The Winding Number

Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0

September 30, 2019

Contents

Definitions 1
Properties 4
Simply Connected Sets 5
A Complex Analytic Approach 7
References 8

Definitions

The argument of a non-zero complex number is only defined modulo 2π. A convenient way to describe mathematically this relationship is to associate to any such number the set of admissible values of its argument:

Definition – The Argument Function. The set-valued (or multi-valued) function Arg, defined on \mathbb{C}^* by

$$\text{Arg} \, z = \left\{ \theta \in \mathbb{R} \mid e^{i\theta} = \frac{z}{|z|} \right\},$$

is called the argument function.

If we need a classic single-valued function instead, we have for example:

Definition – Principal Value of the Argument. The principal value of the argument is the unique continuous function

$$\text{arg} : \mathbb{C} \setminus \mathbb{R}^- \to \mathbb{R}$$

such that

$$\text{arg} \, 1 = 0$$
which is a choice of the argument on its domain:
\[\forall z \in \mathbb{C} \setminus \mathbb{R}_-, \ \ arg z \in \text{Arg} z. \]

Proof (existence and uniqueness). Define arg on \(\mathbb{C} \setminus \mathbb{R}_- \to \mathbb{R} \) by:
\[
\text{arg}(x + iy) = \begin{cases}
\arctan y/x & \text{if } x > 0, \\
+\pi/2 - \arctan x/y & \text{if } y > 0, \\
-\pi/2 - \arctan x/y & \text{if } y < 0.
\end{cases}
\]

This definition is non-ambiguous: if \(x > 0 \) and \(y > 0 \), we have
\[\arctan x/y + \arctan y/x = \pi/2 \]
and a similar equality holds when \(x > 0 \) and \(y < 0 \). As each of the three expressions used to define arg has an open domain and is continuous, the function itself is continuous. It is a choice of the argument thanks to the definition of \(\arctan \): for example, if \(x > 0 \), with \(\theta = \text{arg}(x + iy) \), we have
\[\frac{\sin \theta}{\cos \theta} = \tan \theta = \tan(\arctan y/x) = \frac{y}{x}, \]
hence, as \(\cos \theta > 0 \) and \(x > 0 \), there is a \(\lambda > 0 \) such that
\[x + iy = \lambda(\cos \theta + i \sin \theta) = \lambda e^{i \theta}, \]
This equation yields \(\text{arg} x + iy \in \text{Arg} x + iy \). The proof for the half-planes \(y > 0 \) and \(y < 0 \) is similar.

If \(f \) is another continuous choice of the argument on \(\mathbb{C} \setminus \mathbb{R}_- \) such that \(f(1) = 0 \), the image of \(\mathbb{C} \setminus \mathbb{R}_- \) by the difference \(f - \text{arg} \) is a subset of \(2\pi \mathbb{Z} \) that contains 0, and it’s also path-connected as the image of a path-connected set by a continuous function. Consequently, it is the singleton \{0\}: \(f \) and \(\text{arg} \) are equal. \(\blacksquare \)

We cannot avoid the introduction of a cut in the complex plane when we search for a continuous choice of the argument: there is no continuous choice of the argument on \(\mathbb{C}^* \). However, for a continuous choice of the argument along a path of \(\mathbb{C}^* \), there is no such restriction:

The following theorem is a special case of the path lifting property (in the context of covering spaces; refer to (Hatcher 2002) for details).

Theorem – Continuous Choice of the Argument. Let \(a \in \mathbb{C} \) and \(\gamma \) be a path of \(\mathbb{C} \setminus \{a\} \). Let \(\theta_0 \in \mathbb{R} \) be a value of the argument of \(\gamma(0) - a \):
\[\theta_0 \in \text{Arg}(\gamma(0) - a). \]

There is a unique continuous function \(\theta : [0, 1] \to \mathbb{R} \) such that \(\theta(0) = \theta_0 \) which is a choice of \(z \mapsto \text{Arg}(z - a) \) on \(\gamma \):
\[\forall t \in [0, 1], \ \theta(t) \in \text{Arg}(\gamma(t) - a). \]
The uniqueness of a continuous choice is a consequence of the intermediate value theorem. With a new coordinate system to provide a global continuous choice of the argument.

Definition – Path Exterior & Interior. The *exterior* and *interior* of a closed path γ are the subsets of the complex plane defined by

$\text{Ext} \, \gamma = \{ z \in \mathbb{C} \setminus \gamma([0, 1]) \mid \text{ind}(\gamma, z) = 0 \}.$

Proof. Let $(x(t), y(t))$ be the cartesian coordinates of $\gamma(t)$ in the system with origin a and basis $(e^{i\theta_0}, ie^{i\theta_0})$. As long as $x(t) > 0$, the function

$$t \mapsto \theta_0 + \arg(x(t) + iy(t))$$

is a continuous choice of the argument of $\gamma(t) - a$. Let d be the distance between a and $\gamma([0, 1])$ and let $n \in \mathbb{N}$ such that

$$|t - s| \leq 2^{-n} \Rightarrow |\gamma(t) - \gamma(s)| < d.$$

The condition $x(t) > 0$ is ensured for any t in $[0, 2^{-n}]$. This construction of a continuous choice may be iterated locally on every interval $[k2^{-n}, (k + 1)2^{-n}]$ with a new coordinate system to provide a global continuous choice of the argument on $[0, 1]$.

The uniqueness of a continuous choice is a consequence of the intermediate value theorem: if we assume that there are two such functions θ_1 and θ_2 with the same initial value θ_0, as $\theta_1(0) - \theta_2(0) = 0$, if $\theta_1(t) - \theta_2(t) \neq 0$ for some $t \in [0, 1]$, then either $|\theta_1(t) - \theta_2(t)| < \pi$, or there is a $\tau \in [0, t]$ such that $\theta_1(\tau) - \theta_2(\tau) \neq 0$ and $|\theta_1(\tau) - \theta_2(\tau)| < \pi$. In any case, there is a contradiction since all values of the argument differ of a multiple of 2π.

Definition – Variation of the Argument. Let $a \in \mathbb{C}$ and γ be a path of $\mathbb{C} \setminus \{a\}$. The *variation* of $z \mapsto \arg(z - a)$ on γ is defined as

$$\text{var}(z \mapsto \arg(z - a))|_{\gamma} = \theta(1) - \theta(0)$$

where θ is a continuous choice of $z \mapsto \arg(z - a)$ on γ.

Proof (unambiguous definition). If θ_1 and θ_2 are two continuous choices of $z \mapsto \arg(z - a)$ on γ, for any $t \in [0, 1]$, they differ of a multiple of 2π. As the function $\theta_1 - \theta_2$ is continuous, by the intermediate value theorem, it is constant. Hence

$$(\theta_1 - \theta_2)(1) = (\theta_1 - \theta_2)(0),$$

and $\theta_1(1) - \theta_1(0) \neq \theta_2(1) - \theta_2(0)$.

Definition – Winding Number / Index. Let $a \in \mathbb{C}$ and γ be a closed path of $\mathbb{C} \setminus \{a\}$. The *winding number* or *index* of γ around a is the integer

$$\text{ind}(\gamma, a) = \frac{1}{2\pi} [z \mapsto \arg(z - a)]|_{\gamma}.$$

Proof – The Winding Number is an Integer. Let θ be a continuous choice function of $z \mapsto \arg(z - a)$ on γ; as the path γ is closed, $\theta(0)$ and $\theta(1)$, which are values of the argument of $\gamma(0) - a = \gamma(1) - a$, are equal modulo 2π, hence $(\theta(1) - \theta(0))/2\pi$ is an integer.

Definition – Path Exterior & Interior. The *exterior* and *interior* of a closed path γ are the subsets of the complex plane defined by

$\text{Ext} \, \gamma = \{ z \in \mathbb{C} \setminus \gamma([0, 1]) \mid \text{ind}(\gamma, z) = 0 \}.$
and

\[\text{Int } \gamma = \mathbb{C} \setminus (\gamma(0,1) \cup \text{Ext } \gamma) = \{ z \in \mathbb{C} \setminus \gamma(0,1) \mid \text{ind}(\gamma, z) \neq 0 \}. \]

Properties

Theorem – The Winding Number is Locally Constant. Let \(a \in \mathbb{C} \) and \(\gamma \) be a closed path of \(\mathbb{C} \setminus \{a\} \). There is a \(\epsilon > 0 \) such that, for any \(b \in \mathbb{C} \) and any closed path \(\beta \), if

\[|b - a| < \epsilon \text{ and } (\forall t \in [0,1], \ |\beta(t) - \gamma(t)| < \epsilon) \]

then \(\beta \) is a path of \(\mathbb{C} \setminus \{b\} \) and

\[\text{ind}(\gamma, a) = \text{ind}(\beta, b). \]

Proof. Let \(\epsilon = d(a, \gamma(0,1))/2 \). If \(|b - a| < \epsilon \) and for any \(t \in [0,1], \ |\gamma(t) - \beta(t)| < \epsilon \), then clearly \(b \in \mathbb{C} \setminus \beta([0,1]) \). Additionally, for any \(t \in [0,1] \) there are values \(\theta_1 \) of \(\text{Arg}(\gamma(t) - a) \) and \(\theta_2 \) of \(\text{Arg}(\beta(t) - b) \) such that \(|\theta_1 - \theta_2| < \pi/2 \). If we select some values \(\theta_{1,0} \) of \(\text{Arg}(\gamma(0) - a) \) and \(\theta_{2,0} \) of \(\text{Arg}(\beta(0) - b) \) such that \(|\theta_{1,0} - \theta_{2,0}| < \pi/2 \), then the corresponding continuous choices \(\theta_1 \) and \(\theta_2 \) satisfy \(|\theta_1(t) - \theta_2(t)| < \pi/2 \) for any \(t \in [0,1] \). Consequently

\[|\text{ind}(\gamma, a) - \text{ind}(\beta, b)| = \left| \frac{\theta_1(1) - \theta_1(0) - \theta_2(1) + \theta_2(0)}{2\pi} \right| < \frac{1}{2}. \]

As both winding numbers are integers, they are equal.

Corollary – The Winding Number is Constant on Components. Let \(\gamma \) be a closed path. The function

\[z \in \mathbb{C} \setminus \gamma(0,1) \mapsto \text{ind}(\gamma, z) \]

is constant on each component of \(\mathbb{C} \setminus \gamma(0,1) \). If additionally the component is unbounded, the value of the winding number is zero.

Proof. The mapping \(z \mapsto \text{ind}(\gamma, z) \) is locally constant – and hence constant – on every connected component of \(\mathbb{C} \setminus \gamma(0,1) \). If \(a \) belongs to some unbounded component of this set, there is a \(b \) in the same component such that \(|b| = r = \max_{t \in [0,1]} |\gamma(t)| \). It is possible to connect \(b \) to any point \(c \) such that \(|c| = r \) by a circular path in \(\mathbb{C} \setminus \gamma(0,1) \), thus we may assume that \(b \in \mathbb{R}_- \). The function

\[\theta : t \in [0,1] \mapsto \text{arg}(\gamma(t) - b) \]

\(^1\)Otherwise, by the intermediate value theorem, we could find some \(t \in [0,1] \) such that \(|\theta_1(t) - \theta_2(t)| = \pi/2 \), but then, for every value \(\theta_{1,1} \) of \(\text{Arg}(\gamma(t) - a) \) and \(\theta_{2,1} \) of \(\text{Arg}(\beta(t) - b) \), we would have

\[\theta_{1,1} - \theta_{2,1} = \theta_1(t) - \theta_2(t) + 2\pi k \]

for some \(k \in \mathbb{Z} \). Therefore, the choice of \(\theta_{1,1} \) and \(\theta_{2,1} \) such that \(|\theta_{1,1} - \theta_{2,1}| < \pi/2 \) would be impossible.
is a continuous choice of $z \mapsto \text{Arg}(z - b)$ along γ and it satisfies

$$\forall t \in [0, 1], \ |\theta(t)| = \left| \arctan \frac{\text{Im}(\gamma(t) - b)}{\text{Re}(\gamma(t) - b)} \right| < \arctan \frac{r}{|b| - r} < \frac{\pi}{2}.$$

As γ is a closed path, $\theta(0)$ and $\theta(1)$ – which are equal modulo 2π – are actually equal and

$$\text{ind}(\gamma, a) = \text{ind}(\gamma, b) = \frac{\theta(1) - \theta(0)}{2\pi} = 0$$

as expected.

Simply Connected Sets

Definition – Simply/Multiply Connected Set & Holes. Let Ω be an open subset of the plane. A hole of Ω is a bounded component of its complement $\mathbb{C} \setminus \Omega$. The set Ω is simply connected if it has no hole (if every component of its complement is unbounded) and multiply connected otherwise.

Examples.

1. The open set $\Omega = \{(x, y) \in \mathbb{R}^2 \mid x < -1 \text{ or } x > 1\}$ is not connected but it is simply connected: its complement has a unique component which is unbounded, hence it has no holes.

2. The open set $\Omega = \mathbb{C} \setminus \{2^{-n} \mid n \in \mathbb{N}\}$ is multiply connected: its holes are exactly the singletons of its complement.

Intuitively, we should be able to circle around any hole of Ω without leaving the set; this idea leads to an alternate characterization of simply connected sets.

Theorem – Simply Connected Sets & The Winding Number. An open subset Ω of the complex plane is simply connected if and only if the interior of any closed path γ of Ω is included in Ω:

$$\forall z \in \mathbb{C} \setminus \gamma([0, 1]), \ \text{ind}(\gamma, z) \neq 0 \Rightarrow z \in \Omega,$$

or equivalently, if the complement of Ω is included in the exterior of γ:

$$\forall z \in \mathbb{C} \setminus \Omega, \ \text{ind}(\gamma, z) = 0.$$

Examples.

1. If γ is a closed path of $\Omega = \{(x, y) \in \mathbb{R}^2 \mid x < -1 \text{ or } x > 1\}$ and $z \in \mathbb{C} \setminus \Omega$, since $\mathbb{C} \setminus \Omega$ is connected and unbounded, z belongs to an unbounded component of $\mathbb{C} \setminus \gamma([0, 1])$. Thus $\text{ind}(\gamma, z) = 0$ for any $z \in \mathbb{C} \setminus \Omega$.

2. The open set $\Omega = \mathbb{C} \setminus \{2^{-n} \mid n \in \mathbb{N}\}$ is open and multiply connected: for example $\gamma = 1 + 1/4[0]$ is a path of Ω, $z = 1$ is a point of $\mathbb{C} \setminus \Omega$ and $\text{ind}(\gamma, 1) = 1$.

5
The collection of squares that intersect we also encircle an infinity of extra holes.

Proof – Simply Connected Sets & The Winding Number.

Assume that

\[\sum \]

\[\text{ind}(\gamma, a) = 1. \]

Now if the line segment \(\gamma \) belongs to \(\Gamma \) and \(\gamma([0, 1]) \cap L \neq \varnothing \), then \(\gamma_{\leftarrow} \) also belongs to \(\Gamma' \); if we remove all such pairs from \(\Gamma \), the resulting collection \(\Gamma' \) also satisfies

\[\sum_{\gamma \in \Gamma'} \frac{1}{2\pi} [z \mapsto \text{Arg}(z - a)]_{\gamma} = 1. \]
and by construction the image of any \(\gamma \) in \(\Gamma' \) is included in \(\Omega \). The original collection \(\Gamma \) is balanced: for any square vertex \(n \), the number of line segments with \(n \) as an initial point and with \(n \) as a terminal point is the same. The collection \(\Gamma' \) has the same property. Consequently, the line segments of \(\Gamma' \) may be assembled in a finite sequence of closed paths \(\gamma_1, \ldots, \gamma_n \) and

\[
\sum_{k=1}^{n} \text{ind}(\gamma_k, a) = 1.
\]

Every point of \(L \) is either an interior point of some square of the collection, or the limit of such point; anyway, that means that

\[
\forall z \in L, \sum_{k=1}^{n} \text{ind}(\gamma_k, z) = 1
\]

and thus that there is at least one path \(\gamma_k \) such that \(\text{ind}(\gamma_k, z) \neq 0 \).

A Complex Analytic Approach

If a closed path is rectifiable, we may compute its winding number as a line integral; to prove this, we need the:

Lemma. Let \(a \in \mathbb{C} \) and \(\gamma \) be a rectifiable path of \(\mathbb{C} \setminus \{a\} \). For any \(t \in [0, 1] \), let \(\gamma_t \) be the path such that for any \(s \in [0, 1] \), \(\gamma_t(s) = \gamma(ts) \). The function \(\mu : [0, 1] \rightarrow \mathbb{C} \), defined by

\[
\mu(t) = \int_{\gamma_t} \frac{dz}{z-a}
\]

satisfies

\[
\exists \lambda \in \mathbb{C}^*, \forall t \in [0, 1], e^{\mu(t)} = \lambda \times (\gamma(t) - a).
\]

Proof. We only prove the lemma under the assumption that \(\gamma \) is continuously differentiable; the rectifiable case is a straightforward extension.

We have for any \(t \in [0, 1] \)

\[
\mu(t) = \int_{\gamma_t} \frac{dz}{z-a} = \int_{0}^{1} \frac{\gamma'(ts) \times t}{\gamma(ts) - a} ds = \int_{0}^{t} \frac{\gamma'(s)}{\gamma(s) - a} ds,
\]

hence

\[
\mu'(t) = \frac{\gamma'(t)}{\gamma(t) - a}
\]

and the derivative of the quotient \(\phi(t) = e^{\mu(t)}/(\gamma(t) - a) \) satisfies

\[
\phi'(t) = \mu'(t)\phi(t) - \frac{\gamma'(t)}{\gamma(t) - a} \phi(t) = 0
\]
which yields the result. ■

Theorem – The Winding Number as a Line Integral. Let $a \in \mathbb{C}$ and γ be a rectifiable path of $\mathbb{C} \setminus \{a\}$. Then

\[
[z \mapsto \text{Arg}(z - a)]_\gamma = \text{Im} \left(\int_\gamma \frac{dz}{z - a} \right).
\]

If the path γ is closed, then

\[
\text{ind}(\gamma, a) = \frac{1}{i2\pi} \int_\gamma \frac{dz}{z - a}.
\]

Proof. We use the function μ of the previous lemma. Applying the modulus to both sides of the equation $e^{\mu(t)} = \lambda \times (\gamma(t) - a)$ provides $e^{\text{Re}(\mu(t))} = |\lambda| \times |\gamma(t) - a|$, hence

\[
e^{i\text{Im}(\mu(t))} = \frac{\lambda}{|\lambda|} \frac{\gamma(t) - a}{|\gamma(t) - a|}.
\]

The function $t \in [0,1] \mapsto \text{Im}(\mu(t))$ is – up to a constant – a continuous choice of $z \mapsto \text{Arg}(z - a)$ on γ. Consequently,

\[
[z \mapsto \text{Arg}(z - a)]_\gamma = \text{Im}(\mu(1)) - \text{Im}(\mu(0)) = \text{Im}(\mu(1)),
\]

which is the desired result.

If additionally γ is a closed path, the equations

\[
\gamma(0) = \gamma(1) \quad \text{and} \quad e^{\text{Re}(\mu(t))} = |\lambda| \times |\gamma(t) - a|
\]
yield $e^{\text{Re}(\mu(0))} = e^{\text{Re}(\mu(1))}$ and hence $\text{Re}(\mu(1)) = \text{Re}(\mu(0)) = 0$. Thus,

\[
\text{ind}(\gamma, a) = \frac{1}{2\pi} \text{Im}(\mu(1)) = \frac{1}{i2\pi} \mu(1),
\]

which concludes the proof. ■

References
