
The Winding Number

Sébastien Boisgérault, MINES ParisTech, under CC BY-NC-SA 4.0

July 23, 2018

Contents
Exercises 1

Star-Shaped Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The Argument Principle for Polynomials . . . . . . . . . . . . . . . . . 2
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Set Operations & Simply Connected Sets . . . . . . . . . . . . . . . . 5
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Exercises

Star-Shaped Sets

Question

Prove that every open star-shaped subset of C is simply connected.

Answer

Let Ω be an open star-shaped subset of C with a center c.

For any z ∈ C \ Ω and any s ≥ 0, the point w = z + s(z − c) belongs to C \ Ω.
The ray of all such points w is unbounded and connected, thus it is included
in an unbounded component of C \ Ω. All components of C \ Ω are therefore
unbounded: Ω is simply connected.

Alternatively, let γ be a closed path of Ω and let z = c + reiα ∈ C \ Ω. Since
the ray {z + seiα | s ≥ 0} does not intersect Ω, for any t ∈ [0, 1] and any s ≥ 0,
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γ(t)− z 6= seiα. Thus e−i(π+α)(γ(t)− z) ∈ C \ R− and the function

φ : t ∈ [0, 1] 7→ ei(π+α) arg(e−i(π+α)(γ(t)− z))

is defined; since it is a continuous choice of the argument w 7→ Arg(w− z) along
γ,

ind(γ, z) = 1
2π [φ(1)− φ(0)] = 0.

Therefore, Ω is simply connected.

The Argument Principle for Polynomials

Questions

Let p be the polynomial

p(z) = λ× (z − a1)n1 × · · · × (z − am)nm

where λ is a nonzero complex number, a1, . . . , am are distinct complex numbers
(the zeros or roots of the polynomial) and n1, . . . , nm are positive natural numbers
(the roots orders or multiplicities). Let γ be a closed path whose image contains
no root of p:

∀ t ∈ [0, 1], p(γ(t)) 6= 0.

The argument principle then states that

ind(p ◦ γ, 0) =
m∑
k=1

ind(γ, ak)× nk.

1. Application: Finding the Roots of a Polynomial.

Use the figures below to determine – according to the argument principle –
the number of roots z of the polynomial p(z) = z3 + z + 1 in the open unit
disk centered on the origin.

2. Argument Principle Proof (Elementary). For any k ∈ {1, . . . ,m},
we denote θk a continous choice of z 7→ Arg(z−ak) on γ. Use the functions
θk to build a continuous choice of z 7→ Arg z on p ◦ γ; then, prove the
argument principle.

3. Argument Principle Proof (Complex Analysis). Assume that γ is
rectifiable; write the winding number ind(p ◦ γ, 0) as a line integral, then
find another way to prove the argument principle in this context.
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Figure 1: Graph of t ∈ [0, 1] 7→ arg
[
(ei2πt)3 + (ei2πt) + 1

]
; this function has a

jump of −2π at t = 0.5 (where it is undefined). The dashed line represents a
continuous choice of the argument of t ∈ [0, 1] 7→ (ei2πt)3 + (ei2πt) + 1.
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Figure 2: Graph of t ∈ [0, 1] 7→ |(ei2πt)3 + (ei2πt) + 1|.
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Answers

1. Let γ : t ∈ [0, 1] 7→ ei2πt; we have (p ◦ γ)(t) = (ei2πt)3 + (ei2πt) + 1. The
second figure shows that the graph of t 7→ |(p ◦ γ)(t)| does not vanish on
[0, 1], hence the image of γ contains no root of p. The second figure shows
that the variation of the argument of z on the path p ◦ γ is 2π (a variation
of π between t = 0 and t = 0.5 and also a variation of π between t = 0.5
and t = 1.0). Accordingly, we have

ind(p ◦ γ, 0) = 1.

On the other hand, every zero z of p such that |z| < 1 satisfies ind(γ, z) = 1
and every zero z of p such that |z| > 1 satisfies ind(γ, z) = 0. Consequently,
the expression

m∑
k=1

ind(γ, ak)× nk

provides the number of roots of p – counted with their multiplicity – within
the unit circle. By the argument principle, there is a unique root of p
within the unit circle.

2. If θ0 is an argument of λ, the sum

θ : t ∈ [0, 1] 7→ θ0 + n1θ1(t)× · · ·+ nmθm(t)

is continuous and

eiθ(t) = eiθ0 × ein1θ1(t) × · · · × einmθm(t)

= λ

|λ|
× (γ(t)− a1)n1

|γ(t)− a1|n1
× · · · × (γ(t)− am)nm

|γ(t)− am|nm

= (p ◦ γ)(t)
|(p ◦ γ)(t)| ,

therefore θ is a choice of the argument of z 7→ z on p ◦ γ. Consequently,

[z 7→ Arg z]p◦γ = θ(1)− θ(0)

= θ0 − θ0 +
m∑
k=1

nk(θk(1)− θk(0))

=
m∑
k=1

nk × [z 7→ Arg(z − ak)]γ .

A division of both sides of this equation by 2π concludes the proof.

3. The integral expression of the winding number is

ind(p ◦ γ, 0) = 1
i2π

∫
p◦γ

dz

z
.
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The polynomial p is holomorphic on C, hence we can perform the change
of variable z = p(w), which yields

ind(p ◦ γ, 0) = 1
i2π

∫
γ

p′(w)
p(w) dw.

If we factor p(w) as (w − ak)nkq(w), we see that

p′(w)
p(w) = nk

w − ak
+ q′(w)
q(w) ;

applying this process repeatedly for every k ∈ {1, . . . ,m}, until q is a
constant, provides

p′(w)
p(w) =

m∑
k=1

nk
w − ak

and consequently

ind(p ◦ γ, 0) = 1
i2π

∫
γ

[
m∑
k=1

nk
w − ak

]
dw

=
m∑
k=1

[
1
i2π

∫
γ

dw

w − ak

]
× nk

=
m∑
k=1

ind(γ, ak)× nk.

Set Operations & Simply Connected Sets

Questions

Suppose that A, B and C \ C are open subsets of C. For each of the three
statements below,

• determine whether or not the statement is true (either prove it or provide
a counter-example);

• if the statement is false, find a sensible assumption that makes the new
statement true (and provide a proof).

The statements are:

1. Intersection. The intersection A∩B of two simply connected sets A and
B is simply connected.

2. Complement. The relative complement A \ C of a connected set C in a
simply connected set A is simply connected.

3. Union. The union A ∪B of two connected and simply connected sets A
and B is simply connected.
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Answers

1. Intersection. The statement holds true. Indeed, let γ be a closed path
of A ∩ B; it is a path of A and a path of B. As both sets are simply
connected, the interior of γ is included in A and in B, that is in A ∩ B:
this intersection is simply connected.

Alternatively, let C be a component of

C \ (A ∩B) = (C \A) ∪ (C \B),

and let z ∈ C; we have z ∈ C\A or z ∈ C\B. If z ∈ C\A, the component
of C \A that contains z is unbounded; it is a connected set that contains z
and is included in C\ (A∩B), hence, it is also included in C. Consequently,
C is unbounded. If instead z ∈ C \ B, a similar argument provides the
same result. Consequently, all components of C \ (A ∩B) are unbounded:
A ∩B is simply connected.

2. Complement. The statement does not hold: consider A = D(0, 3) and
C = D(0, 1). The set A is open and simply connected and the set C is
closed and connected. The set C is actually a component of A \ C: it is
included in A \ C, connected and maximal.

However, the statement holds if additionally the set C \ A is not empty.
Let γ be a closed path of A \C and let z ∈ C \ (A \C). If z ∈ C \A, as A
is simply connected, z belongs to the exterior of γ. Otherwise, z ∈ A ∩ C;
as C is a connected subset that does not intersect the image of γ, the
function w ∈ C 7→ ind(γ,w) is constant. There is a w ∈ C \ A and
ind(γ, z) = ind(γ,w) = 0. Therefore z also belongs to the exterior of γ:
A \ C is simply connected.

Alternatively, let D be a component of

C \ (A \ C) = (C \A) ∪ C.

Some of its elements are in C \ A: otherwise, C would be a connected
superset of D that is included in C \ (A \ C); we would have C = D and
therefore C \A would be empty. Now, as D contains at least a point z of
C \A, it contains the component of C \A that contains z; therefore D is
unbounded. Consequently, A \ C is simply connected.

3. Union. The statement doesn’t hold: consider

As = {ei2πt | t ∈ [0, 1/2]}, Bs = {ei2πt | t ∈ [1/2, 1]}.

and the associated dilations

A = {z ∈ C | d(z,As) < 1}, B = {z ∈ C | d(z,Bs) < 1}.

They are both open, connected and simply connected (their complement in
the plane has a single path-connected component and it is unbounded) but
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their union A ∪B is the annulus D(0, 3) \D(0, 1). We already considered
this set in question 2: it is not simply connected.

However, the statement holds if additionally, the intersection A ∩ B is
connected. Let γ be a closed path of A ∪B and let z ∈ C \ (A ∩B). We
have to prove that ind(γ, z) = 0.

There exist1 a sequence (γ1, . . . , γn) of consecutive paths of A ∪B whose
concatenation is γ and such that for any k ∈ {1, . . . , n}, γk([0, 1]) ⊂ A or
γk([0, 1]) ⊂ B.

Let ak be the initial point of γk and let w ∈ A ∩B. As A, B and A ∩B
are connected, for any k ∈ {1, . . . , n}, there is a path βk from w to ak
such that βk([0, 1]) ⊂ A if ak ∈ A and βk([0, 1]) ⊂ B if ak ∈ B. We denote
βn+1 = β1 for convenience; define the paths αk as the concatenations

αk = βk | γk |βk+1.

By construction

[x 7→ Arg(x− z)]γ =
n∑
k=1

[x 7→ Arg(x− z)]αk
.

Every path αk is closed, hence this is equivalent to

ind(γ, z) =
n∑
k=1

ind(αk, z),

but every αk belongs either to A or B, which are simply connected, hence
the right-hand-side is equal to zero. (This proof was adapted from Ronnie
Brown’s argument on Math Stack Exchange)

1The collection {A,B} is an open cover of γ([0, 1]) which is compact. Now, for any positive
integer n, consider the sequence (γn

1 , . . . , γ
n
n) where

γn
k (t) = γ((k − 1 + t)/n).

By uniform continuity of γ, the diameters of the γn
k tends uniformly to zero when n tends to

+∞. The conclusion follows from Lebesgue’s Number Lemma.
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