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Problem S

A function F : Ω 7→ Cm×n where Ω is an open subset of C and m, n are positive
integers is a matrix-valued function of a complex variable. It is characterized by
the collection of its element functions fkl : Ω 7→ C:

∀ z ∈ Ω, F (z) =

 f11(z) f12(z) · · · f1n(z)
...

... · · ·
...

fm1(z) f12(z) · · · fmn(z)


Using element functions, we can readily adapt the tools of Complex Analysis:

• F is holomorphic if all its element functions are holomorphic; its derivative
F ′ is defined element-wise:

∀ z ∈ Ω, F ′(z) =

 f ′11(z) f ′12(z) · · · f ′1n(z)
...

... · · ·
...

f ′m1(z) f ′12(z) · · · f ′mn(z)


• the integral of F along some path (or path sequence) γ is defined – if and

only if it is defined for all its element functions – by

∀ z ∈ Ω,
∫
γ

F (z) dz =


∫
γ
f11(z) dz

∫
γ
f12(z) dz · · ·

∫
γ
f1n(z) dz

...
... · · ·

...∫
γ
fm1(z) dz

∫
γ
f12(z) dz · · ·

∫
γ
fmn(z) dz

 .
Linear algebra reminder. The spectrum of a square matrix A is the set
σ(A) = {z ∈ C | det(zI − A) = 0}. The inverse matrix A−1 of an invertible
matrix A depends continuously on the elements of A (as long as A stays invertible).
Polynomials of a square matrix A (e.g. I + 2A+A2) commute with each other;
rational functions of A (e.g. (I +A)(I −A)−1) also commute with each other
whenever they are defined.

1

mailto:Sebastien.Boisgerault@mines-paristech.fr
https://creativecommons.org/licenses/by-nc-sa/4.0


Questions

0. Prove that for any holomorphic functions F : Ω → Cm×n and G : Ω →
Cn×p, the matrix function product

FG : z ∈ Ω 7→ F (z)G(z) ∈ Cm×p

is holomorphic and (FG)′ = F ′G+ FG′.

Let p ∈ N∗ and A ∈ Cp×p. We denote Ω the set of complex numbers z such that
the matrix I − zA is invertible and F the matrix-valued function defined by

F : z ∈ Ω 7→ [I − zA]−1.

1. Show that Ω is open. Relate the set C \ Ω of singularities of F and the
spectrum of A.

2. Show that the function F is holomorphic and compute its derivative.

Hint: define the difference quotient

ε(z, h) = F (z + h)− F (z)
h

then compute ε(z, h)[I − zA][I − (z + h)A] (optionally, consider first the
case with p = 1 and A = [a] for some a ∈ C to guess the expression of the
derivative in the general case).

3. Prove that the n-th order derivative F (n) of F exists for every natural
number n and satisfies

∀ z ∈ Ω, F (n)(z) = n!An[I − zA]−n−1.

Hint: prove the result by induction on n.

4. What is the (possibly infinite) radius r(A) of the largest open disk centered
on the origin and included in Ω ? Relate r(A) and the spectral radius of
A, defined as

ρ(A) = max {|λ| | λ ∈ σ(A)}.
Find a sequence of matrices An ∈ Cp×p such that

∀ z ∈ D(0, r(A)), F (z) = [I − zA]−1 =
+∞∑
n=0

Anz
n.

(the convergence of this matrix series should be interpreted element-wise).

5. Let n ∈ N. Let z ∈ C \ σ(A) such that z 6= 0; write zn[zI − A]−1 as a
function of z and F (z−1). Show that the function

z ∈ C \ σ(A) 7→ zn[zI −A]−1

is complex-differentiable.
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6. Compute the line integral

1
i2π

∫
γ

zn[zI −A]−1dz

first when γ = r[	] with r > ρ(A), then more generally for any sequence of
rectifiable closed paths γ of C \ σ(A) such that ∀λ ∈ σ(A), ind(γ, λ) = 1.

7. Let
A =

[
0 −1
1 0

]
and let γ be a sequence of rectifiable closed paths of C \ R− such that
∀λ ∈ σ(A), ind(γ, λ) = 1. Compute [zI −A]−1 and then the matrix logA,
defined as

logA = 1
i2π

∫
γ

(log z)[zI −A]−1 dz.

Answers

0. For any z ∈ Ω, j ∈ {1, . . . ,m} and l ∈ {1, . . . , p},

FG(z)jl =
n∑
k=1

F (z)jkG(z)kl =
n∑
k=1

fjk(z)gkl(z).

By the sum and product rules for complex-valued holomorphic functions,
every element of FG is holomorphic and

(FG)′(z)jl =
n∑
k=1

f ′jk(z)gkl(z) +
n∑
k=1

fjk(z)g′kl(z)

= F ′G(z)jl + FG′(z)jl.

1. The function d : z ∈ C 7→ det(I−zA) is a polynomial, thus it is continuous;
the matrix I − zA is invertible if and only if d(z) 6= 0, hence Ω = d−1(C∗)
is open as the preimage of an open set by a continuous function.

Since the matrix I − zA is invertible for z = 0, we have 0 ∈ Ω; if z 6= 0,

I − zA = z(z−1I −A)

and it is invertible if and only if z−1 is not an eigenvalue of A. Finally,

C \ Ω = {λ−1 | λ ∈ σ(A) \ {0}}.

2. For any pair (k, l) ∈ {1, . . . , p}2, any z ∈ Ω and h ∈ C small enough,

ε(z, h)kl = fkl(z + h)− fkl(z)
h
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is the difference quotient of fkl at z. Therefore, F is complex-differentiable
at z if (and only if) ε(z, h) has a limit element-wise when h→ 0 and F ′(z)
is this limit. Now, we have

ε(z, h) = [I − (z + h)A]−1 − [I − zA]−1

h

The matrices I − (z + h)A and I − zA commute, hence

ε(z, h)[I − (z + h)A][I − zA] = [I − zA]− [I − (z + h)A]
h

= A,

thus ε(z, h) = A[I − zA]−1[I − (z + h)A]−1. Since matrix inversion is
continuous

F ′(z) = lim
h→0

ε(z, h) = A[I − zA]−2.

3. The function F is holomorphic; all of its elements are holomorphic, thus
they have derivatives at all orders and so does F . Assume that the n+1-th
order derivative of F satisfies

F (n+1)(z) = nA[I − zA]−1F (n)(z).

This property certainly holds for n = 0, as F ′(z) = A[I− zA]−1F (z). Now,
by the product rule, as A and F (z) = [I − zA]−1 commute,

F (n+2)(z) = nAF ′(z)F (n)(z) + nAF (z)F (n+1)(z)
= AF (z)(nAF (z)F (n)(z)) + nAF (z)F (n+1)(z)
= AF (z)F (n+1)(z) + nAF (z)F (n+1)(z)
= (n+ 1)AF (z)F (n+1)(z)

Consequently, the formula holds for all n, which leads to

F (n)(z) = n!An[I − zA]−n−1.

4. The radius r(A) of the largest disk centered on the origin and included in
Ω is

r(A) = min{|λ−1| | λ ∈ σ(A) \ {0}}
if σ(A) \ {0} is non-empty and r(A) = +∞ otherwise. If we adopt the
convention 0−1 = +∞, we can rewrite this as

r(A) = (max{|λ| | λ ∈ σ(A)})−1 = ρ(A)−1.

The function F is holomorphic in Ω, thus every element fkl is holomorphic
in Ω, which has a Taylor series expansion in D(0, r):

∀ z ∈ D(0, r), fkl(z) =
+∞∑
n=0

f
(n)
kl (0)
n! zn.
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Consequently,

∀ z ∈ D(0, r), F (z) =
+∞∑
n=0

F (n)(0)
n! zn =

+∞∑
n=0

Anzn.

5. If z ∈ C \ σ(A) and z 6= 0, then

zn[zI −A]−1 = zn−1[I − z−1A]−1 = zn−1F (z−1).

Consequently, z ∈ C \ σ(A) 7→ zn[zI − A]−1 is complex-differentiable
at z – by the product and chain rules – if z 6= 0, which is all we need
unless 0 6∈ σ(A). In this case, A is invertible and by continuity of the
matrix inversion, the function z 7→ zn[zI − A]−1 is continuous at z = 0.
Hence, 0 is a removable singularity of z 7→ zn−1F (z−1) and the function
z ∈ C \ σ(A) 7→ zn[zI −A]−1 is also complex-differentiable at z = 0.

6. If |z| > ρ(A), z ∈ C \ σ(A), |z−1| < r(A) and

zn[zI −A]−1 = zn−1[I − z−1A]−1 = zn−1
+∞∑
l=0

Alz−l =
+∞∑
l=0

Alzn−1−l.

This convergence if uniform (element-wise) on compact subsets of the
annulus, therefore

1
i2π

∫
r[	]

zn[zI −A]−1dz = 1
i2π

∫
r[	]

+∞∑
l=0

Alzn−1−ldz

=
+∞∑
l=0

Al

[
1
i2π

∫
r[	]

zn−1−ldz

]

The integral
∫
r[	] z

p dz is zero unless the integer p is −1, in which case it
is equal to i2π, hence

1
i2π

∫
r[	]

zn[zI −A]−1dz = An

Now, If γ is a sequence of rectifiable closed paths of C \ σ(A) such that
∀λ ∈ σ(A), ind(γ, λ) = 1 and r > ρ(A), the sequence of paths µ = r[	] | γ←
satisfies ∀ z ∈ σ(A), ind(µ, z) = 0. Cauchy’s integral theorem provides∫
µ
zn[zI −A]−1 dz = 0, or equivalently,

1
i2π

∫
γ

zn[zI −A]−1 dz = 1
i2π

∫
r[	]

zn[zI −A]−1 dz = An.

7. We have
zI −A =

[
z +1
−1 z

]
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hence det(zI −A) = z2 + 1. The spectrum of A is σ(A) = {−i,+i} and

[zI −A]−1 = 1
z2 + 1

[
z −1

+1 z

]
.

Consequently,

1
i2π

∫
γ

(log z)[zI −A]−1 dz = 1
i2π

∫
γ

[
f(z) −g(z)
g(z) f(z)

]
dz

with
f(z) = z log z

z2 + 1 , g(z) = log z
z2 + 1 .

Let Ω = C \ R− \ σ(A); this set is open. Both functions f and g are
holomorphic on Ω, have isolated singularities in σ(A) and are the quotient
of holomorphic functions a and b defined on Ω ∪ σ(A) such that when
λ ∈ σ(A), a(λ) 6= 0, b(λ) = 0 and b′(λ) 6= 0. Thus, we have∑

z∈σ(A)

ind(γ, z)res(f, z) = (−i) log(−i)
2(−i) + i log i

2i = 0

and ∑
z∈σ(A)

ind(γ, z)res(g, z) = log(−i)
2(−i) + log i

2i = π

2 .

Since the open set
Ω ∪ σ(A) = C \ R−

is simply connected (it is star-shaped), Int γ ⊂ Ω ∪ σ(A). Finally, the
residue theorem provides

logA = 1
i2π

∫
γ

(log z)[zI −A]−1 dz = π

2

[
0 −1

+1 0

]

Problem L

A function f : C→ C is of exponential type if

∃σ ∈ R, ∃κ > 0,∀ z ∈ C, |f(z)| ≤ κeσ|z|.

We define σ(f) as the infimum of the exponential bounds σ:

σ(f) = inf {σ ∈ R | ∃κ > 0,∀ z ∈ C, |f(z)| ≤ κeσ|z|}.
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Questions

We suppose that f is complex-differentiable on C and denote

f(z) =
+∞∑
n=0

anz
n

its Taylor expansion at 0.

1. Show that if f is of exponential type, σ(f) ≥ 0 unless f is identically zero.

2. Show that the function
f0 : z ∈ C→ e−z

is of exponential type and compute σ(f0).

3. Prove that if for some κ > 0 and σ ≥ 0, ∀n ∈ N, |n!an| ≤ κσn, then f is
of exponential type and σ(f) ≤ σ.

4. Prove that if ∀ z ∈ C, |f(z)| ≤ κeσ|z| then

∀n ∈ N, ∀ r > 0, |an| ≤ κ
eσr

rn
.

Let n ∈ N; what is the value of r that provides the tightest upper bound
on |an|? Compute this bound.

5. Prove that if f is of exponential type and σ > σ(f), there is a κ > 0 such
that ∀n ∈ N, |n!an| ≤ κσn. Reminder – Stirling’s formula:

n! ∼
√

2πn
(n
e

)n
, that is lim

n→+∞

n!en√
2πnnn

= 1.

6. Suppose that f is of exponential type; show that the function g : C→ C
defined by

g(z) =
+∞∑
n=0
|an|zn

is of exponential type and σ(g) = σ(f).

7. What is the domain of the Laplace transform of the function f0? Compute
L[f0](s) for any s in this domain. Prove that in general the domain of
the Laplace transform of a function of exponential type f contains the set
{s ∈ C | Re s > σ(f)}.

8. Show that whenever Re s > σ(f),

L[f ](s) =
∫
R+

f(t)e−st dt =
+∞∑
n=0

n!an
sn+1 .
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Prove that L[f ] has a unique holomorphic extension to the open set

Ω = domL[f ] ∪ {s ∈ C | |s| > σ(f)}.

We denote L[f ] this extension. Compute L[f0].

9. Compute for any t ≥ 0 and any r > σ(f) the line integral

1
i2π

∫
r[	]
L[f ]est ds.

Answers

1. If σ(f) < 0 then σ = 0 is an exponential bound of f : there is a κ > 0 such
that ∀ z ∈ C, |f(z)| ≤ κ. The function f is entire and bounded, thus by
Liouville’s theorem, it is identically zero.

2. For any complex number z,

|f0(z)| = |e−z| = e−Re(z) ≤ e|z|

hence σ = 1 is an exponential bound of f0. Conversely, if |f0(z)| ≤ κeσ|z|
holds for any complex number z, then

∀x ≥ 0, f0(−x) = ex ≤ κeσ|−x| = κeσx,

thus σ ≥ 1. Finally, σ(f0) = 1.

3. If for some κ > 0 and σ ≥ 0, ∀n ∈ N, |n!an| ≤ κσn, then

|f(z)| ≤ κ
+∞∑
n=0

(σ|z|)n
n! = κeσ|z|

hence f is of exponential type and σ(f) ≤ σ.

4. For any n ∈ N and r > 0,

an = 1
i2π

∫
r[	]

f(z)
zn+1 ,

hence if ∀ z ∈ C, |f(z)| ≤ κeσ|z|, by the M-L inequality,

|an| ≤
1

2πκ
eσr

rn+1 × 2πr = κ
eσr

rn
.

If n = 0, the infimum of the right-hand side with respect to r > 0 is κ.
Otherwise, the right-hand side is a differentiable function of r > 0 that
tends to +∞ when r → 0 or r → +∞. Therefore, it has a minimum at a
r > 0 that satisfies

d

dr
ln
(
κ
eσr

rn

)
= 0.
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Given that

d

dr
ln
(
κ
eσr

rn

)
= d

dr
(ln κ+ σr − n ln r) = σ − n

r
,

we have
|an| ≤ min

r>0
κ
eσr

rn
= κ

(eσ
n

)n
.

5. Let σ > σ(f). Let λ < 1 such that λσ > σ(f); there is a κ > 0 such that

∀ z ∈ C, |f(z)| ≤ κeλσ|z|.

The result of the previous question yields for any n > 0

|an| ≤ κ
(
eλσ

n

)n
and |a0| ≤ κ, therefore

∀n ∈ N∗, |n!an| ≤ κ
[√

2πnλn(1 + εn)
]
σn with lim

n→+∞
εn = 1.

The sequence ∣∣∣κ [√2πnλn(1 + εn)
]∣∣∣ , n ∈ N∗

converges to 0 when n tends to +∞ and thus has some upper bound κ′
that we may select greater than κ. Finally, |n!an| ≤ κ′σn for any n ∈ N.

6. The sum
∑+∞
n=0 |an|zn is convergent for any z ∈ C because the Taylor

expansion of f is absolutely convergent on the whole complex plane; the
function

g : z ∈ C 7→
+∞∑
n=0
|an|zn

is actually an entire function.

For any σ such that σ(f) < σ, by question 5, there is a κ > 0 such that
|n!an| ≤ κσn and thus |n!|an|| ≤ κσn. By question 3, the function g
is of exponential type and σ(g) ≤ σ; thus σ(g) ≤ σ(f). The converse
inequality may be proved by the same kind of argument (or directly as
|f(z)| ≤ g(|z|)).

7. For any σ ∈ R, e−σtf0(t) = e−(σ+1)t, hence the function t ∈ R+ 7→
e−σtf0(t) is integrable if and only if σ > −1. Therefore, the Laplace
transform of the function f0 is defined exactly on {s ∈ C | Re s > −1}.
For any such s, we have

L[f0](s) =
∫ +∞

0
e−te−st dt =

[
−e
−(s+1)t

s+ 1

]+∞

0
= 1
s+ 1 .
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In general, if f is an entire function of exponential type, then for any
complex number s such that σ = Re(s) > σ(f), there is a ε > 0 such that
σ − ε > σ(f), hence there is some κ > 0 such that

∀ t > 0, |f(t)e−st| = |f(t)|e−σt ≤ κe−εt,

thus the function t ∈ R+ 7→ f(t)e−st is integrable.

8. If Re(s) > σ(f), we have

L[f ](s) =
∫
R+

[+∞∑
n=0

ant
n

]
e−st dt.

For any m ∈ N,∣∣∣∣∣
[
m∑
n=0

ant
n

]
e−st

∣∣∣∣∣ ≤
[+∞∑
n=0
|an|tn

]
e−(Re(s))t = g(t)e−(Re(s))t.

Therefore, as σ(g) = σ(f), for any σ > 0 such that σ(f) < σ < Re(s),
there is a κ > 0 such that∣∣∣∣∣

[
m∑
n=0
|an|tn

]
e−st

∣∣∣∣∣ ≤ κeσte−(Re(s))t = κe−(Re(s)−σ)t.

The right-hand side of this inequality is an integrable function of t; by the
dominated convergence theorem

L[f ](s) =
∫
R+

[+∞∑
n=0

ant
n

]
e−st dt =

+∞∑
n=0

an

[∫
R+

tne−st dt

]
.

For any natural number n, we have∫
R+

tne−st dt = L[t 7→ tn](s) = n!
sn+1

and therefore

L[f ](s) =
+∞∑
n=0

n!an
sn+1 .

Now, the right-hand side of this equation is a Laurent series centered on the
origin which is convergent whenever Re(s) > σ(f). Consequently, the sum
g(s) is actually convergent and holomorphic in the annulus A(0, σ(f),+∞).

Now, the set
Ω = domL[f ] ∪A(0, σ(f),+∞).

is open and connected as the union of two connected sets with a non-empty
intersection. We may define on Ω the function

L[f ](s) =
∣∣∣∣ L[f ](s) if s ∈ domL[f ],

g(s) if |s| > σ(f).
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This definition is non-ambiguous: since L[f ](s) and g are holomorphic and
identical on the non-empty set {s ∈ C | Re s > σ(f)}, by the isolated zeros
theorem, they have the same values on the connected open set

domL[f ] ∩A(0, σ(f),+∞).

The function L[f ] clearly is a holomorphic extension of L[f ] to Ω. This
extension is unique: the set Ω is connected as the union of two connected
sets with a non-empty intersection, therefore the isolated zeros theorem
also applies.

For f = f0, we have

domL[f ] = {s ∈ C | Re(s) > −1}

and as σ(f0) = 1,

A(0, σ(f0),+∞) = {s ∈ C | |s| > 1},

thus Ω = C \ {−1}. The function

s ∈ C \ {−1} 7→ 1
s+ 1

is holomorphic. As it extends the original Laplace transform of f0, this is
the extended Laplace transform of f0.

9. For any t ≥ 0 and any r > σ(f),

1
i2π

∫
r[	]
L[f ]est ds = 1

i2π

∫
r[	]

[+∞∑
n=0

n!an
sn+1

]
est ds.

The series
∑+∞
n=0 n!an/sn+1 is convergent, uniformly with respect to s on

the circle of radius r centered on the origin, hence

1
i2π

∫
r[	]
L[f ]est ds =

+∞∑
n=0

n!an

[
1
i2π

∫
r[	]

est

sn+1 ds

]
.

The function s ∈ C∗ 7→ est/sn+1 is complex-differentiable, therefore

1
i2π

∫
r[	]

est

sn+1 ds = res
(
s 7→ est

sn+1 , 0
)
.

Since
lim
s→0

sn+1 est

sn+1 = 1,

the origin is a pole of order n+ 1 of this function and

res
(
s 7→ est

sn+1 , 0
)

= lim
s→0

1
n!

dn

dsn
est = tn

n! .
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Finally,

1
i2π

∫
r[	]
L[f ]est ds =

+∞∑
n=0

n!an
tn

n! =
+∞∑
n=0

ant
n = f(t).
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