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Core Definitions

Definition – Complex-Differentiability & Derivative. Let f : A ⊂ C →
C. The function f is complex-differentiable at an interior point z of A if the
derivative of f at z, defined as the limit of the difference quotient

f ′(z) = lim
h→0

f(z + h)− f(z)
h

exists in C.

Remark – Why Interior Points? The point z is an interior point of A if

∃ r > 0, ∀h ∈ C, |h| < r → z + h ∈ A.

In the definition above, this assumption ensures that f(z + h) – and therefore
the difference quotient – are well defined when |h| is (nonzero and) small enough.
Therefore, the derivative of f at z is defined as the limit in “all directions at once”
of the difference quotient of f at z. To question the existence of the derivative
of f : A ⊂ C→ C at every point of its domain, we therefore require that every
point of A is an interior point, or in other words, that A is open.
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Definition – Holomorphic Function. Let Ω be an open subset of C. A
function f : Ω → C is complex-differentiable – or holomorphic – in Ω if it is
complex-differentiable at every point z ∈ Ω. If additionally Ω = C, the function
is entire.

Examples – Elementary Functions.

1. Every constant function f : z ∈ C 7→ λ ∈ C is holomorphic as

∀ z ∈ C, f ′(z) = lim
h→0

λ− λ
h

= 0.

2. The identity function f : z ∈ C 7→ z is holomorphic:

∀ z ∈ C, f ′(z) = lim
h→0

(z + h)− z
h

= 1.

3. The inverse function f : z ∈ C∗ → 1/z is holomorphic: the set C∗ is open
and for any z ∈ C∗ and any h ∈ C such that z + h 6= 0, we have

1/(z + h)− 1/z
h

= − 1
z(z + h) ,

hence
f ′(z) = lim

h→0
− 1
z(z + h) = − 1

z2 .

4. The complex conjugate function f : z ∈ C → z is nowhere complex-
differentiable. Its difference quotient satisfies

f(z + h)− f(z)
h

= z + h− z
h

= h

h
,

therefore when t ∈ R,

lim
t→0

f(z + t)− f(z)
t

= +1,

but
lim
t→0

f(z + it)− f(z)
it

= −1,

hence the difference quotient has no limit when h→ 0.

Remark – Holomorphy & Continuity. Holomorphic functions are continu-
ous; this property is unsurprising and its proof is straightforward. But actually,
derivatives of holomorphic functions are also continuous! This may come as
a surprise since the corresponding statement doesn’t hold in the context of
real analysis: there are some real-valued functions of a real variable that are
differentiable and whose derivative is not continous1.

1In the context of real analysis, derivatives can’t be totally arbitrary either. They satisfy for
example the intermediate value theorem (a property which is weaker than continuity). Refer
to (Freiling 1999) for a complete characterization.
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We mention this property now because we will use it to simplify the statements
of some results of the current and subsequent chapters. Unfortunately, we cannot
prove it yet; it is a consequence of Cauchy’s integral theory which is far from
being trivial. To make sure that we won’t develop a circular argument, we flag
the results that use this property with the symbol [†], until we can prove it.

Remark – Historical Perspective. We should not feel too bad about the
(temporary) assumption that the derivative is continuous; after all, it was good
enough for the best mathematicians of the 19th century.

A major result of complex analysis, Cauchy’s integral theorem, was originally
formulated under the assumption that the derivative exists and is continuous2

(Cauchy 1825). We have to wait for the paper “Sur la définition générale des
fonctions analytiques, d’après Cauchy” (Goursat 1900) to officially get rid of
this assumption:

J’ai reconnu depuis longtemps que la démonstration du théorème de
Cauchy, que j’ai donnée en 1883, ne supposait pas la continuité de
la dérivée. Pour répondre au désir qui m’a été exprimé par M. le
Professeur W. F. Osgood, je vais indiquer ici rapidement comment
on peut faire cette extension.

which means:

I have long recognized that the proof of Cauchy’s theorem, that I
have given in 1883, did not assume the continuity of the derivative.
To meet the desire which was expressed to me by Professor W. F.
Osgood, I’ll tell here quickly how we can make this extension.

Because of this improvement, Cauchy’s integral theorem is also known as the
“Cauchy-Goursat theorem”. Refer to (Hille 1973, footnote p.163) for a broader
historical perspective on this subject.

Derivative and Complex-Differential

Definition – Real/Complex Vector Space. A vector space is real or on R
if its field of scalars is the real line; it is complex or on C if its field of scalars is
the complex plane.

Remark – Complex Vector Spaces are Real Vector Spaces. If the set E
is endowed with a structure of complex vector space, it is automatically endowed
with a structure of real vector space. Because of this ambiguity, it may be
necessary to qualify the usual concepts of linear algebra – for example to say

2To be honest, this assumption is only implicit, but you can’t really blame Cauchy for this
lack of precision. The standards of quality for Mathematics in the 19th century were quite
different from the present ones.
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that a function is real-linear or complex-linear instead of simply linear – to be
totally explicit about the structure to which we refer.

Example – The Complex Plane. The set C is a complex vector space with
the sum

(x+ iy) + (v + iw) = (x+ v) + i(y + w)

and scalar-vector multiplication

(µ+ iν)(x+ iy) = (µx− νy) + i(µy + νx)

It is of dimension 1 with for example {1} (the single vector 1 ∈ C) as a basis;
indeed every complex number z ∈ C is a linear combination of the vectors of
{1} (as z = z1), and the vectors of {1} are linearly independent (the only scalar
λ ∈ C such that λ1 = 0 is λ = 0).

Note how things change if we consider the plane as a real vector space: it is of
dimension 2 with for example {1, i} as a basis. In particular, the vectors 1 and i
which are complex-colinear are not real-colinear.

Definition – Complex-Linearity. Let E and F be complex normed vector
spaces. A function ` : E → F is complex-linear if it is additive and complex-
homogeneous:

∀u ∈ E, ∀ v ∈ E, `(u+ v) = `(u) + `(v),

∀λ ∈ C, ∀u ∈ E, `(λu) = λ`(u).

Definition – Complex-Differential. Let f : A ⊂ E → F where E and F are
complex normed vector spaces. Let z be an interior point of A; the complex-
differential of f at z is a complex-linear continuous operator dfz : E → F such
that

lim
h→0

‖f(z + h)− f(z)− dfz(h)‖
‖h‖

= 0,

or equivalently in expanded form

f(z + h) = f(z) + dfz(h) + εz(h)‖h‖ with lim
h→0

εz(h) = εz(0) = 0.

If such an operator exists, it is unique.

Remark – Real/Complex-Differentiability. Since the complex vector
spaces E and F are real vector spaces, we may also use the classic concept of
differential from Real Analysis for the function f : E → F. We call this operator
real-differential to avoid any ambiguity with the complex-differential. The
definitions of both operators are identical, except that the complex-differential
is required to be a complex-linear operator when the real-differential is only
required to be real-linear.

Proof – Uniqueness. If for small values of h the function f satisfies

f(z + h) = f(z) + `1
z(h) + ε1z(h)‖h‖ = f(z) + `2

z(h) + ε2z(h)‖h‖
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with continuous linear operators `1
z and `2

z and functions ε1z and ε2z such that

lim
h→0

ε1z(h) = ε1z(0) = 0 and lim
h→0

ε2z(h) = ε2z(0) = 0,

then for any u ∈ E

(`1
z − `2

z)(u) = lim
t→0

(`1
z − `2

z)(tu)
t

= lim
t→0

(ε2z(tu)− ε1z(tu))‖u‖ = 0

and consequently `1
z = `2

z. �

Theorem – Derivative and Differential. Let f : A → C with A ⊂ C and
let z be an interior point of A. The complex-differential dfz exists if and only if
the derivative f ′(z) exists. In this case, we have

∀h ∈ C, dfz(h) = f ′(z)h.

Proof. If f ′(z) exists, the mapping h ∈ C 7→ f ′(z)h is complex-linear and

lim
h→0

|f(z + h)− f(z)− f ′(z)h|
|h|

= lim
h→0

∣∣∣∣f(z + h)− f(z)
h

− f ′(z)
∣∣∣∣ = 0,

hence, it is the differential of f at z. Conversely, if dfz exists, its complex-linearity
yields dfz(h) = dfz(1)h. Therefore,

lim
h→0

∣∣∣∣f(z + h)− f(z)
h

− dfz(1)
∣∣∣∣ = lim

h→0

|f(z + h)− f(z)− dfz(h)|
|h|

= 0

thus f ′(z) exists and is equal to dfz(1). �

Calculus

Theorem – Sum and Product Rules. Let f : A → C and g : A → C with
A ⊂ C and let z an interior point of A. If f and g are complex-differentiable at
z, the derivative of f + g at z exists and

(f + g)′(z) = f ′(z) + g′(z),

the derivative of f × g at z exists and

(f × g)′(z) = f ′(z)× g(z) + f(z)× g′(z).

Proof. For any h ∈ C such that z + h ∈ A, we have

(f + g)(z + h)− (f + g)(z)
h

= f(z + h)− f(z)
h

+ g(z + h)− g(z)
h

,
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hence the derivative of f + g at z exists and satisfies the sum rule. On the other
hand,

(f × g)(z + h)− (f × g)(z)
h

=

f(z + h)− f(z)
h

g(z) + f(z + h)g(z + h)− g(z)
h

,

hence the derivative of f × g exists and satisfies the product rule. �

Theorem – Chain Rule. Let f : A → C, g : B → C with A,B two subsets
of C. If z is an interior point of A, f is complex-differentiable at z, f(z) is
an interior point of B and g is complex-differentiable at f(z), then g ◦ f is
complex-differentiable at z and

(g ◦ f)′(z) = g′(f(z))× f ′(z).

Proof. Given the assumption, we have for h small enough

f(z + h)− f(z) = f ′(z)h+ ε1z(h)|h|

and
g(f(z) + h)− g(f(z)) = g′(f(z))h+ ε2f(z)(h)|h|

with
lim
h→0

ε1z(h) = ε1z(h) = 0 and lim
h→0

ε2f(z)(h) = ε2f(z)(0) = 0.

Consequently,

g(f(z + h))− g(f(z)) = g′(f(z))(f(z + h)− f(z))
+ ε2f(z)(f(z + h)− f(z))|f(z + h)− f(z)|,

which can be expanded into

g(f(z + h))− g(f(z)) = g′(f(z))f ′(z)h+ ε3z(h)|h|,

where

ε3z(h) = g′(f(z))ε1z(h) + ε2f(z)(f(z + h)− f(z))
∣∣∣∣f ′(z) h|h| + ε1z(h)

∣∣∣∣
and satisfies

lim
h→0

ε3z(h) = ε3z(0) = 0.

This decomposition proves the existence of the complex-differential of g ◦ f at z
as well as the equality (g ◦ f)′(z) = g′(f(z))f ′(z). �
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Corollary – Quotient Rule. Let f : A → C and g : A → C with A ⊂ C
and let z be an interior point of A such that g(z) 6= 0. If f and g are complex-
differentiable at z, then f/g is complex-differentiable at z and(

f

g

)′
(z) = f ′(z)g(z)− f(z)g′(z)

g(z)2 .

Proof. By the chain rule applied to the function g and z 7→ 1/z, the derivative
of 1/g is −g′/g2. The desired result then follows from the product rule. �

Examples – Polynomials & Rational Functions. Any polynomial p with
complex coefficients

p : z ∈ C 7→ a0 + a1z + · · ·+ anz
n

is holomorphic on C since it is the sum of products of holomorphic functions.
By the quotient rule, the quotient of two polynomials p and q – with a non-zero
q – is also holomorphic on the open set {z ∈ C | q(z) 6= 0}.

Cauchy-Riemann Equations

It is sometimes convenient to remember that the set C is only R2, or in other
words that we can always identify the complex number z = x+ iy with the pair
of real numbers (x, y).

For complex-valued functions of a complex variable, we can perform this iden-
tification for the variables z = x + iy and/or for the values f = u + iv. Both
options are actually interesting and lead to slightly different characterizations of
holomorphic functions.

Theorem – Cauchy-Riemann Equations. Let Ω be an open subset of C.
The function f = u+ iv : Ω→ C is complex-differentiable on Ω if and only if:

• it is real-differentiable on Ω and

• for every z in Ω, dfz is complex-linear.

The second clause may be replaced by any of the following:

1. the function f satisfies

∀ z ∈ Ω, dfz(i) = idfz(1),

2. the function f satisfies the (complex) Cauchy-Riemann equation:

∂f

∂x
= 1
i

∂f

∂y
,
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3. the functions u and v satisfy the (scalar) Cauchy-Riemann equations:

∂u

∂x
= +∂v

∂y
and ∂u

∂y
= −∂v

∂x
.

If the complex-differentiability holds, we have

f ′ = (z 7→ dzf(1)) = ∂f

∂x
= 1
i

∂f

∂y

= ∂u

∂x
+ i

∂v

∂x
= ∂v

∂y
− i∂u

∂y

= ∂u

∂x
− i∂u

∂y
= ∂v

∂y
+ i

∂v

∂x

Remark – A Geometric Insight. We may rewrite the scalar Cauchy-Riemann
equations as [

∂v/∂x
∂v/∂y

]
=

[
0 −1

+1 0

] [
∂u/∂x
∂u/∂y

]
.

This formula provides the following insight: the gradient of the imaginary part
of a holomorphic function is obtained by a rotation of π/2 of the gradient of its
real part.

Proof. By definition, f is complex-differentiable if and only if it is real-
differentiable and its differential is complex-linear.

Assume that f is real-differentiable; the real-differential ` = dfz is real-linear,
that is, additive and real-homogeneous. If additionally `(i) = i`(1), then we
have for any real numbers µ, ν, x and y

• `(µx) = µ`(x),

• `(iνx) = νx`(i) = νxi`(1) = iν`(x),

• `(iµy) = µ`(iy),

• `(−νy) = −νy`(1) = i2νy`(1) = iνy`(i) = iν`(iy).

The function ` is additive, hence `((µ + iν)(x + iy)) = (µ + iν)`(x + iy): the
function ` is complex-homogeneous and therefore complex-linear. Hence, property
1 yields the complex-linearity of the differential.

As additionally
∂f

∂x
(z) = dfz(1), ∂f

∂y
(z) = dfz(i),

properties 1 and 2 are equivalent.

The function f = (u, v) = u+ iv is real-differentiable if and only if u and v are
real-differentiable. In this case, df = (du, dv) = du+ idv, hence

∂f

∂x
= ∂u

∂x
+ i

∂v

∂x
,
∂f

∂y
= ∂u

∂y
+ i

∂v

∂y
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which yields the equivalence between properties 2 and 3. �

There is a variant of this theorem that does not require to check explicitly for
the existence of the real-differential:

Corollary – Cauchy-Riemann Equations (Alternate) [†]. Let Ω be an
open subset of C. The function f = u+ iv : Ω→ C is complex-differentiable in
Ω if and only if any of the following conditions holds:

1. The partial derivatives ∂f/∂x and ∂f/∂y exist, are continuous and

∂f

∂x
= 1
i

∂f

∂y
.

2. The partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y exist, are contin-
uous and

∂u

∂x
= +∂v

∂y
and ∂u

∂y
= −∂v

∂x
.

Proof. If the partial derivatives of f exist and are continous, or equivalently the
partial derivatives of u and v exist and are continuous, then f is continuously
real-differentiable and we can apply the previous theorem to get our conclusion.

Reciprocally, if the derivative of f exist, then it is continuous, hence the partial
derivatives of f (or of u and v) are continous. The previous theorem also shows
that the Cauchy-Riemann equations are satisfied. �

Definition & Example – Exponential. The exponential of a complex number
z = x+ iy is the complex number denoted ez or exp z defined by

ez = ex × (cos y + i sin y).

The exponential function exp : C→ C satisfies

∂ex+iy

∂x
= ex × (cos y + i sin y) = ex+iy

and
1
i

∂ex+iy

∂y
= 1
i
ex × (− sin y + i cos y) = ex+iy.

Both partial derivatives exist and are continuous. Since they also satisfy the
Cauchy-Riemann equations, the exponential function is complex-differentiable
and

dez

dz
= ez.

Definition & Example – Logarithm. The principal value of the logarithm
is the function log : C \ R− → C defined by

log reiθ = (ln r) + iθ, r > 0, θ ∈ ]−π, π[ .

9



It is a bijection from C \ R− into R× ]−π,+π[ and for every z ∈ C \ R−

elog z = exp ◦ log(z) = z.

The exponential function is continuously real-differentiable and

d expz(h) = (exp z)× h

hence its differential d expz is invertible. By the inverse function theorem, log is
real-differentiable on C \ R− and

d explog z ◦ d logz(h) = z × d logz(h) = h.

Consequently, d logz(h) = h/z, which is a complex-linear function of h. Hence,
log is complex-differentiable and

log′(z) = 1
z
.

Definition & Example – Power Functions. The principal value of the power
with exponent α – where α ∈ C – is the function z ∈ C \ R− 7→ zα ∈ C defined
by

zα = eα log z.

By the chain rule, it is holomorphic and

dzα

dz
= eα log z × dα log z

dz

= αeα log ze− log z

= αzα−1

Appendix – Terminology and Notation

It is common to use of the word “holomorphic” and the notation H(Ω) to refer
to functions that are complex-differentiable on some open set Ω; it is for example
the convention of the classic “Real and Complex Analysis” book (Rudin 1987).

The term “holomorphic” appears in “Théorie des fonctions elliptiques” (1875),
by Charles Briot & Claude Bouquet, two students of Augustin-Louis Cauchy:

Lorsqu’une fonction est continue, monotrope, et a une dérivée, quand
la variable se meut dans une certaine partie du plan, nous dirons
qu’elle est holomorphe dans cette partie du plan. Nous indiquons
par cette dénomination qu’elle est semblable aux fonctions entières
qui jouissent de cette propriété dans toute l’étendue du plan.
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In essence, a function is holomorphic if it is continuous, single-valued and
differentiable in a subset of the complex plane. The prefix “holo” (from ancient
Greek) means “entire”; it makes sense because such a function is similar to
polynomials, which have these properties in the full complex plane and were
called “entire functions” in the 19th century3.

The most common alternate notations and terms used in the literature to refer
to holomorphic functions probably are:

• A(Ω). The symbol “A” refers to the term “analytic”; it is often used
interchangeably with the term “holomorphic”. Originally, “analytic” means
“locally defined as a power series”, but both concepts actually refer to
the same class of functions. This is a classic – but not trivial – result of
complex analysis.

• Cω(Ω). Another result of the theory of analytic functions: analytic functions
are “more than smooth”: they all belong to the set C∞(Ω) of smooth
functions, but not every smooth function is analytic. Hence, it makes sense
to use the symbol ω – that denotes the smallest infinite ordinal number –
as an exponent.

• O(Ω) (used e.g. in “Theory of Complex Functions” by Remmert (1991)).
Jean-Pierre Demailly (2009) traces the origin of this notation to the word
“olomorfico” (“holomorphic” in Italian), but Hans Grauert and Reinhold
Remmert (1984) have a different analysis: the symbol “O” may have been
chosen by Henri Cartan, which is quoted saying (in French) that:

Je m’étais simplement inspiré d’une notation utilisée par van der
Waerden dans son classique traité “Moderne Algebra” (cf. par
exemple §16 de la 2e édition allemande, p.52)

which means

I simply took inspiration from a notation used by van der Waer-
den in his classic treatise “Modern Algebra” (see e.g. §16 of the
2nd german edition, p.52)

If this interpretation is correct, then the symbol “O” probably comes from
the word “ordnüng” (“order” in German).
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