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Exercises

The Weierstrass-Casorati Theorem

Question

Let f : Ω→ C be a holomorphic function and let a ∈ C be an essential singularity
of f . Show that the image of f is dense in C:

∀w ∈ C, ∀ ε > 0, ∃ z ∈ Ω, |f(z)− w| < ε.
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Hint: assume instead that some complex number w is not in the closure of the
image of f ; study the function z 7→ 1/(f(z)− w) in a neighbourhood of a.

Answer

Assume that the image of f is not dense in C; let then w ∈ C be such that

∃ ε > 0, ∀ z ∈ Ω, |f(z)− w| ≥ ε.

The function z ∈ Ω 7→ 1/(f(z)− w) is defined and holomorphic. As it satisfies

∀ z ∈ Ω,
∣∣∣∣ 1
f(z)− w

∣∣∣∣ ≤ 1
ε
,

it is also bounded. Thus, the point a is a removable singularity of the function,
that can be extended as a holomorphic function g on Ω ∪ {a}:

∀ z ∈ Ω, g(z) = 1
f(z)− w

By construction, g has no zero in Ω, thus a is either not a zero of g, or a zero of
finite multiplicity. Since

∀ z ∈ Ω, f(z) = w + 1
g(z)

in the first case f(z)→ w+ 1/g(a) when z → a thus a is a removable singularity
of a; in the second one, |f(z)| → +∞ when z → a thus a is a pole of f .

Note that either way, there is a non-negative integer p and a holomorphic function
h : Ω ∪ {a} → C such that h(a) 6= 0 and

∀ z ∈ Ω ∪ {a}, g(z) = h(z)(z − a)p.

As the function g has no zero on Ω, the function h has no zero on Ω ∪ {a}; the
function 1/h is defined and holomorphic on Ω ∪ {a}, 1/h(a) 6= 0 and

∀ z ∈ Ω, f(z) = w + 1
g(z) = w + 1

h(z)
1

(z − a)p .

Therefore, the point a is either a removable singularity of f (if p = 0), or a pole
of order p (if p ≥ 1).

The Maximum Principle

Question

Let Ω be an open connected subset of the complex plane and let f : Ω→ C be
a holomorphic function. Show that if |f | has a local maximum at some a ∈ Ω,
then f is constant.
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Answer

For any holomorphic function f : Ω→ C and a ∈ Ω, the point a is a zero of the
holomorphic function z 7→ f(z)− f(a). We will prove shortly that if a is a zero
of finite multiplicity of this function, |f | does not have a local maximum at a.
The conclusion of the proof follows by the Isolated Zeros Theorem.

Suppose that there is a positive integer p such that

f(z) = f(a) + g(z)(z − a)p

for some holomorphic function g : Ω→ C such that g(a) 6= 0; there is a function
εa : Ω→ C such that εa(z)→ 0 when z → a and

f(z) = f(a) + g(a)(z − a)p + εa(z)(z − a)p

Assume that f(a) 6= 0 (if f(a) = 0, it is plain that |f(a)| = 0 cannot be a local
maximum of |f | at a). Let α, β and γ be some real numbers such that

f(a) = |f(a)|eiα, g(a) = |g(a)|eiβ , γ = θ − α
p

.

For small enough values r > 0, we have

|f(a+ reiγ)− (|f(a)|+ |g(a)|rp)eiα| ≤ |εa(a+ reiγ)|rp ≤ |g(a)|
2 rp,

which yields

|f(a+ reiγ)| ≥ |f(a)|+ |g(a)|rp − |g(a)|
2 rp > |f(a)|.

Therefore f has no maximum at a.

The Π Function

We introduce the Π function, a holomorphic extension of the factorial.

Questions

1. Find the domain in the complex plane of the function

Π : z 7→
∫ +∞

0
tze−t dt

and show that it is holomorphic.
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2. Prove that whenever Π(z) is defined, Π(z + 1) is also defined and

Π(z + 1) = (z + 1)Π(z).

Compute Π(n) for every n ∈ N.

3. Let Ω be an open connected subset of the complex plane that contains the
domain of Π and such that Ω + 1 ⊂ Ω. Prove that if Π has a holomorphic
extension on Ω (still denoted Π), it is unique and satisfies the functional
equation

∀ z ∈ Ω, Π(z + 1) = (z + 1)Π(z).

4. Prove the existence of such an extension Π on

Ω = C \ {k ∈ Z | k < 0}.

5. Show that every negative integer is a simple pole of Π; compute the
associated residue.

Answers

1. The function t ∈ R∗+ 7→ tze−t is continuous and thus measurable. Addi-
tionally, for any t > 0,

|tze−t| = |ez ln te−t| = e(Re z) ln te−t = tRe ze−t,

hence it is integrable if and only if Re z > −1: the domain of Π is

{z ∈ C | Re z > −1}

and it is open. Now, let z and h be complex numbers in this domain; the
associated difference quotient satisfies

Π(z + h)−Π(z)
h

=
∫ +∞

0

tz+h − tz

h
e−tdt

=
∫ +∞

0

th − 1
h

tze−tdt

=
∫ +∞

0

eh ln t − 1
h

tze−tdt

=
∫ +∞

0

[
eh ln t − 1
h ln t

]
tz ln t e−tdt

The integrand converges pointwise when h→ 0:

∀ t > 0, lim
h→0

[
eh ln t − 1
h ln t

]
tz ln t e−t = tz ln t e−t.
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Additionally, we have

∀ z ∈ C∗,
∣∣∣∣ez − 1

z

∣∣∣∣ ≤ e|z|;
indeed, for any nonzero complex number z, the Taylor expansion of ez at
the origin provides∣∣∣∣ez − 1

z

∣∣∣∣ =

∣∣∣∣∣
+∞∑
n=0

1
(n+ 1)!z

n

∣∣∣∣∣ =
+∞∑
n=0

1
(n+ 1)! |z|

n ≤
+∞∑
n=0

1
n! |z|

n.

Hence, ∣∣∣∣eh ln t − 1
h ln t

∣∣∣∣ ≤ e|h|| ln t| ≤ max(t|h|, t−|h|)

and our integrand is dominated by

max(tz+|h|, tz−|h|) ln t e−t

which is integrable whenever Re(z − |h|) > −1. Finally, Lebesgue’s domi-
nated convergence theorem applies and Π is holomorphic.

2. If Re z > −1, then Re(z + 1) > −1 and

Π(z + 1) =
∫ +∞

0
tz+1e−t dt.

By integration by parts,

Π(z + 1) = [tz+1(−e−t)]+∞0 −
∫ +∞

0
(z + 1)tz(−e−t) dt

= (z + 1)Π(z).

We have
Π(0) =

∫ +∞

0
e−t dt = [−e−t]+∞0 = 1

and hence, by induction, Π(n) = n! for any n ∈ N.

3. There is at most one holomorphic extension Π of the original function to
the connected open set Ω by the isolated zeros theorem (two extensions
would be identical on the original domain of Π, which is a non-empty open
set: the set of zeros of their difference would not be isolated).

It is plain that the function z 7→ Π(z + 1) − (z + 1)Π(z) is defined and
holomorphic on Ω, a connected open set of the plane. Similarly, by the
isolated zeros theorem, it is identically zero and hence the functional
equation Π(z + 1) = (z + 1)Π(z) holds on Ω.
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4. We may define the extension Π(z) as

Π(z) = Π(z + n)
(z + 1)(z + 2) · · · (z + n)

for any natural number n such Re(z + n) > −1. This definition does not
depend on the choice of n: if m > n, we have Re(z +m) > −1 and

Π(z +m) = Π(z + n)× (z + n+ 1) · · · (z +m),

hence

Π(z +m)
(z + 1)(z + 2) · · · (z +m) = Π(z + n)

(z + 1)(z + 2) · · · (z + n) .

It is plain that this extension of the original function Π is holomorphic.

5. Let n be a positive integer. Let z be a complex number such that |z −
(−n)| < 1; it satisfies Re(z + n) > −1 and thus

Π(z) = Π(z + n)
(z + 1)(z + 2) · · · (z + n) .

Consequently,

(z − (−n))Π(z) = Π(z + n)
(z + 1)(z + 2) · · · (z + n− 1)

and

lim
z→−n

(z − (−n))Π(z) = Π(0)
(−n− 1)(−n− 2) · · · (−1) = (−1)n−1

(n− 1)! .

As this number differ from zero, z = −n is a simple pole of Π and

res(Π,−n) = (−1)n−1

(n− 1)! .

Singularities and Residues

Question

Analyze the singularities (location, type, residues) of

z 7→ sin πz
πz

, z 7→ 1
(sin πz)2 , z 7→ sin π

z
, z 7→ 1

sin π
z

.
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Answer

The function z 7→ sin πz is defined and holomorphic in C. Its Taylor expansion,
valid for any z ∈ C, is

sin πz =
+∞∑
n=0

(−1)nπ2n+1

(2n+ 1)! z2n+1.

The function z 7→ sinπz
πz is therefore defined and holomorphic in C∗ where its

Laurent expansion is
sin πz
πz

=
+∞∑
n=0

(−1)nπ2n

(2n+ 1)! z
2n.

The series on the right-hand side of this equation has no negative power of z: it
is a power series that converges for any z ∈ C∗, thus its open disk of convergence
is actually C. Its limit is a holomorphic function that extends z 7→ sinπz

πz to C,
hence 0 is a removable singularity of this function (and its residue is 0).

The singularities of z 7→ 1/(sin πz)2 are the zeros of z ∈ C 7→ sin πz: the integers.
The function is invariant if we substitute z+ k to z for any k ∈ Z, hence we may
limit our analysis of the singularities to the origin. If z is not an integer, we have

1
(sin πz)2 = 1

π2z2

( πz

sin πz

)2
.

The function z 7→ (πz/sin πz)2 has a removable singularity at the origin and the
value of its holomorphic extension at the origin is nonzero (it is 1), thus the
origin is a double pole of the function. We have therefore

res
(
z 7→ 1

(sin πz)2 , 0
)

= lim
z→0

[
z2

2
1

(sin πz)2

]′
.

We have [
z2

2
1

(sin πz)2

]′
= 1
π

(
(πz) sin πz − (πz)2 cosπz

(sin πz)3

)
.

The Taylor expansions of the functions sin and cos on C provide

sinw = w

(+∞∑
n=0

(−1)n

(2n+ 1)!w
2n

)
= w − w3

6 + w5

(+∞∑
n=2

(−1)n

(2n+ 1)!w
2n−4

)
and

cosw = 1− w2

2 + w4

(+∞∑
n=2

(−1)n

(2n)! w
2n−4

)
,

thus there are entire functions f and g such that

w sinw − w2 cosw =
(
w2 − 1

6w
4
)
−
(
w2 − 1

2w
4
)

+ w6f(w)

7



and
(sinw)3 = w3g(w), g(0) = 1.

Consequently,

res
(
z 7→ 1

(sin πz)2 , 0
)

= lim
w→0

1
π

w/3 + w3f(w)
g(w) = 0.

Alternatively, to compute the residue, we may notice that if z is not an integer

1
(sin πz)2 = 1

(sin π(−z))2 ,

thus if
∑+∞
n=−∞ anz

n is the Laurent expansion of the right-hand side in D(0, 1) \
{0}, the Laurent expansion

∑+∞
n=−∞(−1)nanzn is also valid in the same annulus.

The uniqueness of the Laurent expansion yields an = 0 for every odd n, thus
the residue of the function at the origin – which is a−1 – is zero.

The function z 7→ sin π
z is defined and holomorphic on C∗. It has a Laurent

expansion in this annulus, which is

sin π
z

=
+∞∑
n=0

(−1)nπ2n+1

(2n+ 1)! z−(2n+1).

There are an infinite number of nonzero coefficients associated with negative
powers of z, thus 0 is an essential singularity of this function. Its residue at 0 is
the coefficient of z−1, which is π.

The zeros of z ∈ C 7→ sin πz are the integers, thus z 7→ 1/sin π
z is defined and

holomorphic on the open set Ω = C∗ \ {1/k | k ∈ Z∗}. We can write the function
as the quotient of f(z) = 1 and g(z) = sin π

z . The functions f and g are defined
and holomorphic in C∗ and

g′(z) =
(

cos π
z

)(
− π

z2

)
.

Thus, for any k ∈ Z∗, 1/k is a simple pole of z 7→ 1/sin π
z and

res
(
z 7→ 1

sin π
z

,
1
k

)
= 1

(cos π
k−1 )(− π

(k−1)2 ) = (−1)k+1

πk2 .

The origin z = 0 is also singularity of z 7→ 1/sin π
z , but it is not isolated, thus

its residue is not defined.

Integrals of Functions of a Real Variable

See “Technologie de calcul des intégrales à l’aide de la formule des résidus”
(Demailly 2009, chap. III, sec. 4) for a comprehensive analysis of the computation
of integrals with the the residue theorem.
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Questions

1. For any n ≥ 2, compute ∫ +∞

0

dx

1 + xn
.

2. Compute ∫ +∞

0

√
x

1 + x+ x2 dx.

Answers

1. Let f be the function z 7→ 1/(1 + zn), defined and holomorphic on

Ω = C \
{
e
i(2k+1)π

n

∣∣∣ k ∈ {0, . . . , n− 1}
}
.

Let r > 1 and define the rectifiable paths γ1, γ2 and γ3 as

γ1 = [0→ r], γ2 = rei[0→2π/n], γ3 = [rei2π/n → 0],

then set γ = γ1 | γ2 | γ3. It is plain that

lim
r→0

∫
γ1

dz

1 + zn
=
∫ +∞

0

dx

1 + xn
.

Similarly, ∫
←−γ3

dz

1 + zn
=
∫ 1

0

rei
2π
n dt

1 + (rt)n(ei 2π
n )n

= ei
2π
n

∫ r

0

dx

1 + xn
,

thus
lim
r→0

∫
γ3

dz

1 + zn
= −ei 2π

n

∫ +∞

0

dx

1 + xn
.

Finally, by the M-L inequality,∣∣∣∣∫
γ2

dz

1 + zn

∣∣∣∣ ≤ 1
rn − 1 ×

(
2π
n
r

)
,

hence
lim

r→+∞

∫
γ2

dz

1 + zn
= 0.

On the other hand, the complex number eiπn is the unique singularity
of f in the interior of γ; more precisely, we have ind(γ, eiπn ) = 1. The
function f is the quotient of the holomorphic functions p : z ∈ C 7→ 1 and
q : z ∈ C 7→ 1 + zn; the derivative of q at this singularity is

q′(eiπn ) = n(eiπn )n−1 = n(eiπn )ne−iπn = −ne−iπn ,
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thus
res(f, eiπn ) = p(eiπn )

q′(eiπn )
= −e

iπn

n

Given these results, the residue theorem provides(
1− ei 2π

n

)∫ +∞

0

dx

1 + xn
= (i2π)×

(
−e

iπn

n

)
or equivalently, ∫ +∞

0

dx

1 + xn
= π

n

2i
ei
π
n − e−iπn

=
π
n

sin π
n

.

2. Let log0 be the function defined on C \ R+ by

log0 z = log(−z) + iπ.

This function is an analytic choice of the logarithm on C \ R+: it is
holomorphic and exp ◦ log0 is the identity. It also satisfies

log0 re
iθ = (ln r) + iθ, r > 0, θ ∈ ]0, 2π[ .

We use this function to define

f : z 7→ e
1
2 log0 z

1 + z + z2 .

The roots of the polynomial z 7→ 1 + z + z2 are j and j2, where j = ei
2π
3 ,

thus f is defined and holomorphic in Ω = C \ R+ \ {j, j2}.

Now, let r > 1 and 0 < α < 2π/3; we define four rectifiable paths that
depend on r and α:

γ1 = [r−1eiα → reiα],
γ2 = rei[α→2π−α],

γ3 = [rei(2π−α) → r−1ei(2π−α)],
γ4 = r−1ei[2π−α→α].

We also consider their concatenation

γ = γ1 | γ2 | γ3 | γ4.

We have ∫
γ1

f(z) dz =
∫ r

r−1

e
1
2 ((ln x)+iα)

1 + xeiα + x2ei2α
eiαdx

= ei3α/2
∫ r

r−1

√
x

1 + xeiα + x2ei2α
dx
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and thus by the dominated convergence theorem1

lim
α→0

∫
γ1

f(z) dz =
∫ r

r−1

√
x

1 + x+ x2 dx.

Similarly, ∫
γ←3

f(z) dz =
∫ r

r−1

e
1
2 ((ln x)+i(2π−α))

1 + xe−iα + x2e−i2α
e−iαdx

= −e−i3α/2
∫ r

r−1

√
x

1 + xe−iα + x2e−i2α
dx

and thus by the dominated convergence theorem

lim
α→0

∫
γ3

f(z) dz =
∫ r

r−1

√
x

1 + x+ x2 dx

On the other hand,∣∣∣e 1
2 log0 z

∣∣∣ = eRe( 1
2 log0 z) = e

1
2 ln |z| = |z|

1
2 ;

by the M-L inequality, this equality provides∣∣∣∣∫
γ2

f(z) dz
∣∣∣∣ ≤ r

1
2

−1− r + r2 × 2(π − α)r

and ∣∣∣∣∫
γ4

f(z) dz
∣∣∣∣ ≤ r−

1
2

1− r−1 − r−2 × 2(π − α)r−1,

hence

lim
r→+∞

(
lim
α→0

∫
γ2

f(z) dz
)

= lim
r→+∞

(
lim
α→0

∫
γ4

f(z) dz
)

= 0.

Now the function f is the quotient of the two functions z 7→ e
1
2 log0 z

and z 7→ 1 + z + z2, defined and holomorphic in a neighbourhood of the
singularities j and j2. The derivative of z 7→ 1 + z + z2 is z 7→ 1 + 2z, it is
nonzero at j and j2. Thus,

res(f, j) = e
1
2 log0 j

1 + 2j = ei
π
3

i
√

3

and

res(f, j2) = e
1
2 log0 j

2

1 + 2j2 = ei
2π
3

−i
√

3
.

1the function (α, x) 7→
∣∣√x/(1 + xeiα + x2ei2α)

∣∣ is defined and continuous in the compact
set [0, π/2]× [r−1, r], thus it has a finite upper bound.
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The winding number of γ around j and j2 is 1; by the residue theorem,

2
∫ +∞

0

√
x

1 + x+ x2 dx = (i2π)(res(f, j) + res(f, j2))

or equivalently∫ +∞

0

√
x

1 + x+ x2 dx = π√
3

(eiπ3 − ei 2π
3 ) = π√

3
.
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