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Exercises

The Weierstrass-Casorati Theorem
Question

Let f : 2 — C be a holomorphic function and let a € C be an essential singularity
of f. Show that the image of f is dense in C:

YVweC, Ve>0, 3z€Q, |f(z) —w| <e.
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Hint: assume instead that some complex number w is not in the closure of the
image of f; study the function z — 1/(f(z) — w) in a neighbourhood of a.

Answer

Assume that the image of f is not dense in C; let then w € C be such that
Je>0,VzeQ, [f(z) —w| >e
The function z € Q +— 1/(f(z) — w) is defined and holomorphic. As it satisfies
1
f(z) —w

it is also bounded. Thus, the point a is a removable singularity of the function,
that can be extended as a holomorphic function g on QU {a}:

o
f(z) —w

By construction, g has no zero in €2, thus a is either not a zero of g, or a zero of
finite multiplicity. Since

1
VzeQ, -,
€

<

Vze, g(z) =

1
VzeQ, f(z):erM

in the first case f(z) — w+1/g(a) when z — a thus a is a removable singularity
of a; in the second one, |f(z)] — +o0o when z — a thus a is a pole of f.

Note that either way, there is a non-negative integer p and a holomorphic function
h:QU{a} — C such that h(a) # 0 and

VzeQU{a}, g(z) = h(z)(z — a)P.

As the function g has no zero on 2, the function /& has no zero on Q U {a}; the
function 1/h is defined and holomorphic on Q U {a}, 1/h(a) # 0 and

1 1 1

Therefore, the point a is either a removable singularity of f (if p = 0), or a pole
of order p (if p > 1).

The Maximum Principle
Question
Let 2 be an open connected subset of the complex plane and let f: Q — C be

a holomorphic function. Show that if |f| has a local maximum at some a € €,
then f is constant.



Answer

For any holomorphic function f: Q2 — C and a € 2, the point a is a zero of the
holomorphic function z — f(z) — f(a). We will prove shortly that if a is a zero
of finite multiplicity of this function, |f| does not have a local maximum at a.
The conclusion of the proof follows by the Isolated Zeros Theorem.

Suppose that there is a positive integer p such that
f(z) = fla) + g(2)(z — a)”

for some holomorphic function g : Q@ — C such that g(a) # 0; there is a function
€q : 2 — C such that €,(z) — 0 when z — a and

f(z) = f(a) + 9(a)(z — a)? + €a(2)(z — @)”

Assume that f(a) # 0 (if f(a) =0, it is plain that | f(a)| = 0 cannot be a local
maximum of |f| at a). Let a, 5 and v be some real numbers such that

ia i 0—«a
fla) = |f(a)le, g(a) = |g(a)|e”, v = —
For small enough values r > 0, we have
[fla+re™) = (If(@)] + |g(a)|rP)e™| < |eala +re™)|r? < @“’7

which yields

Flatre)| 2 [£(a@)] +lo@l? — X0 5 | p(a))

Therefore f has no maximum at a.

The II Function

We introduce the II function, a holomorphic extension of the factorial.

Questions

1. Find the domain in the complex plane of the function
“+o0
II:z~ / t7etdt
0

and show that it is holomorphic.



2. Prove that whenever II(z) is defined, ITI(z + 1) is also defined and
II(z + 1) = (z + DII(2).

Compute II(n) for every n € N.

3. Let 2 be an open connected subset of the complex plane that contains the
domain of IT and such that 2+ 1 C Q. Prove that if II has a holomorphic
extension on ) (still denoted II), it is unique and satisfies the functional
equation

VzeQ, I(z+1) = (z+ DI(z).

4. Prove the existence of such an extension II on

Q=C\{keZ|k<ol

5. Show that every negative integer is a simple pole of II; compute the
associated residue.

Answers

1. The function ¢t € R% t?e~! is continuous and thus measurable. Addi-
tionally, for any ¢ > 0,

|tze—t| — |ez1nt6—t| _ e(Rez) lnte—t _ tReze—t’
hence it is integrable if and only if Rez > —1: the domain of II is
{ze C|Rez > -1}

and it is open. Now, let z and h be complex numbers in this domain; the
associated difference quotient satisfies

e tdt

(z+h) —I(z) /+°° trHh 2
h 0 h
= / t*e tdt
0 h

+oo _hilnt
e -1
_—/ L TtFeTldt
0

h

+oo hlnt_l
:/ Tl Fmtetdt
0 hlnt

The integrand converges pointwise when i — 0:

ehlnt_l
Yt >0, lim |[———|t*Inte ' =t*Inte L.
h—0 hilnt



Additionally, we have

e —1

VzeCr,

Z|.
‘Se ;

indeed, for any nonzero complex number z, the Taylor expansion of e* at
the origin provides

T S | = S i < S e
= z = z —|Z| .
z — (n+1)! —= (n+1)! T =l
Hence,
ehlnt -1

hilnt

‘ < et < ypax(rlhl 4 1n)
and our integrand is dominated by
max(t* T 7= Ih ) In g et
which is integrable whenever Re(z — |h|) > —1. Finally, Lebesgue’s domi-

nated convergence theorem applies and IT is holomorphic.

. If Rez > —1, then Re(z+ 1) > —1 and
—+oo
I(z+1) :/ t* et dt.
0
By integration by parts,

+oo
M(z+1) = [tZ“(—e—t)]goo—/O (z + 1)t*(—e ") dt

= (z+ DII(2).

We have oo
11(0) = / e tdt = [—e e = 1
0

and hence, by induction, ITI(n) = n! for any n € N.

. There is at most one holomorphic extension II of the original function to
the connected open set £ by the isolated zeros theorem (two extensions
would be identical on the original domain of II, which is a non-empty open
set: the set of zeros of their difference would not be isolated).

Tt is plain that the function z — II(z 4+ 1) — (2 + 1)TI(2) is defined and
holomorphic on €2, a connected open set of the plane. Similarly, by the
isolated zeros theorem, it is identically zero and hence the functional
equation II(z + 1) = (z + 1)II(2) holds on Q.



4. We may define the extension II(z) as

II(z + n)
(z+1)(z+2)---(z+n)

II(z) =

for any natural number n such Re(z 4+ n) > —1. This definition does not
depend on the choice of n: if m > n, we have Re(z + m) > —1 and

Mz4+m)=I(z+n)x(z+n+1)--- (2 +m),
hence

(2 +m) II(z+n)

(z+1)(z+2)---(z+m) (z+1)(z+2)---(z+n)

It is plain that this extension of the original function II is holomorphic.

5. Let n be a positive integer. Let z be a complex number such that |z —
(—n)| < 1; it satisfies Re(z + n) > —1 and thus

II(z 4+ n)

() = GrDGz+2) - (z4n)

Consequently,

II(z 4+ n)
z+1)(z+2)---(z24+n-1)

(z = (=n))(2) =

and
, 11(0) (R
Am =G = D=5 e - o)
As this number differ from zero, z = —n is a simple pole of IT and
(_1)n71

res(Il, —n) = o

Singularities and Residues
Question

Analyze the singularities (location, type, residues) of

sinmwz 1 .om 1
y 2 e,z sin—, 2
Tz (sin7z) z

sin T
4



Answer

The function z — sin 7z is defined and holomorphic in C. Its Taylor expansion,
valid for any z € C, is

+oo (_1)n7.r2n+1 9

sinmz = Z (2n T 1)!

n=0

n+1

sin mz

The function z — =172
Laurent expansion is

is therefore defined and holomorphic in C* where its

sinTz f (—1)ng2n 20
Tz — (2n+1)!

The series on the right-hand side of this equation has no negative power of z: it
is a power series that converges for any z € C*, thus its open disk of convergence
is actually C. Its limit is a holomorphic function that extends z — % to C,
hence 0 is a removable singularity of this function (and its residue is 0).

The singularities of z +— 1/(sin72)? are the zeros of z € C ++ sinm2: the integers.
The function is invariant if we substitute z + k to z for any k € Z, hence we may
limit our analysis of the singularities to the origin. If z is not an integer, we have

1 1 ( Tz )2
(sin7z)2 7222 \sinmz/

The function z + (7z/sinw2)? has a removable singularity at the origin and the
value of its holomorphic extension at the origin is nonzero (it is 1), thus the
origin is a double pole of the function. We have therefore

SR N NP S N
—— 0] =lim | = —| .
re\E (sinmz)2’ =0 | 2 (sinmz)?

We have

Sty - (22 )

The Taylor expansions of the functions sin and cos on C provide

“+o0 “+oo
. (=)™ an) _ w? (=" on-
smw:w<z(2n+1)!w2>—w—6+w5<z(2n+l)!w2 4>

n=0 n=2

and

o (SR EDT e
cosw = f?er Z(Qn)!w R

n=2
thus there are entire functions f and g such that

1 1
wsinw — w? cosw = (w2 - 6w4) - <w2 - 2w4> +wl f(w)



and

Consequently,
1 1w/3+w?
res|{ z— ———,0 ) = lim —w:&
(sinmz)? w—0 T g(w)
Alternatively, to compute the residue, we may notice that if z is not an integer
1 1
(sin7z)2  (sinmw(—2))2’

thus if Z::’_ o Gn2™ is the Laurent expansion of the right-hand side in D(0, 1) \
{0}, the Laurent expansion Iio_ o (=1)"a, 2™ is also valid in the same annulus.
The uniqueness of the Laurent expansion yields a,, = 0 for every odd n, thus

the residue of the function at the origin — which is a_; — is zero.

The function z + sin 7 is defined and holomorphic on C*. It has a Laurent
expansion in this annulus, which is

+oo 2n+1
7 -1)"r
sin — = Z 7( ) z—@nt1),
z (2n+1)!
n=0
There are an infinite number of nonzero coefficients associated with negative
powers of z, thus 0 is an essential singularity of this function. Its residue at 0 is
the coefficient of z~!, which is 7.

The zeros of z € C — sinmz are the integers, thus z — 1/sin T is defined and
holomorphic on the open set Q = C*\ {1/k | k € Z*}. We can write the function
as the quotient of f(z) =1 and g(z) = sin T. The functions f and g are defined
and holomorphic in C* and

9= (o) (-3)

Thus, for any k € Z*, 1/k is a simple pole of z — 1/sin T and

res (21 —— 1) = ! _ D
sin T’ k 7(005%)(—@)7 k?

The origin z = 0 is also singularity of z — 1/sin T, but it is not isolated, thus
its residue is not defined.

Integrals of Functions of a Real Variable

See “Technologie de calcul des intégrales & 'aide de la formule des résidus”
(Demailly 2009, chap. III, sec. 4) for a comprehensive analysis of the computation
of integrals with the the residue theorem.



Questions

1. For any n > 2, compute

too dx
/0 14 an

“+o0
/ Ldm.
o l14+x+a?

2. Compute

Answers
1. Let f be the function z +— 1/(1 + 2™), defined and holomorphic on

Q:C\{ew

ke {0,...,n—1}}.
Let » > 1 and define the rectifiable paths v1, 72 and 3 as

i[0—27 /n]

Y1 = [0 — T], Y2 =T€E , V3 = [re&ﬂ/n — 0]7

then set v =1 | 72 | v3. It is plain that

. dz ooy
lim — = —.
r—0 T 1 + z 0 1 + X

/ dz /1 rel% dt s2x / dzx
= e = e n PE——
G142 Jo 14 (rt)n(et ) o 1+an

lim dz = ¢ T _de

Finally, by the M-L inequality,
1 (27T >
< X|{—r],
=1 n

/ dz
Y2 1+Zn

d
lim / zn:0
r——+o0 V21+Z

On the other hand, the complex number e’n is the unique singularity
of f in the interior of ; more precisely, we have ind(y,e’=) = 1. The
function f is the quotient of the holomorphic functions p: z € C +— 1 and
q:z € Cr 14 2" the derivative of ¢ at this singularity is

Similarly,

thus

hence

. T

q/(el;) _ n(ei%)nfl _ n(ei%)nefﬁ'% — —neﬂn,



thus . .
' n

res(f,e'n) = p(ef) -

q'(e') n

Given these results, the residue theorem provides

o too g i
(1 - 62*) / T _ (i2m) x (e)
0 1+ 27 n

or equivalently,

oo dx T 2i -
o l4+a" mnelw —e7in sin

. Let log, be the function defined on C\ Ry by
log, z = log(—=z) + im.

This function is an analytic choice of the logarithm on C\ R;: it is
holomorphic and exp olog,, is the identity. It also satisfies

logg re’ = (Inr) +i6, r > 0, 6 €0, 2.

We use this function to define

e3 logg 2
A .
/ 1+2z+22
The roots of the polynomial z — 1+ z + 22 are j and j2, where j = ei%’r,

thus f is defined and holomorphic in Q = C\ R, \ {4,5°}.

Now, let » > 1 and 0 < « < 27/3; we define four rectifiable paths that
depend on r and a:

1 = [rte!® = ret®,

vy = rei[a—)er—a]’
vy = [Tei(Qﬂ'fa) — Tflei(QTrfa)]’
vy = r—lei[Qﬂ—a—}a].

We also consider their concatenation

Y= 77| 7.

We have

T e%((ln:v)-&-ia) )
/ f(2) dz:/ e"“dx
71 T

1 1+ xete + x2ei2e

_ ida/2 / VT

1 1+ xete + p2ei2e

10



and thus by the dominated convergence theorem®

Jim f(z)dzz/: Ve

— .
14 a+22 .

Similarly,

i r e%((ln z)+i(2r—a)) —iad
fyé— J(z)dz = /7,71 1+ zeio + g2ei2a © v

_ _67i3a/2/ Ve

-1 1+ zemio 4 g2e~i2

and thus by the dominated convergence theorem

lim [ f(2) dz:/ #dw
a=0 /. 1 l+a+z

On the other hand,

6% logy z| _ eRe(% logy z) _ 6% In|z| _ |Z‘%,
by the M-L inequality, this equality provides
1
ra
. f(Z) dz S m X 2(7T — Oé)?"
and .
< re -1
. f(Z) dz ~ W X 2(71'_0()7" 5
hence

(1, [ i) = (1, [.7@ i) =

Now the function f is the quotient of the two functions z — %1080 =
and z — 1+ z + 22, defined and holomorphic in a neighbourhood of the
singularities j and j2. The derivative of z — 1 + z 4+ 2% is z > 1 + 2z, it is
nonzero at j and j2. Thus,

Llogy g i T

. e2 0 e°3
res(f,7) = - =

(f.4) 152 i3

and L ehlog, ;2 JRELS
res(f,j%) = =

1+252 i3

Lthe function (a, x) > |\/5/(1 + zet™ + :L‘Qeﬂ"‘)‘ is defined and continuous in the compact

set [0,7/2] x [r~1,7], thus it has a finite upper bound.

11



The winding number of v around j and 52 is 1; by the residue theorem,

2/O+OO % dx = (i2m)(res(f, j) + res(f, j2)>

or equivalently
+oo
/ VT g T oy = T
0o ldztz V3 V3
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