any compact set containing all the Bn, then pn cannot approach 0 uniformly on K
because sup{|pn(z)| : z ∈ Bn} ≥ 1− 1

n → 1.
(b) Choose polynomials pn such that |pn(z)− gn(z)| < 1/n for all z ∈ Kn ∪Mn. Then
pn → g pointwise, where g(z) = 1 for Re z > 0 and g(z) = 0 for Re z ≤ 0.

Section 5.3

1. Let f be a homeomorphism of Ω onto D such that f is a one-to-one analytic map of
Ω onto D; f exists by (5.3.9) and (5.2.2). If g = f−1 and u∗ = u0 ◦ (g|∂D), then u∗

is real-valued and continuous on ∂D, so by (4.7.6), u∗ extends to a function that is
continuous on D and harmonic on D. Let u = u∗ ◦ f ; then u = u0 on ∂Ω and u is
continuous on Ω. If h = u∗ + iv∗ is analytic on D, then h ◦ f is analytic on Ω and
Re h ◦ f = u∗ ◦ f = u, hence u is harmonic on Ω.

2. (a) Let u be the unique argument of z in [−π, π); see (3.1.2).
(b) Apply (5.2.2) and (5.3.9).
(c) Note that u(f(z)) = Im logπ(f(z)), and logπ f(z) is analytic on D by (3.1.2).
(d) Suppose u(f(z))+iV (z) is analytic on D. Write V (z) = v(f(z)) where v is harmonic
on Ω. Then iu(f(z))−v(f(z)) is analytic on D, so by (3.1.6), ln |f(z)| = −v(f(z))+2πik
for some integer k. Consequently, e−v(f(z)) = |f(z)|. If V is bounded, so is v, which
yields a contradiction. (Examine f(z) near z0, where f(z0) = 0.)

3. Apply (5.3.9), along with Problems 3.2.6 and 3.2.7.
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Chapter 6

Section 6.1

1. If f(z) = 0, then since fn(z) → 1 as n → ∞, it follows that for sufficiently large N ,
the infinite product

∏∞
n=N fn(z) converges. Thus f(z) = [

∏N−1
k=1 fk(z)]g(z) where g is

analytic at z and g(z) �= 0. Hence m(f, z) =
∑N−1

k=1 m(fk, z) =
∑∞

n=1 m(fn, z).
2. The first statement is immediate from the power series expansion of − ln(1−x), namely

x +
x2

2
+

x3

3
+ · · · = x + x2(

1
2

+
x

3
+

x2

4
+ · · · ).

Now if
∑

n an converges, then − ln(1 − an) =
∑

n[an + g(an)a2
n] where g(an) → 1/2

as n → ∞. By (6.1.1),
∏

n(1 − an) converges to a nonzero limit iff
∑

n a2
n < ∞. The

remaining statement of the problem follows similarly.
3. (a) Absolutely convergent by (6.1.2).

(b) Does not converge to a nonzero limit by Problem 2, since
∑

n(n + 1)−2 < ∞,∑
n(n + 1)−1 =∞. In fact,

n∏
k=1

(1− 1
k + 1

) =
1
2
· 2
3
· · · n

n + 1
=

1
n + 1

→ 0.

(c) Does not converge to a nonzero limit by Problem 2. Here, an = (−1)n+1/
√

n, hence∑
n an converges but

∑
n a2

n =∞.
(d) Absolutely convergent by (6.1.2).

4. (a) See Problem 3(c).
(b) Take a2n−1 = 1/

√
n and a2n = (−1/

√
n) + (1/n).

Remark : This is also an example of an infinite product that is convergent but not
absolutely convergent.

5. (a) Since
∑∞

n=1 |anz| converges uniformly on compact subsets, the result follows from
(6.1.7).
(b) Restrict z to a compact set K. For sufficiently large n (positive or negative),

Log
[
(1− z

n
)ez/n

]
= Log

[
(1− z

n
)
]

+ Log ez/n

= −
[
(z/n)2

2
+

(z/n)3

3
+ · · ·

]

=
z2

n2
g(z/n)

where g(w)→ −1/2 as w → 0. Since K is bounded, there is a constant M such that∣∣∣Log
[
(1− z

n
)ez/n

]∣∣∣ ≤ M

n2

for all z ∈ K. Thus
∑

n Log[(1− z/n)ez/n] converges uniformly on K. As in the proof
of (6.1.6), the infinite product converges uniformly on K, so that the resulting function
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is entire.
(c) Since

∑∞
n=2

1
n(ln n)2 converges,

∑∞
n=2

|z|
n(ln n)2 converges uniformly on compact sub-

sets and (6.1.6) applies.

6. If we try to prove that the convergence of
∑

zn implies the convergence of
∑

zng(zn),
we run into difficulty. We would like to argue that |

∑m
k=n zkg(zk)| ≤

∑m
k=n |zkg(zk)| →

0 as n, m→∞, but this requires the absolute convergence of
∑

zn. A similar difficulty
occurs in the converse direction. [Note that

∏
n(1+ zn) converges absolutely iff

∑
n zn

converges absolutely, by (6.1.2).]

Section 6.2

1. (a) We have m = 0, and the canonical product is
∏∞

n=1(1− z/2n).

(b) The canonical product is
∏∞

n=1 Em(z/zn) where m is the least integer strictly
greater than (1/b)− 1.

(c) We have m = 0, and the canonical product is
∏∞

n=1[1− z/n(lnn)2].

2. We may proceed exactly as in (6.2.5), using (6.2.6) in place of (6.2.3).

Section 6.3

1. By (6.3.7), the result holds for n = 2. For if d is a gcd of {f1, f2}, then f1/d and
f2/d are relatively prime. If (f1g1/d) + (f2g2/d) = 1, then f1g1 + f2g2 = d. To go
from n− 1 to n, let d be a gcd for {f1, . . . , fn} and d1 a gcd for {f1, . . . , fn−1}. Then
d is a gcd for {d1, fn} (by definition of gcd). By the induction hypothesis, we have
g1, . . . , gn−1 ∈ A(Ω) such that f1g1 + · · · + fn−1gn−1 = d1, and by (6.3.7) there exist
h, gn ∈ A(Ω) such that d1h + fngn = d. But then f1g1h + · · ·+ fn−1gn−1h + fngn = d.

2. Let {an} be a sequence of points in Ω with no limit point in Ω. By (6.2.6) or (6.2.3),
there exists fn ∈ A(Ω) such that Z(fn) = {an, an+1, . . . } and m(fn, aj) �= 0, j ≥ n. Let
I be the ideal generated by f1, f2, . . . , that is, I is the set of all finite linear combinations
of the form gi1fi1 + · · ·+ gik

fik
, k = 1, 2, . . . , gij ∈ A(Ω). If I were principal, it would

be generated by a single f . But then Z(f) ⊆ Z(h) for each h ∈ I, in particular,
Z(f) ⊆ Z(fn) for all n. It follows that f has no zeros, so 1 = f(1/f) ∈ I. By
definition of I, 1 = g1f1 + · · ·+gnfn for some positive integer n and g1, . . . , gn ∈ A(Ω).
Since f1(a1) = f2(an) = · · · = fn(an) = 0, we reach a contradiction.
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