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Problem R

Preamble. Let Ω be an open subset of C. For any r > 0, we denote Ωr the set
of points of C whose distance to the complement of Ω is larger than r:

Ωr = {z ∈ C | d(z,C \ Ω) > r}.

1. Show that Ωr is an open subset of Ω and that Ω = ∪r>0Ωr.

2. Assume that Ω is connected. Is Ωr necessarily connected? (Hint: consider
for example Ω = {z ∈ C | |Im z| < |Re z|+ 1} and r = 1).

3. Show that if z ∈ C\Ωr, there is a w ∈ C\Ω such that the segment [w, z] is
included in C\Ωr. Deduce from this property that if Ω is simply connected,
then Ωr is also simply connected. Is the converse true?

4. Show that if Ω is bounded and simply connected, C\Ω is connected. (Hint:
assume that Ω is bounded but that C \ Ω is disconnected, then introduce
a suitable dilation of this complement).

From now on, Ω is a bounded open subset of C. Let F be a class of holomorphic
functions defined on Ω (or a superset of Ω). A holomorphic function f : Ω→ C
has uniform approximations in F if

∀ ε > 0,∃ f̂ ∈ F , ∀ z ∈ Ω, |f(z)− f̂(z)| ≤ ε.

5. Let f : Ω → C be a holomorphic function and let a ∈ C \ Ω. Assume
that f has uniform approximations in the class of functions defined and
holomorphic on C \ {a}. Show that if |a| is large enough, f has uniform
approximations among polynomials.

6. Show that for any non-empty bounded open subset Ω of C, there is a holo-
morphic function f : Ω→ C which doesn’t have uniform approximations
among polynomials (Hint: consider z 7→ 1/(z − a) for some suitable choice
of a).
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A holomorphic function f : Ω→ C has locally uniform approximations in F if
for any r > 0, its restriction to any Ωr has uniform approximations in F :

∀ ε > 0,∀ r > 0,∃ f̂ ∈ F , ∀ z ∈ Ωr, |f(z)− f̂(z)| ≤ ε.

7. Show that if Ω is not simply connected, there is a holomorphic function
f : Ω→ C which has no locally uniform approximations among polynomials
(Hint: consider f : z 7→ 1/(z−a) for some suitable choice of a then compare∫

γ

f(z) dz and
∫
γ

f̂(z) dz

for some suitable closed rectifiable path γ).

From now on, we assume that Ω is simply connected.

Let f : Ω→ C and let r > 0. We define the function χr : C \ Ω→ {0, 1} by:

• χr(z) = 1 if for every ε > 0, there is a holomorphic function f̂z defined on
C \ {z} such that |f − f̂z| ≤ ε on Ωr,

• χr(z) = 0 otherwise.

8. Show that if some points z and w of C \Ω satisfy χr(z) = 1 and |w− z| <
r/2 then χr(w) = 1 (Hint: first, prove that the open annulus A :=
A(w, r/2,+∞) satisfies A ⊂ C \ {z} and Ωr ⊂ A).

9. Prove that χr is locally constant then show that if χr(a) = 1 for some
a ∈ C \ Ω, then χr(z) = 1 for every z ∈ C \ Ω.

10. Assume that f : Ω → C has locally uniform approximations among
holomorphic functions defined on C \ {a} for some a ∈ C \Ω. Show that f
has locally uniform approximations among polynomials.

11. Let f̂ : C\{a1, . . . , an} → C be holomorphic (all the ak are distincts). Show
that there are holomorphic functions f̂k : C \ {ak} → C for k = 1, . . . , n
such that

∀ z ∈ C \ {a1, . . . , an}, f̂(z) = f̂1(z) + · · ·+ f̂n(z).

Prove the following corollary: if a function f : Ω→ C has locally uniform
approximations among holomorphic functions defined on C \ {a1, . . . , an}
for some a1, . . . , an ∈ C \ Ω, then f has locally uniform approximations
among polynomials.
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Problem L

The ray with origin a ∈ C and direction u ∈ C∗ is the function1

γ : t ∈ R+ 7→ a+ tu.

Let f : Ω 7→ C be a holomorphic function defined on some open subset Ω of C
that contains the image γ(R+) of the ray γ. The Laplace transform Lγ [f ] of f
along γ at s ∈ C is given by

Lγ [f ](s) =
∫
R+

f(γ(t))e−γ(t)sγ′(t) dt

(we consider that this integral is defined when its integrand is summable). This
definition generalizes the classic Laplace transform L[f ] since Lγ [f ] = L[f ] when
γ(t) = t (that is when a = 0 and u = 1).

We assume that there are some κ > 0 and σ ∈ R such that

∀ z ∈ γ(R+), |f(z)| ≤ κeσ|z|. (1)
1. Show that if γ(t) = a+ tu and µ(t) = a+ t(λu) for some λ > 0, then

Lµ[f ] = Lγ [f ]

(Reminder: two functions are equal when the have the same domain of
definition and the same values in this shared domain.)

2. Characterize geometrically the set

Π(u, σ) = {s ∈ C | Re (su) > σ|u| }

and show that Lγ [f ] is defined and holomorphic on Π(u, σ).

3. Let U be an open subset of C∗. We assume that bound (1) is valid for
every u ∈ U (for a given origin a and fixed values of κ and σ). Show that
for any s ∈ C, the set Us of directions u ∈ U such that s ∈ Π(u, σ) is open
and that the function u ∈ Us 7→ Lγ [f ](s) is holomorphic (Hint: show that
the complex-differentiation under the integral sign theorem is applicable).

4. Show that the derivative of Lγ [f ](s) with respect to u is zero (Hint: the
result of question 1 may be used).

The exponential integral E1(x) is defined for x > 0 by

E1(x) =
∫ +∞

x

e−t

t
dt.

1This notation emphasizes that the complex number γ(t) depends on t; however it also
depends implicitly on some a and u that are usually clear from the context. Feel free to use a
more explicit notation if you feel that it is beneficial.
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5. Compute the (classic) Laplace transform F of

t ∈ R+ →
1

t+ 1
and give a formula for E1(x) that depends on F (x). Prove that E1 has a
unique holomorphic extension to the open right half-plane {s ∈ C | Re(s) >
0}.

From now on, we study the case of

f : z ∈ C \ {−1} 7→ 1
z + 1

with a = 0, σ = 0 and U = {u ∈ C | Re(u) > 0}.

6. Show that there is a κ > 0 such that (1) is valid for every u ∈ U . Charac-
terize geometrically the set Us; show that it is non-empty when s ∈ C \R−.

Let s ∈ C \ R−. We define

G(s) := Lγ [f ](s) if u ∈ Us and γ : t ∈ R+ 7→ tu.

Note that this definition is a priori ambiguous since several u ∈ Us exist for a
given value of s. For any u0 ∈ C∗ and u1 ∈ C∗ and for any θ ∈ [0, 1], we denote

uθ = (1− θ)u0 + θu1

and whenever uθ 6= 0, we denote γθ the ray of origin a = 0 and direction uθ.

7. Let s ∈ C \R−. Show that if u0 ∈ Us and u1 ∈ Us then for every θ ∈ [0, 1],
uθ ∈ Us and that

Lγ1 [f ](s)− Lγ0 [f ](s) =
∫ 1

0

d

dθ
Lγθ [f ](s) dθ.

Conclude that the definition of G is unambiguous.

8. We search for a new expression of the difference Lγ1 [f ](s)− Lγ0 [f ](s) to
build an alternate proof for the conclusion of the previous question.

Let again s ∈ C \ R−, u0 ∈ Us and u1 ∈ Us; let r ≥ 0 and γr0 and γr1 be
the paths defined by

γr0 : t ∈ [0, 1] 7→ γ0(tr) and γr1 : t ∈ [0, 1] 7→ γ1(tr)

Show that

Lγ1 [f ](s)− Lγ0 [f ](s) = lim
r→+∞

∫
µr

f(z)e−sz dz where µr = (γr0)←|(γr1)

Conclude again that the definition of G is unambiguous (Hint: “close” the
path µr and use Cauchy’s integral theorem).

9. Prove that E1 has a unique holomorphic extension to C \ R−.
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Problem R – Answers

1. (1.5pt) If z ∈ Ωr, then d(z,C \ Ω) > r > 0. Since any point z of C \ Ω
satisfies d(z,C \ Ω) = 0, we have C \ Ω ⊂ C \ Ωr and thus Ωr ⊂ Ω.

For any z ∈ Ωr, the number ε = d(z,C \ Ω)− r is positive. If |w − z| < ε
then for any v ∈ C \ Ω, |z − v| ≥ d(z,C \ Ω) and

|w − v| ≥ |z − v| − |w − z| > d(z,C \ Ω)− ε = r.

Consequently D(z, ε) ⊂ Ω and Ω is open.

Finally, if z ∈ Ω, since Ω is open, d = d(z,C \ Ω) > 0, thus if r = d/2, the
point z belongs to Ωr. Consequently, Ω = ∪r>0Ωr.

2. (1pt) Let Ω = {z ∈ C | |Im z| < |Re z|+ 1}. This set is open: the function

φ : z ∈ C→ |Re z|+ 1− |Im z| ∈ R

is continuous and Ω is the pre-image of the open set R∗+ by φ. Now, for
any purely imaginary number iy of Ω, since |iy − i| ≤ 1 or |iy + i| ≤ 1, we
have d(iy,C \ Ω) ≤ 1. Therefore, no such point belongs to Ω1. On the
other hand, d(−2,C \ Ω) = d(−2,C \ Ω) = 3

√
2/2 > 1 and hence −2 ∈ Ω1

and 2 ∈ Ω1.

Assume that Ω1 is connected. Since it is open, it is path-connected:
there is a continuous function γ : [0, 1]→ Ω1 that joins −2 and 2. By the
intermediate value theorem, there is a t ∈ ]0, 1[ such that Re γ(t) = 0. Since
γ(t) ∈ Ω1, we have a contradiction. Consequently, Ω1 is not connected.

3. (2.5pt) By definition of Ωr, its complement satisfies

C \ Ωr = {z ∈ C | d(z,C \ Ω) ≤ r}.

Thus, if z ∈ C \ Ωr, since C \ Ω is closed, there is a w ∈ C \ Ω such
that |z − w| ≤ r. Since for any λ ∈ [0, 1], the point zλ = λw + (1 − λ)z
satisfies |zλ − w| = (1− λ)|z − w| ≤ r, we also have zλ ∈ C \ Ωr. Hence,
[w, z] ⊂ C \ Ωr.

Assume that Ω is simply connected. Let z ∈ C \ Ωr and let γ be a closed
path of Ωr; since Ωr ⊂ Ω, γ is also a closed path of Ω. Let w ∈ C \ Ω
such that [w, z] ⊂ C \ Ωr. Since [w, z] is connected and the function
ξ ∈ C \ Ωr 7→ ind(γ, ξ) is locally constant, ind(γ, z) = ind(γ,w). Since Ω
is simply connected, ind(γ,w) = 0. Hence, Ωr is simply connected.

Alternatively, assume that Ωr is multiply connected. Let C \ Ωr = K ∪ L
where K is bounded and non-empty and d(K,L) > 0. Since Ωr ⊂ Ω,
C \ Ω ⊂ C \ Ωr. Let K ′ = K ∩ (C \ Ω) and L′ = L ∩ (C \ Ω). Clearly,
C \ Ω = K ′ ∪ L′, K ′ is bounded and d(K ′, L′) > 0. Now, let z ∈ K and
let w ∈ C \ Ω such that [w, z] ⊂ C \ Ωr = K ∪ L. Every connected C
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subset of K ∪ L that contains a point of K is included in K since for any
r ≤ d(K,L), the dilation C +B(0, r) doesn’t intersect L. Since [w, z] is a
connected subset of K ∪ L and z ∈ K, we have [w, z] ⊂ K, thus K ′ is also
non-empty. Finally, Ω is multiply connected.

The converse result is false: for any open subset Ω which is bounded
and not simply connected, for r large enough, Ωr = ∅ which is simply
connected.

4. (2.5pt) Assume that C \ Ω is disconnected. Since Ω is bounded, for r
large enough, the annulus A(0, r +∞), which is connected, is a subset of
C \ Ω. Consider a dilation of C \ Ω which is not (path-)connected; let V∞
be the component of this dilation that contains the annulus above, while
V is the (non-empty) union of the other components of the dilation. By
construction, V and V∞ are open and disjoints and V is bounded. The set

K = (C \ Ω) ∩ V = (C \ Ω) \ V∞

is closed, non-empty and bounded; with

L = (C \ Ω) ∩ V∞ = (C \ Ω) \ V,

which is closed, we have C \Ω = K ∪L. Thus C \Ω is multiply connected.

5. (1.5pt) Since Ω is bounded, there is a r > 0 such that Ω ⊂ K = D(0, r).
Let a ∈ C such that |a| > r; let ε > 0 and f̂ : C \ {a} be a holomorphic
function such that |f − f̂ | ≤ ε/2 on Ω. Since K is a compact subset
of D(0, |a|) ⊂ C \ {a}, the Taylor series expansion

∑
an(z − c)n of f̂ in

D(0, |a|) is uniformly convergent in K, thus there is a m ∈ N such that
the polynomial

p(z) =
m∑
n=0

an(z − c)n

satisfies |f̂ − p| ≤ ε/2 in K and hence in Ω. Consequently,

∀ z ∈ Ω, |f(z)− p(z)| ≤ |f(z)− f̂(z)|+ |f̂(z)− p(z)| ≤ ε.

6. (1.5pt) Assume that there is a polynomial p such that |f − p| < 1 on Ω.
Since Ω is bounded, the set K = Ω is compact and since p is continuous
on K, it is bounded on Ω. Given that

|f(z)| ≤ |f(z)− p(z)|+ |p(z)|

the function f is necessarily bounded on Ω.

Now all we have to do is to find a holomorphic function on Ω which is not
bounded. Consider f : z 7→ 1/(z− a) where a is a point of the boundary of
Ω (such a point exists since Ω 6= ∅ and Ω 6= C); since Ω is open, a 6∈ Ω and
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the function f is defined and holomorphic on Ω. By construction there is
a sequence zn ∈ Ω such that zn → a and thus

|f(zn)| =
∣∣∣∣ 1
zn − a

∣∣∣∣→ +∞,

thus f is not bounded on Ω.

7. (2pt) If Ω is not simply connected, there is a closed rectifiable path γ of
Ω and a point a ∈ C \ Ω which is in the interior of γ, that is ind(γ, a) is a
non-zero integer. The function z 7→ 1/(z − a) is defined and holomorphic
on Ω. Additionally

1
2π

∫
γ

f(z)dz = ind(γ, a) ∈ Z∗.

Since the distance between γ([0, 1]) and the complement of Ω is positive,
there is a r > 0 such that γ([0, 1]) ⊂ Ωr. Now if f̂ is a polynomial such
that |f − f̂ | ≤ ε on Ωr,∣∣∣∣ 1

2π

∫
γ

f(z) dz
∣∣∣∣ ≤ ∣∣∣∣ 1

2π

∫
γ

f̂(z) dz
∣∣∣∣+
∣∣∣∣ 1
2π

∫
γ

(f − f̂)(z) dz
∣∣∣∣ .

By Cauchy’s theorem (the local version, in C), the first integral in the
right-hand side is zero. By the M-L inequality, the second one is dominated
by (ε/2π)× `(γ). Thus for ε < 2π/`(γ), we would have∣∣∣∣ 1

2π

∫
γ

f(z) dz
∣∣∣∣ < 1.

Consequently z 7→ 1/(z − a) is holomorphic on Ω but cannot be locally
uniformly approximated by polynomials.

8. (3pt) The condition |w − z| < r/2 yields

{z} ⊂ D(w, r/2) = C \A(w, r/2,+∞).

or equivalently, A = A(w, r/2,+∞) ⊂ C \ {z}. Additionally, any v ∈ Ωr
satisfies d(v,C \ Ω) ≥ r and in particular |v − z| ≥ r. Since |w − z| < r/2,

|v − w| ≥ |v − z| − |w − z| > r − r/2 = r/2,

hence v ∈ A(w, r/2,+∞). Consequently, Ωr ⊂ A.

Since χr(z) = 1, for any ε > 0, there is a function f̂z holomorphic in C\{z}
such such that |f − f̂ | ≤ ε/2 on Ωr. Now, since the annulus A is included
in the domain of definition of f̂z, we have the Laurent series expansion

∀ v ∈ A, f̂z(v) =
+∞∑

n=−∞
an(v − w)n.
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This expansion is locally uniformly convergent; since Ωr is compact and
included in A, there is a natural number m such that the function f̂w(v) :=∑m
n=−m an(v−w)n – which is holomorphic on C\{w} – satisfies |f̂z−f̂w| ≤

ε/2 on Ωr. Finally, on Ωr, we have

|f − f̂w| ≤ |f − f̂z|+ |f̂z − f̂w| ≤ ε/2 + ε/2 = ε.

and thus χ(w) = 1.

9. (1pt) We know that if χ(z) = 1 and |w − z| < r/2, then χ(w) = 1. Now,
by contraposition of this property, if χ(w) = 0 and |w − z| < r/2, we have
χ(z) = 0. Therefore χ is locally constant. Now since Ω is simply connected
and bounded, by question 4, C \ Ω is connected. Since χ : C \ Ω→ {0, 1}
is locally constant, if χ(a) = 1 for some a ∈ C \ Ω, χ = 1 on C \ Ω.

10. (1pt) If f : Ω→ C has locally uniform approximations among the holo-
morphic functions defined on C\{a}, then for any r > 0 χr(a) = 1. By the
previous question, χr(b) = 1 for any b ∈ C \ Ω and thus f has locally uni-
form approximations among the holomorphic functions defined on C \ {b}.
We can select a b that is arbitrarily large, thus by question 5, f has locally
uniform approximations among polynomials.

11. (4pt) We proceed by induction. The result is plain if n = 1; now assume
that the result holds for a given n ≥ 1 and let f̂ : C\{a1, . . . , an, an+1} → C
be holomorphic. Since an+1 is an isolated singularity of f , there is a r > 0
such that A(an+1, 0, r) is a non-empty annulus included in the domain of
definition of f . Let

∑+∞
k=−∞ bk(z− an+1)k be the Laurent series expansion

of f̂ in this annulus and define

f̂n+1(z) =
−1∑

n=−∞
bk(z − an+1)k

Since there are only negative powers, the sum is convergent (and holomor-
phic) in C \ {an+1}. Now since in the annulus

f̂(z)− f̂n+1(z) =
+∞∑
n=0

bk(z − an+1)k

the point an+1 is a removable singularity of the function f̂ − f̂k that may
thus be extended holomorphically to C \ {a1, . . . , an}. We may apply
the induction hypothesis to this extension; we get holomorphic functions
f̂k : C \ {ak} → C for k = 1, . . . , n such that

∀ z ∈ C \ {a1, . . . , an+1}, f̂(z)− f̂n+1(z) = f̂1(z) + · · ·+ f̂n(z)

which is the induction hypothesis at stage n+ 1.
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Now the corollary: assume that for any r > 0 and any ε > 0, there is a
holomorphic function f̂ : C \ {a1, . . . , an} → C such that |f − f̂ | ≤ ε/2 in
Ωr. Let f̂k : C \ {ak} → C for k = 1, . . . , n be such that

∀ z ∈ C \ {a1, . . . , an}, f̂(z) = f̂1(z) + · · ·+ f̂n(z).

Since the restriction of every f̂k to Ω is locally uniformly approximated by
holomorphic functions on C \ {ak}, by question 9, it is locally uniformly
approximated by polynomials, so there is a polynomial pk such that |f̂k −
pk| ≤ ε/2n on Ωr. Let p =

∑n
k=1 pk; on Ωr, we have

|f − p| ≤ |f − f̂ |+
n∑
k=1
|f̂k − pk| ≤ ε.

Thus, f is locally uniformly approximated by polynomials.

Problem L – Answers

1. (1pt) Since

Lµ[f ](s) =
∫
R+

f(a+ tλu)e−s(a+tλu)(λu) dt,

if Lµ[f ](s) is defined, the change of variable τ = λt yields

Lµ[f ](s) =
∫
R+

f(a+ τu)e−s(a+τu)u dτ,

thus Lλ[f ](s) is defined and Lµ[f ](s) = Lλ[f ](s). Conversely, if Lλ[f ](s)
is defined, the same argument with 1/λ instead of λ shows that Lµ[f ](s)
is also defined (and obviously Lµ[f ](s) = Lλ[f ](s)).

2. (2pt) The set Π(u, σ) is an open half-plane: if u = |u|eiθ and s = x+ iy,
then the condition Re(su) > σ|u| is equivalent to

x cos θ − y sin θ > σ.

The Laplace transform of f along γ satisfies

Lγ [f ](s) =
∫
R+

f(a+ tu)e−s(a+tu)u dt

= (e−sau)
∫
R+

f(a+ tu)e−(su)t dt

and thus
Lγ [f ](s) = (e−sau)L[t 7→ f(a+ tu)](su).
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The function t ∈ R+ 7→ f(a + tu) is locally integrable (it is continuous
since f is holomorphic) and since for any t ≥ 0

−|a|+ t|u| ≤ |a+ tu| ≤ |a|+ t|u|,

we have

|f(a+ tu)| ≤ κeσ|a+tu| ≤ κmax(e−σ|a|, eσ|a|)e(σ|u|)t

therefore t ≥ 0 7→ |f(a+tu)|e−σ+t is integrable whenever σ+ > σ|u|. Hence
the Laplace transform L[t 7→ f(a+ tu)] is defined and holomorphic on the
set Π(u, σ) = {s ∈ C | Re(s) > σ|u|} and Lγ [f ] as well, as a composition
and product of holomorphic functions.

3. (3pt) For a s ∈ C, the set of u such that s ∈ Π(u, σ) is open as the preimage
of the open set ]0,+∞[ by the continuous function u ∈ U 7→ Re(su)− σ|u|.

Let ψ : Us × R+ → C be defined as

ψ(u, t) = f(a+ tu)e−(a+tu)su.

Since
|f(a+ tu)| ≤ κeσ|a+tu| ≤ κ1e

t|u|σ

with κ1 = κmax(e−σ|a|, eσ|a|) and

|e−(a+tu)s| = e−Re((a+tu)s) = e−Re(as)e−tRe(su),

we end up with

|ψ(u, t)| ≤ (κ1e
−Re(as)|u|)et(σ|u|−Re(su)).

Since for any u ∈ Us

Lγ [f ](s) =
∫
R+

ψ(u, t) dt

we check the assumptions of the complex-differentiation under the integral
sign theorem:

• For every u ∈ Us, the function t ∈ R+ 7→ ψ(u, t) is Lebesgue measur-
able (it is actually continuous since f is holomorphic).

• If s ∈ Π(u0, σ), since ε := Re(su0) − σ|u0| > 0, by continuity there
is a 0 < r < |u0| such that |u− u0| ≤ r ensures Re(su)− σ|u| ≥ ε/2.
Let κ2 be an upper bound of κ1e

−Re(as)|u| when |u − u0| ≤ r. The
bound on ψ that we have derived above yields

|ψ(u, t)| ≤ κ2e
−tε/2

and the right-hand side of this inequality is a Lebesgue integrable
function of t.
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• For every t ∈ R+, it is plain that the function u ∈ Us 7→ ψ(u, t) is
holomorphic.

Consequently Lγ [f ](s) is a complex-differentiable function of u.

4. (1.5pt) First method: since we know that the complex-derivative of
Lγ [f ](s) exists with respect to u, we can apply the chain rule to the
differentiable function

χ : λ ∈ R∗+ → Lµ[f ](s) with µ(t) = a+ t(λu)

at t = 1: it yields

dχ

dλ
(1) = d

du
Lµ[f ](s)× d(λu)

dλ
(1) = d

du
Lµ[f ](s)× u.

Since by question 1 we know that the function χ is constant, we conclude
that d

duLµ[f ](s) = 0.

Second method: we use the result of the differentiation under the integral
sign. It provides

d

du
Lµ[f ](s) =

∫
R+

∂ψ

∂u
(u, t) dt.

Since ψ(u, t) = g(tu)u with g(z) = f(a+ z)e−s(a+z), we have

∂ψ

∂u
(u, t) = d

du
(g(tu)u) = g′(tu)tu+ g(tu) = dg(tu)

dt
t+ g(tu)

= d

dt
(g(tu)t)

and thus ∫ r

0

∂ψ

∂u
(u, t) dt =

∫ r

0

d

dt
(g(tu)t) dt = [g(tu)t]r0

= f(a+ ru)e−s(a+ru)r

Since ε := Re(su)− σ|u| > 0

|f(a+ ru)e−s(a+ru)r| ≤ |ψ(u, r)r/u| ≤ (κ1e
−Re(as))e−εrr.

The right-hand side of this inequality converges to 0 when r → +∞.
Therefore, by the dominated convergence theorem

d

du
Lµ[f ](s) =

∫
R+

∂ψ

∂u
(u, t) dt = lim

r→+∞

∫ r

0

∂ψ

∂u
(u, t) dt = 0.

5. (2pt) Since the Laplace transform of t ∈ R+ → 1/(t+ 1) is given by

F (s) =
∫ +∞

0

e−st

t+ 1 dt,
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the change of variable t+ 1→ t yields

F (s) =
∫ +∞

1

e−s(t−1)

t
dt = es

∫ +∞

1

e−st

t
dt.

If s is equal to the real number x > 0, the change of variable xt→ t then
provides

F (x) = ex
∫ +∞

1

e−xt

xt
d(xt) = ex

∫ +∞

x

e−t

t
dt

and thus E1(x) = e−xF (x). Since t ∈ R+ → 1/(t+ 1)e−σ+t is integrable
whenever σ+ > 0 the Laplace transform F of t 7→ 1/(t+ 1) is defined and
holomorphic on {s ∈ C | Re(s) > 0}. Thus, the function G : s 7→ e−sF (s)
extends holomorphically E1 on this open right-hand plane. Any other
function G̃ with the same property would be equal to G on R∗+ and thus
every positive real number x would be a non-isolated zero of G− G̃. By
the isolated zeros theorem, since the open right-hand plane is connected,
G and G̃ are necessarily equal.

6. (2pt) For any u ∈ U , since Reu > 0, for any t ≥ 0, Re(γ(t)) = tReu ≥ 0.
Since for any z such that Re z ≥ 0, |z+1| ≥ 1, we have |f(z)| = 1/|z+1| ≤ 1
and thus

∀ z ∈ γ(R+), |f(z)| = κeσ|z|

with κ = 1 and σ = 0.

By definition, for any s ∈ C \R−, Us is the set of all directions u such that
Re(u) > 0 and Re(su) > 0. To be more explicit, if α denotes the argument
of u in [−π, π[ and β the argument of s in ]−π, π[, this is equivalent to

−π/2 < α < π/2 and − π/2 < α+ β < π/2

The points u = reiα that satisfy these constraints form an open sector:
r > 0 is arbitrary and if β ≥ 0, α is subject to

−π2 < α <
π

2 − β

and if β < 0
−π2 − β < α <

π

2 .

In any case, since |β| < π, the set of admissible arguments α is not empty.

7. (3pt) It is plain that

Re(uθ) = Re((1− θ)u0 + θu1) = (1− θ)Re(u0) + θRe(u1).

and that for any s ∈ C

Re(suθ) = Re(s((1− θ)u0 + θu1)) = (1− θ)Re(su0) + θRe(su1).
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Since u ∈ Us if and only if Re(u) > 0 and Re(su) > 0, if u0 ∈ Us and
u1 ∈ Us then uθ ∈ Us for any θ ∈ [0, 1].

The function u ∈ Us 7→ Lγ [f ](s) is holomorphic, hence the composition of

θ ∈ [0, 1] 7→ uθ ∈ Us and u ∈ Us 7→ Lγ [f ](s)

is continuously differentiable,

Lγ0 [f ](s)− Lγ1 [f ](s) =
∫ 1

0

d

dθ
Lγθ [f ](s) dθ

and
d

dθ
Lγθ [f ](s) = dLγ [f ](s)

du
|u=uθ ×

duθ
dθ

which is zero by question 4. Hence Lγ0 [f ](s) = Lγ1 [f ](s); the definition of
G is unambiguous.

8. (4pt) For k ∈ {0, 1} and any r ≥ 0,∫
γr
k

f(z)e−sz dz =
∫ 1

0
f((tr)uk)e−s((tr)uk)ruk dt =

∫ r

0
f(tuk)e−s(tuk)uk dt

thus by the dominated convergence theorem

Lγ1 [f ](s)− Lγ0 [f ](s) = lim
r→+∞

(∫
γr1

f(z)e−szdz −
∫
γr0

f(z)e−szdz
)
.

Since (γr0)← and γr1 are consecutive, with the path µr = (γr0)← | γr1 , this is
equivalent to

Lγ1 [f ](s)− Lγ0 [f ](s) = lim
r→+∞

∫
µr

f(z)e−szdz.

Now, the path νr defined by νr(θ) = (1− θ)ru0 + θru1 is such that µr | ν←r
is a closed rectifiable path in Us which is simply connected. Therefore by
Cauchy’s integral theorem∫

µr

f(z)e−szdz =
∫
νr

f(z)e−szdz.

For any θ ∈ [0, 1], we have Re(suθ) = (1− θ)Re(su0) + θRe(su1), thus

ε := min
θ∈[0,1]

Re(suθ) > 0

and
|f(νr(θ))e−sνr(θ)| ≤ κe−Re(sruθ) ≤ κe−εr.
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Given that `(νr) = r|u1 − u0|, the M-L inequality provides∣∣∣∣∫
νr

f(z)e−szdz
∣∣∣∣ ≤ κe−εrr|u1 − u0|

and thus
lim

r→+∞

∫
νr

f(z)e−szdz = 0.

Finally, Lγ1 [f ](s) = Lγ0 [f ](s): the definition of G is unambiguous.

9. (1pt) By construction the function

s ∈ C \ R− 7→ e−sG(s)

is holomorphic (since every Lγ is holomorphic, G is holomorphic); It
extends s 7→ e−sF (s), thus it also extends E1. Since C \ R− is connected,
by the isolated zeros theorem, this extension is unique (the argument is
identical to the one used in question 6).
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