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Complex Differentiation of Integrals

Theorem – Complex-Differentiation under the Integral Sign. Let Ω be
an open subset of C and (X,µ) be a measurable space. Let f : Ω×X → C be a
function such that:

1. for every z in Ω, x ∈ X 7→ f(z, x) is µ-measurable,

2. for any z0 ∈ Ω, there is a neighborhood V of z0 in Ω and a µ-integrable
function g : X → R+ such that

∀ z ∈ V, |f(z, x)| ≤ g(x) µ-a.e.

3. for µ-almost every x ∈ X, the function z ∈ Ω 7→ f(z, x) is holomorphic.

Then the function z ∈ Ω 7→
∫
X
f(z, x) dµ(x) is holomorphic and its derivative at

any order n is

∂n

∂zn

[∫
X

f(z, x) dµ(x)
]

=
∫
X

∂nz f(z, x) dµ(x).

Proof. Let z0 in Ω and V be as in assumption 2; let r > 0 be a radius such
that D(z0, r) ⊂ V and let γ = z0 + r[	]. The Cauchy formula, followed by an
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integration by parts, yields for µ-almost every x ∈ X and any z ∈ D(z0, r/2)

∂zf(z, x) = 1
i2π

∫
γ

∂zf(w, x)
w − z

dw = 1
i2π

∫
γ

f(w, x)
(w − z)2 dw,

which by the M-L estimation lemma provides the bound

|∂zf(z, x)| ≤ 4|g(x)|
r

.

The difference quotient of z 7→
∫
X
f(z, x) dµ(x) at z0 is equal to∫

X

f(z0 + h, x)− f(z0, x)
h

dµ(x).

Let h be a complex number such that |h| < r/2. For µ-almost every x ∈ X, the
function φ : t ∈ [0, 1] 7→ f(z0 + th, x) is continuous on [0, 1], differentiable on
]0, 1[ and satisfies

|φ′(t)| = |∂zf(z0 + th, x)||h| ≤ g(x)
r
|h|.

Hence, the mean value inequality yields∣∣∣∣f(z0 + h, x)− f(z0, x)
h

∣∣∣∣ = |φ(1)− φ(0)|
|h|

≤ 4g(x)
r

.

Since
lim
h→0

f(z0 + h, x)− f(z0, x)
h

= ∂zf(z0, x) µ-a.e.,

Lebesgue’s dominated convergence theorem provides the result for n = 1. Now,
the function ∂zf also satisfies the three assumptions required by the theorem,
hence by induction, the theorem statement holds at any order n. �

Corollary – Complex-Differentiation of Line Integrals. Let f : Ω×Λ→ C
where Ω and Λ are two subsets of C and Ω is open. Assume that

1. f is a continuous function.

2. for any w ∈ Λ, the function z ∈ Ω 7→ f(z, w) is holomorphic.

Then, for any sequence of rectifiable paths γ of Λ, the function z ∈ Ω 7→∫
γ
f(z, w) dw is holomorphic and

∂

∂z

[∫
γ

f(z, w) dw
]

=
∫
γ

∂zf(z, w) dw.

Proof. We prove the result for any continuously differentiable path γ of Λ (the
case of a sequence of rectifiable paths is a simple corollary). By definition of the
line integral, ∫

γ

f(z, w) dw =
∫

[0,1]
f(z, γ(t))γ′(t) dt.

Now,
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1. For any z ∈ Ω, the function t ∈ [0, 1] 7→ f(z, γ(t))γ′(t) is continuous and
therefore Lebesgue measurable.

2. Let z0 ∈ Ω and let r > 0 be such that K = D(z0, r) ⊂ Ω. The restriction
of f to the compact set K × γ([0, 1]) is bounded by some constant κ.
Therefore, for any z ∈ D(z0, r), the function t ∈ [0, 1] 7→ f(z, γ(t))γ′(t) is
dominated by t ∈ [0, 1] 7→ κ|γ′(t)| which is Lebesgue integrable.

3. For any t ∈ [0, 1], the function z ∈ Ω 7→ f(z, γ(t))γ′(t) is holomorphic; its
derivative is ∂zf(z, γ(t))γ′(t).

Consequently, the differentiation of Lebesgue integrals theorem provides the
existence of ∂z

[∫
γ
f(z, w) dw

]
and its value:

∂

∂z

[∫
γ

f(z, w) dw
]

=
∫

[0,1]
∂zf(z, γ(t))γ′(t) dt.

The right-hand side is equal to
∫
γ
∂zf(z, w) dw. �

The Laplace Transform

Definition – The Laplace Transform. Let f : R+ → C be a Lebesgue
measurable function. We denote by σ the extended real number defined by

σ ∈ [−∞,+∞] = inf
{
σ+ ∈ R

∣∣∣∣∣
∫
R+

|f(t)|e−σ
+t dt < +∞

}
.

If s ∈ C and Re(s) > σ, the function t ∈ R+ 7→ f(t)e−st is Lebesgue integrable.
The Laplace transform of f is the function

L[f ] : {s ∈ C | Re(s) > σ} → C

defined by
L[f ](s) =

∫
R+

f(t)e−st dt.

Proof – Definition of the Laplace Transform. For any s ∈ C, the function
t ∈ R+ 7→ f(t)e−st is Lebesgue measurable . If additionally Re(s) > σ, then
there is some σ+ such that σ < σ+ < Re(s) and t 7→ |f(t)|e−σ+t is Lebesgue
integrable. Thus,∫

R+

|f(t)e−st| dt =
∫
R+

|f(t)|e−Re(s)t dt ≤
∫
R+

|f(t)|e−σ
+t dt < +∞.

and therefore t ∈ R+ 7→ f(t)e−st is Lebesgue integrable. �
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Example – Laplace Transform of Exponential Functions. For any λ ∈ C,
the function t ∈ R+ 7→ eλt is Lebesgue measurable. Additionally,

∀ t ≥ 0, |f(t)|e−σ
+t = e−(σ+−Re(λ))t,

hence the function t ∈ R+ 7→ |f(t)|e−σ+ is Lebesgue integrable if and only
if σ+ > Re(λ). The infimum σ of all such σ+ is therefore Re(λ). Now, if
Re(s) > Re(λ),

L[f ](s) =
∫
R+

e(λ−s)t dt =
[
e(λ−s)t

λ− s

]+∞

0
= 1
s− λ

.

Theorem – Derivative of the Laplace Transform. The Laplace transform
of a Lebesgue measurable function f : R+ → C is holomorphic on its domain of
definition and

(L[f ])′(s) = L[t 7→ −tf(t)](s).

Proof. Let Ω = {s ∈ C | Re(s) > σ}.

1. For any s ∈ Ω, the function t 7→ f(t)e−st is Lebesgue measurable.

2. Let s ∈ Ω and let r > 0 be such that ε = Re(s) − σ − r > 0. For any
w ∈ D(s, r), we have Re(w) > Re(s)− r = σ + ε, thus∫

R+

|f(t)e−wt| dt =
∫
R+

|f(t)|e−Re(w)t dt ≤
∫
R+

|f(t)|e−(σ+ε)t dt < +∞.

3. For almost any t ≥ 0, s 7→ f(t)e−st is holomorphic and

∂s[f(t)e−st] = −tf(t)e−st.

We can therefore differentiate under the integral sign and obtain

∂

∂s

∫ +∞

0
f(t)e−st dt =

∫ +∞

0
−tf(t)e−st dt = L[t 7→ −tf(t)](s)

as expected. �

Example – Laplace Transform of Polynomials. The constant function
defined by f(t) = 1 for t ≥ 0 is an exponential function (as 1 = e0×t); its Laplace
transform is defined for Re(s) > 0 and equal to 1/s. Now, this Laplace transform
has a derivative at every of order n which is

(−1)nn!
sn+1 .

It is also the Laplace transform of t ∈ R+ 7→ (−t)n. Thus, by linearity, the
Laplace transform of the polynomial f(t) =

∑n
p=0 apt

p is

L[f ](s) =
n∑
p=0

app!
1

sp+1 .
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Cauchy’s Integral Theorem – Dixon’s Proof

In (Dixon 1971), John D. Dixon provides a short proof of the global version
of Cauchy’s Formula, using the local Cauchy theory. The proof relies on the
following key result:

Lemma – Integral of the Difference Quotient. Let Ω be an open subset
of the complex plane, f be a holomorphic function on Ω and γ be a sequence of
rectifiable closed paths of Ω. The function

z ∈ Ω \ γ([0, 1]) 7→
∫
γ

f(z)− f(w)
z − w

dw

has a holomorphic extension on Ω.

Proof. We may define the function g : Ω× Ω→ C by

g(z, w) = f(z)− f(w)
z − w

if z 6= w and g(w,w) = f ′(w).

The continuity and complex-differentiability of g at any point (z, w) ∈ Ω2 such
that z 6= w is plain. Now, let c ∈ Ω and let r > 0 be a radius such that the
closure of the disk D = D(c, r) is included in Ω. Using the Taylor expansion of
f in this disk, we derive for any z ∈ D and w ∈ D:

f(z)− f(w)
z − w

= 1
z − w

+∞∑
n=0

an((z − c)n − (w − c)n)

=
+∞∑
n=1

an

[
n−1∑
p=0

(z − c)n−1−p(w − c)p
]

The right-hand side of this equation is a uniformly convergent sum of continuous
functions of (w, z) ∈ D2 . Thus, its limit is a continuous function of (w, z) and
we have

lim
(w,z)→(c,c),w 6=z

f(z)− f(w)
z − w

=
+∞∑
n=1

nan(w − c)n−1 = f ′(w) = g(w,w),

thus this continuous function is actually g. Additionally, for every w ∈ D, every
function of the sum is a holomorphic function with respect to z, hence its uniform
limit z ∈ D 7→ g(z, w) is also holomorphic.

Now the function
z ∈ Ω 7→

∫
γ

g(z, w)dw

clearly extends the function of the lemma statement. It also satisfies the assump-
tions of the complex-differentiation of line integrals result, thus it is holomorphic.
�
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For completeness, here is Dixon’s proof of Cauchy’s formula:

Proof – Cauchy’s Integral Formula. Let Ω be an open subset of C and let
f : Ω 7→ C be a holomorphic function. Let γ be a sequence of rectifiable closed
paths of Ω such that Int γ ⊂ Ω.

Introduce the holomorphic extension h to Ω of

z ∈ Ω \ γ([0, 1]) 7→ 1
i2π

∫
γ

f(z)− f(w)
z − w

dw

and define the function φ : C 7→ C by

φ(z) = h(z) if z ∈ Ω, φ(z) = − 1
i2π

∫
γ

f(w)
w − z

dw if z ∈ Ext γ.

This definition is unambiguous: if z ∈ Ω ∩ Ext γ, then

h(z) = 1
i2π

∫
γ

f(z)− f(w)
z − w

dw

= f(z)ind(γ, z)− 1
i2π

∫
γ

f(w)
z − w

dw

= − 1
i2π

∫
γ

f(w)
z − w

dw

.

The function φ is holomorphic on Ω and also on Ext γ by the complex-
differentiation of line integrals theorem. Hence, it is holomorphic on C.
Additionally, if |z| > r = max{|w| | w ∈ γ([0, 1])}, then z ∈ Ext γ, thus if M is
an upper bound of f on the image of γ,

|φ(z)| ≤ 1
2π

M

|z| − r
× `(γ)

and |φ(z)| → 0 when |z| → +∞. By Liouville’s Theorem, φ is identically zero;
hence, if z ∈ Ω,

1
i2π

∫
γ

f(w)
z − w

dw = 1
i2π

∫
γ

f(z)
z − w

dw = ind(γ, z)f(z),

which is Cauchy’s integral formula. �

The Π Function

Definition – Π Function. The Π function is defined for all complex numbers
z such that Re(z) > −1 by

Π(z) =
∫ +∞

0
tze−t dt
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It is a holomorphic function whose n-th order derivative is given by

Π(n)(z) =
∫ +∞

0
(ln t)ntze−t dt.

Proof – Π Function. For any z ∈ C and any t > 0,

tze−t = ez ln t−t and |tze−t| = eRe(z) ln t−t = tRe(z)e−t.

Thus, if Re(z) > −1, the function t ∈ R∗+ 7→ tze−t is Lebesgue integrable. Let
z ∈ C such that Re(z) > −1 and let r = (Re(z) + 1)/2 > 0. For any h ∈ C such
that |h| < r and any t > 0,

|t(z+h)e−t| = tRe(z+h)e−t < max(tRe(z)−r, tRe(z)+r)e−t

and the right-hand side of this inequality is a Lebesgue integrable function of t.
Finally, for any t > 0, the function z 7→ tze−t is holomorphic on the domain of
the Π function and at any order n,

∂nz t
ze−t = ∂nz e

z ln t−t = (ln t)ntze−t.

The assumptions of differentiation under the integral sign are met and the
application of this theorem provides the desired result. �
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