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Complex Differentiation of Integrals

Theorem — Complex-Differentiation under the Integral Sign. Let 2 be
an open subset of C and (X, u) be a measurable space. Let f: Q2 x X — C be a
function such that:

1. for every z in Q, x € X — f(z,x) is u-measurable,

2. for any zg € €2, there is a neighborhood V of 2y in 2 and a p-integrable
function g : X — R, such that

VzeV, |f(z,z)| <g(x) prae.

3. for p-almost every x € X, the function z € Q — f(z, z) is holomorphic.

Then the function z € Q — [ f(z,2) du(z) is holomorphic and its derivative at
any order n is

o | [ 1G] = [ o5 duta).

Proof. Let zp in © and V' be as in assumption 2; let 7 > 0 be a radius such
that D(zp,7) C V and let v = zy + r[0]. The Cauchy formula, followed by an
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integration by parts, yields for u-almost every x € X and any z € D(zg,7r/2)
1 - f(w, 1 ;
0. f(2,3) = %/de: ,i/f(wixldw,
i2r ), w—z i2r [, (w— 2)
which by the M-L estimation lemma provides the bound

0. f(z )| < 9@

r

The difference quotient of z — [ f(z,x) du(x) at zo is equal to
/ flzo+ h,acf)L — f(z0,) du(z).
X

Let h be a complex number such that |h| < r/2. For p-almost every x € X, the
function ¢ : ¢t € [0,1] — f(20 + th,z) is continuous on [0, 1], differentiable on
10, 1] and satisfies

/(0] = 10-£(zo + th, )]l < L2 .

Hence, the mean value inequality yields

flo +hyx) = f(z0,2) | _ [0(1) = ¢(0)] _ 4g(2)
h | 1] - r

Since

lim f(z0 + h,x) — f(20, )

h—0 h
Lebesgue’s dominated convergence theorem provides the result for n = 1. Now,
the function 0, f also satisfies the three assumptions required by the theorem,
hence by induction, the theorem statement holds at any order n. ]

= 8zf(Z0ax) H-a.e.,

Corollary — Complex-Differentiation of Line Integrals. Let f : QxA — C
where 2 and A are two subsets of C and 2 is open. Assume that

1. f is a continuous function.
2. for any w € A, the function z € Q — f(z,w) is holomorphic.

Then, for any sequence of rectifiable paths + of A, the function z € Q +—
fv f(z,w) dw is holomorphic and

% M F(zw) dw} =L8zf(z,w)dw-

Proof. We prove the result for any continuously differentiable path v of A (the
case of a sequence of rectifiable paths is a simple corollary). By definition of the
line integral,

/ fzw)dw = [z, ()Y (t) dt.
Y [0,1]

Now,



1. For any z € Q, the function ¢ € [0,1] — f(z,7v(t))7(¢) is continuous and
therefore Lebesgue measurable.

2. Let 29 € Q and let » > 0 be such that K = D(zg,r) C €. The restriction
of f to the compact set K x «([0,1]) is bounded by some constant .
Therefore, for any z € D(zg,r), the function ¢ € [0,1] — f(z,v(t))7'(¢) is
dominated by ¢ € [0,1] — k|v/(¢)| which is Lebesgue integrable.

3. For any t € [0, 1], the function z € Q — f(z,7(t))y (¢) is holomorphic; its
derivative is 0, f(z, v(t))Y (t).

Consequently, the differentiation of Lebesgue integrals theorem provides the

existence of 0, [f"r f(z,w) dw} and its value:

i{lf@mﬂwﬂ= | OO @

The right-hand side is equal to fv 0, f(z,w) dw. |

The Laplace Transform

Definition — The Laplace Transform. Let f : Ry — C be a Lebesgue
measurable function. We denote by o the extended real number defined by

/ IF()]e™ tadt < +oo} .
Ry

If s € C and Re(s) > o, the function t € Ry — f(t)e” 5 is Lebesgue integrable.
The Laplace transform of f is the function

o € [—00, 00| = inf {U+ eR

L[f]:{s€C|Re(s) >c}—=C

defined by
LIfl(s)= [ f(t)e " dt.

Ry

Proof — Definition of the Laplace Transform. For any s € C, the function
t € Ry — f(t)e * is Lebesgue measurable . If additionally Re(s) > o, then

there is some ot such that o < o+ < Re(s) and t s |f(t)|e" "t is Lebesgue
integrable. Thus,

AJWW“W=/‘ﬂm€MmﬁS/Iﬂﬂ

Ry Ry

et dt < ~+00.

and therefore t € Ry + f(t)e 5! is Lebesgue integrable. |



Example — Laplace Transform of Exponential Functions. For any A € C,
the function ¢ € Ry + e* is Lebesgue measurable. Additionally,

*t ot —Re(\))t

V>0, [f(t)e t=e( ,

hence the function t € Ry — |f(t)|e*"+ is Lebesgue integrable if and only
if ™ > Re(\). The infimum o of all such o" is therefore Re()\). Now, if
Re(s) > Re(\),

LIf)(s) = / Kt [

s—A

e()\—s)t:|+°° 1
A—s 0

Theorem — Derivative of the Laplace Transform. The Laplace transform
of a Lebesgue measurable function f : Ry — C is holomorphic on its domain of
definition and

(LI (s) = L[t = —tfB)](s)-
Proof. Let @ = {s € C| Re(s) > o}.
1. For any s € Q, the function ¢t — f(t)e™*! is Lebesgue measurable.
2. Let s € Q and let » > 0 be such that ¢ = Re(s) — o —r > 0. For any
w € D(s,r), we have Re(w) > Re(s) —r = o + ¢, thus

[ irwea= [ roereera s [pwle o < 4.
Ry Ry

Ry

3. For almost any t > 0, s — f(t)e™*! is holomorphic and
Os[f(t)e™"" = —tf(t)e .

We can therefore differentiate under the integral sign and obtain
o [T
s Jo

as expected. [ |

+oo
ft)e stdt = /O —tf(t)e st dt = L[t — —tf(1)](s)

Example — Laplace Transform of Polynomials. The constant function
defined by f(t) = 1 for ¢t > 0 is an exponential function (as 1 = ¢9*?); its Laplace
transform is defined for Re(s) > 0 and equal to 1/s. Now, this Laplace transform
has a derivative at every of order n which is

(—1)"n!
5n+1

It is also the Laplace transform of ¢t € Ry +— (—t)". Thus, by linearity, the
Laplace transform of the polynomial f(t) = Zzzo apt? is

- 1
LIf](s) = Z)applspﬁ~
p:



Cauchy’s Integral Theorem — Dixon’s Proof

In (Dixon 1971), John D. Dixon provides a short proof of the global version
of Cauchy’s Formula, using the local Cauchy theory. The proof relies on the
following key result:

Lemma — Integral of the Difference Quotient. Let 2 be an open subset
of the complex plane, f be a holomorphic function on 2 and ~ be a sequence of
rectifiable closed paths of Q2. The function

z € Q\v([0,1]) — / de

has a holomorphic extension on {).

Proof. We may define the function g : 2 x Q — C by

g(z,w) = fz) = fw) if 24w and g(w,w) = f'(w).
z—w
The continuity and complex-differentiability of g at any point (z,w) € Q2 such
that z # w is plain. Now, let ¢ € 2 and let » > 0 be a radius such that the
closure of the disk D = D(e, ) is included in Q. Using the Taylor expansion of
f in this disk, we derive for any z € D and w € D:

f(z) = f(

zZ—w

+o0
Do LS o o)

+oo n—1
= Z an Z(z — )" P (w — )P
p=0

n=1

The right-hand side of this equation is a uniformly convergent sum of continuous
functions of (w,z) € D? . Thus, its limit is a continuous function of (w, z) and
we have

“+oo
. f(z) = f(w) -1
lim —_r - = na,(w—c)" ' = f'(w) = glw,w),
(w,z)—(c,c),w#z zZ—w ngl n( ) f ( ) g( )
thus this continuous function is actually g. Additionally, for every w € D, every
function of the sum is a holomorphic function with respect to z, hence its uniform
limit z € D + ¢(z,w) is also holomorphic.

Now the function
z€Q— /g(z,w)dw
¥

clearly extends the function of the lemma statement. It also satisfies the assump-
tions of the complex-differentiation of line integrals result, thus it is holomorphic.
|



For completeness, here is Dixon’s proof of Cauchy’s formula:

Proof — Cauchy’s Integral Formula. Let Q be an open subset of C and let
f Q2 — C be a holomorphic function. Let v be a sequence of rectifiable closed
paths of €2 such that Inty C Q.

Introduce the holomorphic extension h to £ of
L[ f() = f(w)
€N 0,1))—» — [ ————~=d
R T
and define the function ¢ : C — C by

d(z) =h(z) if z€Q, ¢(z) = L/mdw if z e Extr.

127 w—z

This definition is unambiguous: if z € Q N Ext~, then

h(z) = L/ de

127 z—w

= f(2)ind(y, 2) — L/ f(w) dw.

127 N E—W

1
L),
127 N 2w

The function ¢ is holomorphic on 2 and also on Ext~v by the complex-
differentiation of line integrals theorem. Hence, it is holomorphic on C.
Additionally, if |z| > r = max{|w| | w € ¥([0,1])}, then z € Ext~, thus if M is
an upper bound of f on the image of ~,

1 M
2m |z| —r

6(2)] < x £(y)

and |¢(z)| — 0 when |z| = 4o00. By Liouville’s Theorem, ¢ is identically zero;
hence, if z € Q,

1 / f@) gy L / ) gy = ind(y, 2)£(2),

127 Z—w 127 zZ—w

which is Cauchy’s integral formula. |

The II Function

Definition — II Function. The II function is defined for all complex numbers
z such that Re(z) > —1 by



It is a holomorphic function whose n-th order derivative is given by

+oo
1™ (2) :/ (Int)"t*e~" dt.
0

Proof — II Function. For any z € C and any ¢ > 0,

tFe~t = ezlnt—t and |tze—t| _ eRc(z) Int—t _ tRC(Z)e_t.

Thus, if Re(z) > —1, the function ¢t € R% ~— t*e~" is Lebesgue integrable. Let
z € C such that Re(z) > —1 and let r = (Re(z) +1)/2 > 0. For any h € C such
that |h| < r and any t > 0,

|t(z+h)€—t| — tRe(Z+h)€_ tRe(z)—r’ tRe(z)+7’)e—t

! < max(

and the right-hand side of this inequality is a Lebesgue integrable function of ¢.
Finally, for any t > 0, the function z ++ t*e¢~* is holomorphic on the domain of
the IT function and at any order n,

OMtFe™t = 9rer Mt = (Int)"t7e .

The assumptions of differentiation under the integral sign are met and the
application of this theorem provides the desired result. |
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