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Chapter 1

Complex-Differentiability

Core Definitions

Definition – Complex-Differentiability & Derivative. Let f : A ⊂ C →
C. The function f is complex-differentiable at an interior point z of A if the
derivative of f at z, defined as the limit of the difference quotient

f ′(z) = lim
h→0

f(z + h)− f(z)
h

exists in C.

Remark – Why Interior Points? The point z is an interior point of A if

∃ r > 0, ∀h ∈ C, |h| < r → z + h ∈ A.

In the definition above, this assumption ensures that f(z + h) – and therefore
the difference quotient – are well defined when |h| is (nonzero and) small enough.
Therefore, the derivative of f at z is defined as the limit in “all directions at once”
of the difference quotient of f at z. To question the existence of the derivative
of f : A ⊂ C→ C at every point of its domain, we therefore require that every
point of A is an interior point, or in other words, that A is open.

Definition – Holomorphic Function. Let Ω be an open subset of C. A
function f : Ω → C is complex-differentiable – or holomorphic – in Ω if it is
complex-differentiable at every point z ∈ Ω. If additionally Ω = C, the function
is entire.

Examples – Elementary Functions.

1. Every constant function f : z ∈ C 7→ λ ∈ C is holomorphic as

∀ z ∈ C, f ′(z) = lim
h→0

λ− λ
h

= 0.

2. The identity function f : z ∈ C 7→ z is holomorphic:

∀ z ∈ C, f ′(z) = lim
h→0

(z + h)− z
h

= 1.

1
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3. The inverse function f : z ∈ C∗ → 1/z is holomorphic: the set C∗ is open
and for any z ∈ C∗ and any h ∈ C such that z + h 6= 0, we have

1/(z + h)− 1/z
h

= − 1
z(z + h) ,

hence
f ′(z) = lim

h→0
− 1
z(z + h) = − 1

z2 .

4. The complex conjugate function f : z ∈ C → z is nowhere complex-
differentiable. Its difference quotient satisfies

f(z + h)− f(z)
h

= z + h− z
h

= h

h
,

therefore when t ∈ R,

lim
t→0

f(z + t)− f(z)
t

= +1,

but
lim
t→0

f(z + it)− f(z)
it

= −1,

hence the difference quotient has no limit when h→ 0.

Remark – Holomorphy & Continuity. Holomorphic functions are continu-
ous; this property is unsurprising and its proof is straightforward. But actually,
derivatives of holomorphic functions are also continuous! This may come as
a surprise since the corresponding statement doesn’t hold in the context of
real analysis: there are some real-valued functions of a real variable that are
differentiable and whose derivative is not continous1.

We mention this property now because we will use it to simplify the statements
of some results of the current and subsequent chapters. Unfortunately, we cannot
prove it yet; it is a consequence of Cauchy’s integral theory which is far from
being trivial. To make sure that we won’t develop a circular argument, we flag
the results that use this property with the symbol [†], until we can prove it.

Remark – Historical Perspective. We should not feel too bad about the
(temporary) assumption that the derivative is continuous; after all, it was good
enough for the best mathematicians of the 19th century.

A major result of complex analysis, Cauchy’s integral theorem, was originally
formulated under the assumption that the derivative exists and is continuous2

(Cauchy 1825). We have to wait for the paper “Sur la définition générale des
fonctions analytiques, d’après Cauchy” (Goursat 1900) to officially get rid of
this assumption:

1In the context of real analysis, derivatives can’t be totally arbitrary either. They satisfy for
example the intermediate value theorem (a property which is weaker than continuity). Refer
to (Freiling 1999) for a complete characterization.

2To be honest, this assumption is only implicit, but you can’t really blame Cauchy for this
lack of precision. The standards of quality for Mathematics in the 19th century were quite
different from the present ones.
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J’ai reconnu depuis longtemps que la démonstration du théorème de
Cauchy, que j’ai donnée en 1883, ne supposait pas la continuité de
la dérivée. Pour répondre au désir qui m’a été exprimé par M. le
Professeur W. F. Osgood, je vais indiquer ici rapidement comment
on peut faire cette extension.

which means:

I have long recognized that the proof of Cauchy’s theorem, that I
have given in 1883, did not assume the continuity of the derivative.
To meet the desire which was expressed to me by Professor W. F.
Osgood, I’ll tell here quickly how we can make this extension.

Because of this improvement, Cauchy’s integral theorem is also known as the
“Cauchy-Goursat theorem”. Refer to (Hille 1973, footnote p.163) for a broader
historical perspective on this subject.

Derivative and Complex-Differential

Definition – Real/Complex Vector Space. A vector space is real or on R
if its field of scalars is the real line; it is complex or on C if its field of scalars is
the complex plane.

Remark – Complex Vector Spaces are Real Vector Spaces. If the set E
is endowed with a structure of complex vector space, it is automatically endowed
with a structure of real vector space. Because of this ambiguity, it may be
necessary to qualify the usual concepts of linear algebra – for example to say
that a function is real-linear or complex-linear instead of simply linear – to be
totally explicit about the structure to which we refer.

Example – The Complex Plane. The set C is a complex vector space with
the sum

(x+ iy) + (v + iw) = (x+ v) + i(y + w)

and scalar-vector multiplication

(µ+ iν)(x+ iy) = (µx− νy) + i(µy + νx)

It is of dimension 1 with for example {1} (the single vector 1 ∈ C) as a basis;
indeed every complex number z ∈ C is a linear combination of the vectors of
{1} (as z = z1), and the vectors of {1} are linearly independent (the only scalar
λ ∈ C such that λ1 = 0 is λ = 0).

Note how things change if we consider the plane as a real vector space: it is of
dimension 2 with for example {1, i} as a basis. In particular, the vectors 1 and i
which are complex-colinear are not real-colinear.

Definition – Complex-Linearity. Let E and F be complex normed vector
spaces. A function ` : E → F is complex-linear if it is additive and complex-
homogeneous:

∀u ∈ E, ∀ v ∈ E, `(u+ v) = `(u) + `(v),

∀λ ∈ C, ∀u ∈ E, `(λu) = λ`(u).
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Definition – Complex-Differential. Let f : A ⊂ E → F where E and F are
complex normed vector spaces. Let z be an interior point of A; the complex-
differential of f at z is a complex-linear continuous operator dfz : E → F such
that

lim
h→0

‖f(z + h)− f(z)− dfz(h)‖
‖h‖

= 0,

or equivalently in expanded form

f(z + h) = f(z) + dfz(h) + εz(h)‖h‖ with lim
h→0

εz(h) = εz(0) = 0.

If such an operator exists, it is unique.

Remark – Real/Complex-Differentiability. Since the complex vector
spaces E and F are real vector spaces, we may also use the classic concept of
differential from Real Analysis for the function f : E → F. We call this operator
real-differential to avoid any ambiguity with the complex-differential. The
definitions of both operators are identical, except that the complex-differential
is required to be a complex-linear operator when the real-differential is only
required to be real-linear.

Proof – Uniqueness. If for small values of h the function f satisfies

f(z + h) = f(z) + `1z(h) + ε1z(h)‖h‖ = f(z) + `2z(h) + ε2z(h)‖h‖

with continuous linear operators `1z and `2z and functions ε1z and ε2z such that

lim
h→0

ε1z(h) = ε1z(0) = 0 and lim
h→0

ε2z(h) = ε2z(0) = 0,

then for any u ∈ E

(`1z − `2z)(u) = lim
t→0

(`1z − `2z)(tu)
t

= lim
t→0

(ε2z(tu)− ε1z(tu))‖u‖ = 0

and consequently `1z = `2z. �

Theorem – Derivative and Differential. Let f : A → C with A ⊂ C and
let z be an interior point of A. The complex-differential dfz exists if and only if
the derivative f ′(z) exists. In this case, we have

∀h ∈ C, dfz(h) = f ′(z)h.

Proof. If f ′(z) exists, the mapping h ∈ C 7→ f ′(z)h is complex-linear and

lim
h→0

|f(z + h)− f(z)− f ′(z)h|
|h|

= lim
h→0

∣∣∣∣f(z + h)− f(z)
h

− f ′(z)
∣∣∣∣ = 0,

hence, it is the differential of f at z. Conversely, if dfz exists, its complex-linearity
yields dfz(h) = dfz(1)h. Therefore,

lim
h→0

∣∣∣∣f(z + h)− f(z)
h

− dfz(1)
∣∣∣∣ = lim

h→0

|f(z + h)− f(z)− dfz(h)|
|h|

= 0

thus f ′(z) exists and is equal to dfz(1). �
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Calculus

Theorem – Sum and Product Rules. Let f : A → C and g : A → C with
A ⊂ C and let z an interior point of A. If f and g are complex-differentiable at
z, the derivative of f + g at z exists and

(f + g)′(z) = f ′(z) + g′(z),

the derivative of f × g at z exists and

(f × g)′(z) = f ′(z)× g(z) + f(z)× g′(z).

Proof. For any h ∈ C such that z + h ∈ A, we have

(f + g)(z + h)− (f + g)(z)
h

= f(z + h)− f(z)
h

+ g(z + h)− g(z)
h

,

hence the derivative of f + g at z exists and satisfies the sum rule. On the other
hand,

(f × g)(z + h)− (f × g)(z)
h

=

f(z + h)− f(z)
h

g(z) + f(z + h)g(z + h)− g(z)
h

,

hence the derivative of f × g exists and satisfies the product rule. �

Theorem – Chain Rule. Let f : A → C, g : B → C with A,B two subsets
of C. If z is an interior point of A, f is complex-differentiable at z, f(z) is
an interior point of B and g is complex-differentiable at f(z), then g ◦ f is
complex-differentiable at z and

(g ◦ f)′(z) = g′(f(z))× f ′(z).

Proof. Given the assumption, we have for h small enough

f(z + h)− f(z) = f ′(z)h+ ε1z(h)|h|

and
g(f(z) + h)− g(f(z)) = g′(f(z))h+ ε2f(z)(h)|h|

with
lim
h→0

ε1z(h) = ε1z(h) = 0 and lim
h→0

ε2f(z)(h) = ε2f(z)(0) = 0.

Consequently,

g(f(z + h))− g(f(z)) = g′(f(z))(f(z + h)− f(z))
+ ε2f(z)(f(z + h)− f(z))|f(z + h)− f(z)|,

which can be expanded into

g(f(z + h))− g(f(z)) = g′(f(z))f ′(z)h+ ε3z(h)|h|,
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where

ε3z(h) = g′(f(z))ε1z(h) + ε2f(z)(f(z + h)− f(z))
∣∣∣∣f ′(z) h|h| + ε1z(h)

∣∣∣∣
and satisfies

lim
h→0

ε3z(h) = ε3z(0) = 0.

This decomposition proves the existence of the complex-differential of g ◦ f at z
as well as the equality (g ◦ f)′(z) = g′(f(z))f ′(z). �

Corollary – Quotient Rule. Let f : A → C and g : A → C with A ⊂ C
and let z be an interior point of A such that g(z) 6= 0. If f and g are complex-
differentiable at z, then f/g is complex-differentiable at z and(

f

g

)′
(z) = f ′(z)g(z)− f(z)g′(z)

g(z)2 .

Proof. By the chain rule applied to the function g and z 7→ 1/z, the derivative
of 1/g is −g′/g2. The desired result then follows from the product rule. �

Examples – Polynomials & Rational Functions. Any polynomial p with
complex coefficients

p : z ∈ C 7→ a0 + a1z + · · ·+ anz
n

is holomorphic on C since it is the sum of products of holomorphic functions.
By the quotient rule, the quotient of two polynomials p and q – with a non-zero
q – is also holomorphic on the open set {z ∈ C | q(z) 6= 0}.

Cauchy-Riemann Equations

It is sometimes convenient to remember that the set C is only R2, or in other
words that we can always identify the complex number z = x+ iy with the pair
of real numbers (x, y).

For complex-valued functions of a complex variable, we can perform this iden-
tification for the variables z = x + iy and/or for the values f = u + iv. Both
options are actually interesting and lead to slightly different characterizations of
holomorphic functions.

Theorem – Cauchy-Riemann Equations. Let Ω be an open subset of C.
The function f = u+ iv : Ω→ C is complex-differentiable on Ω if and only if:

• it is real-differentiable on Ω and

• for every z in Ω, dfz is complex-linear.

The second clause may be replaced by any of the following:

1. the function f satisfies

∀ z ∈ Ω, dfz(i) = idfz(1),
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2. the function f satisfies the (complex) Cauchy-Riemann equation:

∂f

∂x
= 1
i

∂f

∂y
,

3. the functions u and v satisfy the (scalar) Cauchy-Riemann equations:

∂u

∂x
= +∂v

∂y
and ∂u

∂y
= −∂v

∂x
.

If the complex-differentiability holds, we have

f ′ = (z 7→ dzf(1)) = ∂f

∂x
= 1
i

∂f

∂y

= ∂u

∂x
+ i

∂v

∂x
= ∂v

∂y
− i∂u

∂y

= ∂u

∂x
− i∂u

∂y
= ∂v

∂y
+ i

∂v

∂x

Remark – A Geometric Insight. We may rewrite the scalar Cauchy-Riemann
equations as [

∂v/∂x
∂v/∂y

]
=
[

0 −1
+1 0

] [
∂u/∂x
∂u/∂y

]
.

This formula provides the following insight: the gradient of the imaginary part
of a holomorphic function is obtained by a rotation of π/2 of the gradient of its
real part.

Proof. By definition, f is complex-differentiable if and only if it is real-
differentiable and its differential is complex-linear.

Assume that f is real-differentiable; the real-differential ` = dfz is real-linear,
that is, additive and real-homogeneous. If additionally `(i) = i`(1), then we
have for any real numbers µ, ν, x and y

• `(µx) = µ`(x),

• `(iνx) = νx`(i) = νxi`(1) = iν`(x),

• `(iµy) = µ`(iy),

• `(−νy) = −νy`(1) = i2νy`(1) = iνy`(i) = iν`(iy).

The function ` is additive, hence `((µ + iν)(x + iy)) = (µ + iν)`(x + iy): the
function ` is complex-homogeneous and therefore complex-linear. Hence, property
1 yields the complex-linearity of the differential.

As additionally
∂f

∂x
(z) = dfz(1), ∂f

∂y
(z) = dfz(i),

properties 1 and 2 are equivalent.
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The function f = (u, v) = u+ iv is real-differentiable if and only if u and v are
real-differentiable. In this case, df = (du, dv) = du+ idv, hence

∂f

∂x
= ∂u

∂x
+ i

∂v

∂x
,
∂f

∂y
= ∂u

∂y
+ i

∂v

∂y

which yields the equivalence between properties 2 and 3. �

There is a variant of this theorem that does not require to check explicitly for
the existence of the real-differential:

Corollary – Cauchy-Riemann Equations (Alternate) [†]. Let Ω be an
open subset of C. The function f = u+ iv : Ω→ C is complex-differentiable in
Ω if and only if any of the following conditions holds:

1. The partial derivatives ∂f/∂x and ∂f/∂y exist, are continuous and

∂f

∂x
= 1
i

∂f

∂y
.

2. The partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y exist, are contin-
uous and

∂u

∂x
= +∂v

∂y
and ∂u

∂y
= −∂v

∂x
.

Proof. If the partial derivatives of f exist and are continous, or equivalently the
partial derivatives of u and v exist and are continuous, then f is continuously
real-differentiable and we can apply the previous theorem to get our conclusion.

Reciprocally, if the derivative of f exist, then it is continuous, hence the partial
derivatives of f (or of u and v) are continous. The previous theorem also shows
that the Cauchy-Riemann equations are satisfied. �

Definition & Example – Exponential. The exponential of a complex number
z = x+ iy is the complex number denoted ez or exp z defined by

ez = ex × (cos y + i sin y).
The exponential function exp : C→ C satisfies

∂ex+iy

∂x
= ex × (cos y + i sin y) = ex+iy

and
1
i

∂ex+iy

∂y
= 1
i
ex × (− sin y + i cos y) = ex+iy.

Both partial derivatives exist and are continuous. Since they also satisfy the
Cauchy-Riemann equations, the exponential function is complex-differentiable
and

dez

dz
= ez.

Definition & Example – Logarithm. The principal value of the logarithm
is the function log : C \ R− → C defined by

log reiθ = (ln r) + iθ, r > 0, θ ∈ ]−π, π[ .
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It is a bijection from C \ R− into R× ]−π,+π[ and for every z ∈ C \ R−

elog z = exp ◦ log(z) = z.

The exponential function is continuously real-differentiable and

d expz(h) = (exp z)× h

hence its differential d expz is invertible. By the inverse function theorem, log is
real-differentiable on C \ R− and

d explog z ◦ d logz(h) = z × d logz(h) = h.

Consequently, d logz(h) = h/z, which is a complex-linear function of h. Hence,
log is complex-differentiable and

log′(z) = 1
z
.

Definition & Example – Power Functions. The principal value of the power
with exponent α – where α ∈ C – is the function z ∈ C \ R− 7→ zα ∈ C defined
by

zα = eα log z.

By the chain rule, it is holomorphic and

dzα

dz
= eα log z × dα log z

dz

= αeα log ze− log z

= αzα−1

Appendix – Terminology and Notation

It is common to use of the word “holomorphic” and the notation H(Ω) to refer
to functions that are complex-differentiable on some open set Ω; it is for example
the convention of the classic “Real and Complex Analysis” book (Rudin 1987).

The term “holomorphic” appears in “Théorie des fonctions elliptiques” (1875),
by Charles Briot & Claude Bouquet, two students of Augustin-Louis Cauchy:

Lorsqu’une fonction est continue, monotrope, et a une dérivée, quand
la variable se meut dans une certaine partie du plan, nous dirons
qu’elle est holomorphe dans cette partie du plan. Nous indiquons
par cette dénomination qu’elle est semblable aux fonctions entières
qui jouissent de cette propriété dans toute l’étendue du plan.

In essence, a function is holomorphic if it is continuous, single-valued and
differentiable in a subset of the complex plane. The prefix “holo” (from ancient
Greek) means “entire”; it makes sense because such a function is similar to
polynomials, which have these properties in the full complex plane and were
called “entire functions” in the 19th century3.

3Nowadays, a function is entire if is defined and holomorphic on C, which is a more consistent
definition. Polynomials are still entire functions, but they are not the only ones.
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The most common alternate notations and terms used in the literature to refer
to holomorphic functions probably are:

• A(Ω). The symbol “A” refers to the term “analytic”; it is often used
interchangeably with the term “holomorphic”. Originally, “analytic” means
“locally defined as a power series”, but both concepts actually refer to
the same class of functions. This is a classic – but not trivial – result of
complex analysis.

• Cω(Ω). Another result of the theory of analytic functions: analytic functions
are “more than smooth”: they all belong to the set C∞(Ω) of smooth
functions, but not every smooth function is analytic. Hence, it makes sense
to use the symbol ω – that denotes the smallest infinite ordinal number –
as an exponent.

• O(Ω) (used e.g. in “Theory of Complex Functions” by Remmert (1991)).
Jean-Pierre Demailly (2009) traces the origin of this notation to the word
“olomorfico” (“holomorphic” in Italian), but Hans Grauert and Reinhold
Remmert (1984) have a different analysis: the symbol “O” may have been
chosen by Henri Cartan, which is quoted saying (in French) that:

Je m’étais simplement inspiré d’une notation utilisée par van der
Waerden dans son classique traité “Moderne Algebra” (cf. par
exemple §16 de la 2e édition allemande, p.52)

which means

I simply took inspiration from a notation used by van der Waer-
den in his classic treatise “Modern Algebra” (see e.g. §16 of the
2nd german edition, p.52)

If this interpretation is correct, then the symbol “O” probably comes from
the word “ordnüng” (“order” in German).
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Exercises

Antiholomorphic Functions

A function f : Ω→ C is antiholomorphic if its complex conjugate f is holomor-
phic.

1. Is the complex conjugate function c : z ∈ C 7→ z real-linear? complex-
linear? Is it real-differentiable? holomorphic? antiholomorphic?

2. Show that any antiholomorphic function f is real-differentiable. Relate the
differential of such a function and the differential of its complex conjugate.

3. Find the variant of the Cauchy-Riemann equation applicable to antiholo-
morphic functions.

4. What property has the composition of two antiholomorphic functions?

5. Let f : Ω 7→ C be a holomorphic function; show that the function

g : z ∈ Ω 7→ f(z)

is holomorphic and compute its derivative.

Principal Value of the Logarithm

According to the definition of log, for any x+ iy ∈ C \ R−,

log(x+ iy) = ln
√
x2 + y2 + i arg(x+ iy),

where arg : C \ R− → C is the principal value of the argument:

∀ z ∈ C \ R−, arg z ∈ ]−π, π[ ∧ ei arg z = z

|z|
.

1. Show that

arg(x+ iy) =

∣∣∣∣∣∣
arctan y/x if x > 0,

+π/2− arctan x/y if y > 0,
−π/2− arctan x/y if y < 0.

https://doi.org/10.2307/1986398
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2. Show that the function log is holomorphic and compute its derivative.

Conformal Mappings

A R-linear mapping L : C→ C is angle-preserving if L is invertible and

∀ θ ∈ R, ∃αθ > 0, L(eiθ) = αθ × eiθL(1).

A R-differentiable function f : Ω→ C (locally) angle-preserving – or conformal –
if its differential is angle-preserving everywhere.

1. Show that an invertible R-linear mapping L : C→ C is angle-preserving if
and only if it is C-linear.

2. Identify the class of conformal mappings defined on Ω.

Directional Derivative

Source: Mathématiques III, Francis Maisonneuve, Presses des Mines.

Let f be a complex-valued function defined in a neighbourhood of a point z0 ∈ C.
Assume that f is R-differentiable at z0.

1. Let α ∈ R and zr,α = z0 + reiα for r ∈ R. Show that

`α = lim
r→0

f(zr,α)− f(z0)
zr,α − z0

exists and determine its value as a function of dfz0 and α.

2. What is the geometric structure of the set A = {`α | α ∈ R} ?

3. For which of these sets A is f C-differentiable at z0?



Chapter 2

Line Integrals & Primitives

Introduction

The main goal of this chapter is to derive the fundamental theorem of calculus
for functions of a complex variable. This theorem characterizes the relation
between functions and their primitives with the help of integrals. A version of
this theorem for functions of a real variable is the following:

Theorem – Fundamental Theorem of Calculus (Real Analysis). Let I
be an open interval of R, f : I → R be a continuous function and a ∈ I. A
function g : I → R is a primitive of f if and only if it satisfies

∀x ∈ I, g(x) = g(a) +
∫ x

a

f(t) dt.

Proof. Suppose that the function g satisfies the integral equation of the theorem.
For any x ∈ I and any real number h such that x+ h ∈ I,

g(x+ h)− g(x)
h

= 1
h

∫ x+h

x

f(t) dt

= 1
h

∫ x+h

x

f(x) dt+ 1
h

∫ x+h

x

(f(t)− f(x)) dt

= f(x) + 1
h

∫ x+h

x

(f(t)− f(x)) dt,

Let ε > 0; by continuity of f at x, there is a δ > 0 such that

∀ t ∈ I, (|t− x| ≤ δ ⇒ |f(t)− f(x)| < ε)

thus if |h| < δ, ∣∣∣∣g(x+ h)− g(x)
h

− f(x)
∣∣∣∣ ≤ 1
|h|
|h| × ε = ε.

The difference quotient tends to f(x) when h tends to zero: g′(x) exists and is
equal to f(x).

13
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Conversely, suppose that e : I → R is a primitive of f. The difference d between
e and the function

g : x ∈ I 7→ e(a) +
∫ x

a

f(t) dt

is zero at a and has a zero derivative on I. By the mean value theorem, for any
x ∈ I such that x 6= a, there is a b ∈ I such that

d(x)− d(a)
x− a

= d′(b) = 0,

hence d(x) = d(a) = 0 and therefore e = g. �

Paths

Definition – Path. A path γ is a continuous function from [0, 1] to C. If A is
a subset of the complex plane, γ is a path of A if additionally γ([0, 1]) ⊂ A.

Definition – Image of a Path. The image or trajectory or trace of the path
γ is the image γ([0, 1]) of the interval [0, 1] by the function γ.

Definition – Path Endpoints. The complex numbers γ(0) and γ(1) are the
initial point and terminal point of γ – they are its endpoints; the path γ joins its
initial and terminal points. The path is closed if the initial and terminal point
are the same. The paths γ1, . . . , γn are consecutive if for k = 1, . . . , n− 1, the
terminal point of γk is the initial point of γk+1.

Example – Oriented Line Segment. The oriented line segment (or simply
oriented segment) with initial point a ∈ C and terminal point b ∈ C is denoted
[a→ b] and defined as

[a→ b] : t ∈ [0, 1] 7→ (1− t)a+ tb.

Its image is the line segment [a, b].

Example – Oriented Circle. The oriented circle of radius one centered at
the origin traversed once in the positive sense (counterclockwise) is denoted [	]
and defined as

[	] : t ∈ [0, 1]→ ei2πt.

The circle of radius r ≥ 0 centered at c ∈ C traversed n ∈ Z∗ times in the
positive sense is the path

c+ r[	]n : t ∈ [0, 1]→ c+ rei2πnt.

Its image is the circle centered on c with radius r; its initial and terminal points
are both c+ r, hence it is closed.

Definition – Open (Path-)Connected Sets. An open subset Ω of the
complex-plane is (path-)connected if for any points x and y of Ω, there is a path
of Ω that joins x and y.

Definition – Reverse Path. The reverse (or opposite) of the path γ is the
path γ← defined by

∀ t ∈ [0, 1], γ←(t) = γ(1− t).
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0 1 2

0

1

Figure 2.1: Representation of the oriented line segment [0→ 2 + i]

−1 0 1

−1

0

1

Figure 2.2: Representation of the oriented circle [	]
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Definition – Path Concatenation. Let t0 = 0 < t1 < · · · < tn−1 < tn = 1
be a partition of the interval [0, 1]. The concatenation of consecutive paths
γ1, . . . , γn associated to this partition is the path γ denoted

γ1 |t1 · · · |tn−1 γn

such that
∀ k ∈ {1, . . . , n}, γ|[tk−1,tk] = γk

(
t− tk−1

tk − tk−1

)
.

If the partition of [0, 1] is uniform, that is, if

∀ k ∈ {0, . . . , n}, tk = k/n,

we denote the concatenated path with the simpler notation

γ1 | · · · | γn.

Example – Oriented Polyline. An oriented polyline (or piecewise linear
path) is the concatenation of consecutive oriented line segments. When the
associated partition of [0, 1] is uniform, we use the notation

[a0 → a1 → · · · → an−1 → an] = [a0 → a1] | · · · | [an−1 → an].

Definition – Rectifiable Path. A path γ : [0, 1] → C is rectifiable if the
function γ is piecewise continuously differentiable.

Given the definition of piecewise continuously differentiable, the following alter-
nate characterization is plain:

Theorem – Continuously Differentiable Decomposition. A path γ :
[0, 1]→ C is rectifiable if and only if there are consecutive continuously differ-
entiable paths γ1, . . . , γn and a partition (t0, . . . , tn) of the interval [0, 1] such
that

γ = γ1 |t1 · · · |tn−1 γn.

We characterized initially connected sets via merely continuous paths. However,
when such sets are open, we can use rectifiable paths instead:

Lemma – Connectedness & Rectifiable Paths. An open subset Ω of the
complex plane is connected if and only if every pair of points of Ω may be joined
by a rectifiable path of Ω.

Proof. If any pair of points of Ω can be joined by a rectifiable path of Ω, then
Ω is connected. Conversely, assume that a (merely continuous) path γ of Ω joins
x and y. Its image γ([0, 1]) is a compact subset of Ω – as the image of a compact
set by a continuous function – thus the distance r between γ([0, 1]) and the
closed set C\Ω is positive. Additionally, the function γ is uniformly continuous –
as a continuous function with a compact domain of definition; there is a positive
integer n such that

∀ t ∈ [0, 1], ∀ s ∈ [0, 1], (|t− s| ≤ 1/n ⇒ |γ(t)− γ(s)| < r).
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For any k ∈ {0, . . . , n}, the point γ(k/n) belongs to Ω; the path µ defined as

µ = [γ(0)→ · · · → γ(k/n)→ · · · → γ(1)]

is rectifiable and joins x and y. Now, for any t ∈ [0, 1], let k ∈ {0, . . . , n− 1} be
such that t ∈ [k/n, (k + 1)/n]. We have

|µ(t)− γ(k/n)| ≤ |γ((k + 1)/n)− γ(k/n)| < r,

therefore µ is a path of Ω. �

Line Integrals

Definition – Length of a Rectifiable Path. The length of a rectifiable path
γ is the nonnegative real number

`(γ) =
∫ 1

0
|γ′(t)| dt.

Example – Length of an Oriented Segment. The oriented segment [a→ b]
is continuously differentiable and thus rectifiable. For any t ∈ [0, 1], [a→ b]′(t) =
b− a, hence its length is

`([a→ b]) =
∫ 1

0
|b− a| dt = |b− a|.

Example – Length of an Oriented Circle. The oriented circle c + r[	]n
centered at c with radius r ≥ 0 traversed n times in the positive sense is
continuously differentiable and thus rectifiable. For any t ∈ [0, 1],

[c+ r[	]n]′(t) = (i2πn)rei2πnt,

hence the length of this path is

`(c+ r[	]n) =
∫ 1

0
|(i2πn)rei2πnt| dt =

∫ 1

0
|2πnr| dt = 2πr × |n|.

It differs from the length of its circle image – which is 2πr – unless the circle is
traversed exactly once in the positive or negative sense.

Definition – Line Integral. The line integral along a rectifiable path γ of
a complex-valued function f defined and continuous on the image of γ is the
complex number defined by∫

γ

f(z) dz =
∫ 1

0
f(γ(t))γ′(t) dt.

Remark – Undefined Integrands. In the definitions of the length of γ and
of the integral along γ, the integrands

|γ′(t)| and f(γ(t))γ′(t)
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may be undefined for some values of t if γ is merely rectifiable. However it’s not
an issue since they are always defined almost everywhere (and integrable).

Remark – Integral Notation. It’s sometimes handy to use the notation∫
γ

f(z) |dz| =
∫ 1

0
f(γ(t))|γ′(t)|dt.

which is similar to the one used for line integrals. With this convention, we have
for example

`(γ) =
∫
γ

|dz|.

Example – Integration along an Oriented Segment. The line integral of
the continuous function f : [a, b] 7→ C along the oriented segment [a→ b] is∫

[a→b]
f(z) dz =

∫ 1

0
f((1− t)a+ tb)(b− a) dt

= (b− a)
∫ 1

0
f((1− t)a+ tb) dt.

Example – Integration along an Oriented Circle. The line integral of a
continuous function f : {z ∈ C | |z| = 1} → C on the oriented circle [	] is∫

[	]
f(z) dz =

∫ 1

0
f(ei2πt)(i2πei2πtdt)

= i

∫ 1

0
f(ei2πt)ei2πt (2πdt)

= i

∫ 2π

0
f(eiθ)eiθdθ.

Theorem – Complex-Linearity of the Line Integral. Let γ be a rectifiable
path. For any α, β ∈ C and any continuous functions f and g defined on the
image of γ, ∫

γ

αf(z) + βg(z) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz.

Proof. Since by definition of the line integral∫
γ

αf(z) + βg(z) dz =
∫ 1

0
(αf(γ(t)) + βg(γ(t)))γ′(t)dt,

the complex-linearity of the integral on [0, 1] provides∫
γ

αf(z) + βg(z) dz = α

∫ 1

0
f(γ(t))γ′(t) dt

+ β
∑
k

∫ 1

0
g(γ(t))γ′(t) dt
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�

Theorem – Integration along a Reverse Path. For any rectifiable path γ,

`(γ←) = `(γ).

For any continuous function f : A ⊂ C→ C defined on the image of γ,∫
γ←

f(z) dz = −
∫
γ

f(z) dz.

Proof. Since γ←(t) = γ(1− t), the length of the opposite of γ satisfies

`(γ←(t)) =
∫ 1

0
|(γ←)′(t)| dt =

∫ 1

0
| − γ′(1− t)| dt.

The change of variable t 7→ 1− t yields

`(γ←(t)) =
∫ 1

0
|γ′(t)| dt = `(γ).

Similarly, ∫
γ←

f(z) dz =
∫ 1

0
f(γ←(t))(γ←)′(t) dt

=
∫ 1

0
f(γ(1− t))(−γ′(1− t)) dt

=
∫ 1

0
f(γ(t))(−γ′(t)) dt

= −
∫
γ

f(z) dz

�

Theorem – Integration along Concatenation of Paths. Let A be a subset
of C. Let γ1, . . . , γn be consecutive rectifiable paths of A and let γ be their
concatenation

γ = γ1 |t1 · · · |tn−1 γn.

The length of γ satisfies

`(γ) =
n∑
k=1

`(γk).

For any continuous function f : A ⊂ C→ C defined on the image of γ,∫
γ

f(z) dz =
n∑
k=1

∫
γk

f(z) dz.

Proof. Since by definition γ(t) = γk((t− tk)/(tk − tk−1)) whenever
t ∈ [tk, tk+1], the decomposition

`(γ) =
∫ 1

0
|γ′(t)| dt

=
n−1∑
k=0

∫ tk+1

tk

|γ′(t)| dt
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provides

`(γ) =
n−1∑
k=0

∫ tk+1

tk

∣∣∣∣∣∣
γ′k

(
t−tk

tk+1−tk

)
tk − tk−1

dt

∣∣∣∣∣∣
and the changes of variables t ∈ [tk, tk+1] 7→ t−tk

tk+1−tk yield

`(γ) =
n∑
k=1

∫ 1

0
|γ′k(t)| dt

=
n∑
k=1

`(γk)

Similarly,∫
γ

f(z)dz =
∫ 1

0
f(γ(t))γ′(t) dt

=
n−1∑
k=0

∫ tk+1

tk

f(γ(t))γ′(t) dt

=
n−1∑
k=0

∫ tk+1

tk

f

(
γk

(
t− tk

tk+1 − tk

)) γ′k

(
t−tk

tk+1−tk

)
tk − tk−1

dt

=
n∑
k=1

∫ 1

0
f(γk(t))γ′k(t) dt

=
n∑
k=1

∫
γk

f(z) dz

�

Theorem – M-L Inequality. For any rectifiable path γ and any continuous
function f : A ⊂ C→ C defined on the image of γ,∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ ≤ ( max

z∈γ([0,1])
|f(z)|

)
× `(γ).

Proof. By definition of the line integral∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ =

∣∣∣∣∫ 1

0
f(γ(t))γ′(t) dt

∣∣∣∣
≤
∫ 1

0
|f(γ(t))||γ′(t)| dt

≤
(

max
t∈[0,1]

|f(γ(t))|
)
×
∫ 1

0
|γ′(t)| dt

=
(

max
z∈γ([0,1])

|f(z)|
)
× `(γ).
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�

A practical consequence of the M-L inequality:

Corollary – Convergence in Line Integrals. For any rectifiable path γ and
any sequence of continuous function fn : A ⊂ C→ C defined on the image of γ
which converges uniformly to the function f,

lim
n→+∞

∫
γ

fn(z) dz =
∫
γ

f(z) dz.

Proof. The linearity of the line integral and the M-L inequality provide∣∣∣∣∫
γ

fn(z) dz −
∫
γ

f(z)
∣∣∣∣ =

∣∣∣∣∫
γ

(fn(z)− f(z)) dz
∣∣∣∣

≤
(

max
z∈γ([0,1])

|fn − f(z)|
)
× `(γ)

which yields the desired result. �

Theorem – Invariance By Reparametrization. Let γ : [0, 1] → C be a
continuously differentiable path. Let φ : [0, 1] → [0, 1] be an increasing C1-
diffeomorphism – a continuously differentiable function such that φ(0) = 0,
φ(1) = 1 and φ′(t) > 0 for any t ∈ [0, 1]. The following statements hold:

• The path µ = γ ◦ φ is a continuously differentiable path.

• It has the same initial point, terminal point and image as γ.

• The length of µ and γ are identical.

• For any continuous function f : γ([0, 1])→ C,∫
µ

f(z) dz =
∫
γ

f(z) dz.

Proof. The function µ is continuously differentiable as the composition of
continuously differentiable functions. We have

µ(0) = γ(φ(0)) = γ(0), µ(1) = γ(φ(1)) = γ(1),

hence the endpoints of γ and µ are identical. The function φ is a bijection from
[0, 1] into itself, therefore

µ([0, 1]) = γ(φ([0, 1])) = γ([0, 1])

and the images of γ and µ are identical.

The length of µ is

`(µ) =
∫ 1

0
|µ′(t)| dt =

∫ 1

0
|γ′(φ(t))φ′(t)| dt =

∫ 1

0
|γ′(φ(t))|φ′(t)dt

The change of variable s = φ(t) provides∫ 1

0
|γ′(φ(t))|φ′(t)dt =

∫ 1

0
|γ′(s)| ds,
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hence the lengths of γ and µ are equal. We also have∫
µ

f(z) dz =
∫ 1

0
(f ◦ µ)(t)µ′(t) dt =

∫ 1

0
(f ◦ γ)(φ(t))γ′(φ(t)) (φ′(t)dt).

The same change of variable leads to∫
µ

f(z) dz =
∫ 1

0
(f ◦ γ)(s)γ′(s) ds =

∫
γ

f(z) dz,

which concludes the proof. �

Definition – Image of a Path by a Function. Let γ : [0, 1]→ C be a path
and f : A ⊂ C → C be a continuous function defined on the image of γ. The
image of γ by f is the path f ◦ γ.

Theorem – Change of Variable in Line Integrals. Let Ω be an open subset
of C, let γ be a rectifiable path of Ω and let f : Ω→ C be a holomorphic function.
The path f ◦ γ is rectifiable and for any continuous function g : A ⊂ C → C
defined on the image of f ◦ γ,∫

f◦γ
g(z) dz =

∫
γ

g(f(w))f ′(w) dw.

Proof. Let γ1 |t1 . . . |tn−1 γn be a continously differentiable decomposition of γ.
We have

f ◦ γ = f ◦ γ1 |t1 . . . |tn−1 f ◦ γn,

and for any k ∈ {1, . . . , n}, by the chain rule, the function f ◦ γk is continuously
differentiable hence the path f ◦ γ is rectifiable.

Moreover, ∫
γ

g(f(w))f ′(w) dw =
∫ 1

0
g(f(γ(t))f ′(γ(t))γ′(t) dt

=
∫ 1

0
g(f(γ(t))(f ◦ γ)′(t) dt

=
∫
f◦γ

g(w) dw

�

Primitives

Definition – Primitive. Let f : Ω → C where Ω is an open subset of C. A
primitive (or antiderivative) of f is a holomorphic function g : Ω→ C such that
g′ = f.

Theorem – Fundamental Theorem of Calculus (Complex Analysis).
Let Ω be an open connected subset of C, f : Ω→ C be a continuous function
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and let a ∈ Ω. A function g : Ω → C is a primitive of f if and only if for any
z ∈ Ω and any rectifiable path γ of Ω that joins a and z,

g(z) = g(a) +
∫
γ

f(w) dw.

Proof. Let g be a primitive of f and γ be a rectifiable path of Ω that joins a
and z. Let γ = γ1 |t1 . . . |tn−1 γn be a continuously differentiable decomposition
of γ. For any k ∈ {1, . . . , n}, the function

φ : t ∈ [0, 1] 7→ g(γk(t))

is differentiable as a composition of real-differentiable functions, with

φ′(t) = dgγk(t)(γ′k(t)) = g′(γk(t))γ′k(t).

The function φ′ is continuous hence by the fundamental theorem of calculus
(from real analysis) applied to the real and imaginary parts of φ′ on ]0, 1[ , we
have for any positive number ε smaller than 1,

φ(1− ε)− φ(ε) =
∫ 1−ε

ε

φ′(t) dt,

and thus by continuity of φ and φ′

φ(1)− φ(0) =
∫ 1

0
φ′(t) dt,

which is equivalent to

g(γk(1))− g(γk(0)) =
∫ 1

0
g′(γk(t))γ′k(t) dt =

∫
γk

f(w) dw.

The sum of these equations for all k ∈ {1, . . . , n} provides

g(z)− g(a) =
∫
γ

f(w) dw.

Conversely, assume that g satisfies the theorem property. Let γ be a rectifiable
path of Ω that joins a and z and let r > 0 be such that the open disk centered
at z with radius r is included in Ω. Consider the concatenation µ of γ and of
the oriented segment [z → z + h] for h such that |h| < r. It is a rectifiable path
of Ω, hence

g(z + h) = g(a) +
∫
µ

f(w) dw

= g(a) +
∫
γ

f(w) dw + h

∫ 1

0
f(z + th) dt

= g(z) + h

∫ 1

0
f(z + th) dt

hence
g(z + h)− g(z)

h
=
∫ 1

0
f(z + th) dt.
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The right-hand side of this equation converges to f(z) by continuity when h goes
to zero, therefore g is a primitive of f. �

Corollary – Existence of Primitives [†]. Let Ω be an open connected subset
of C. The function f : Ω→ C has a primitive if and only if it is continuous and
for any closed rectifiable path γ ∫

γ

f(z) dz = 0.

Proof – Existence of Primitives. If the function f has primitives, it is the
derivative of a holomorphic function, thus it is continuous. Additionally, for any
closed rectifiable path γ of Ω, the fundamental theorem of calculus provides

g(γ(1)) = g(γ(0)) +
∫
γ

f(w) dw,

hence as γ(1) = γ(0), ∫
γ

f(w) dw = 0.

Conversely, assume that any such integral is zero. Select any a in Ω and define
for any point z in Ω and any rectifiable path γ of Ω that joins them the function

g(z) = g(a) +
∫
γ

f(w) dw.

This definition is non-ambiguous: if we select a different path µ, the difference
between the right-hand sides of the definitions would be(

g(a) +
∫
γ

f(w) dw
)
−
(
g(a) +

∫
µ

f(w) dw
)

=
∫
γ |µ←

f(w) dw = 0

as γ |µ← is a closed rectifiable path of Ω. Consequently, g is uniquely defined
and by the fundamental theorem of calculus, it is a primitive of f. �

Corollary – Set of Primitives. Let Ω be an open connected subset of C and
let f : Ω→ C. If g : Ω→ C is a primitive of f, the function h : Ω→ C is also a
primitive of f if and only iff it differs from g by a constant.

Proof. It is clear that a function h that differs from g by a constant is a primitive
of f. Conversely, if g and h are both primitives of f, g − h is a primitive of the
zero function. The fundamental theorem of calculus shows that for any a and z
in Ω and any rectifiable path γ of Ω that joins them,

g(z)− h(z) = g(a)− h(a) +
∫
γ

0 dw = g(a)− h(a)

hence their difference is a constant. �

Corollary – Integration by Parts [†]. Let Ω be an open connected subset
of C and let γ be a rectifiable path of Ω. For any pair of holomorphic functions
f : Ω→ C and g : Ω→ C,∫

γ

f ′g(z) dz = [fg(γ(1))− fg(γ(0))]−
∫
γ

fg′(z) dz.
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Proof. The derivative of the function fg is f ′g + fg′. It is continuous as a sum
and product of continuous functions thus the fundamental theorem of calculus
provides

fg(γ(1)) = fg(γ(0)) +
∫
γ

(f ′g + fg′)(z) dz,

which is equivalent to the conclusion of the corollary. �

Remark & Definition – Variation of a Function on a Path. The difference
between the value of a function f at the terminal value and at the initial value
of a path γ may be denoted [f ]γ :

[f ]γ = f(γ(1))− f(γ(0)).

With this convention, the formula that relates a function f and its primitive g is

[g]γ =
∫
γ

f(z) dz

and the integration by parts formula becomes∫
γ

f ′g(z) dz = [fg]γ −
∫
γ

fg′(z) dz.

Appendix – A Better Theory of Rectifiability

Rectifiable Paths

The definition we used so far for “rectifiable” is a conservative one. In this
section, we come up with a more general definition of the concept that still meets
the requirements for the definition of line integrals.

To “rectify” a path (from Latin rectus “straight” and facere “to make”) is to
straighten – or by extension to compute its length, which is a trivial operation
once a path has been straightened.

The general definition of the length of a path does not require line integrals.
Instead, consider any partition (t0, . . . , tn) of the interval [0, 1] and the path
µ = µ1 |t1 . . . |tn−1µn where

µk(t) = (1− t)γ(tk−1) + tγ(tk).

We may define the length of such a combination of straight lines as

`(µ) =
n−1∑
k=1
|γ(tk+1)− γ(tk)|.

As the straight line is the shortest path between two points, this number should
provide a lower bound of the length of γ. On the other hand, using finer partitions
of the interval [0, 1] should also provide better approximations of the length of
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γ. Following this idea, we may define the length of γ as the supremum of the
length of µ for all possible partitions of [0, 1]:

`(γ) = sup
{
n−1∑
k=0
|γ(tk+1)− γ(tk)|

∣∣∣∣∣ n ∈ N∗, t0 = 0 < · · · < tn = 1
}

Not every path has a finite length; those who have are by definition rectifiable.
In general, a function γ : [0, 1] 7→ C whose length is finite – even if it is not
continuous – is of bounded variation.

The Line Integral

To define line integrals along the path γ, it is enough that γ is of bounded
variation. For any such function γ, we may build a (complex-valued, Borel)
measure on [0, 1] denoted dγ. This measure is defined by its integral of any
continuous function φ : [0, 1]→ C, as a limit of Riemann(-Stieltjes) sums∫

[0,1]
φdγ = lim

n−1∑
m=0

φ(tm)(γ(tm+1)− γ(tm)).

The limit is taken over the partitions of the interval [0, 1] with

max {|tm+1 − tm| | m ∈ {0, . . . , n− 1}} → 0.

The line integral of a continuous function f : γ([0, 1])→ C is then defined by∫
γ

f(z) dz =
∫

[0,1]
(f ◦ γ) dγ.

The total variation |dγ| of dγ is the positive measure defined by

|dγ|(A) = sup
P

∑
B∈P

|dγ(B)|

where the supremum is taken over all finite partitions P of A into measurable
sets. This measure provides an integral expression for the length of γ:

`(γ) =
∫

[0,1]
|dγ|.

A Non-Rectifiable Curve

The Koch snowflake (Koch 1904) is an example of a continuous curve which is is
nowhere differentiable; it is also a non-rectifiable closed path. It is defined as
the limit of a sequence of polylines γn. The first element of this sequence is an
oriented equilateral triangle:

γ1 = [0→ 1→ eiπ3 → 0].
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Figure 2.3: Image of the Koch snowflake, first iteration.
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Figure 2.4: Image of the Koch snowflake, second iteration.
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Figure 2.5: Image of the Koch snowflake, third iteration.
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Figure 2.6: Image of the Koch snowflake, fourth iteration
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Then, γn+1 is defined as a transformation of γn: every oriented line segment
[a→ a+ h] that composes γn is replaced by the polyline:[

a→ a+ h

3 → a+
(

1 + e−iπ/3
) h

3 → a+ 2h3 → a+ h

]
The Koch snowflake γ is defined as the limit of the γn sequence. The geometric
construction yields that for any n greater than zero,

∀ t ∈ [0, 1], |γn+1(t)− γn(t)| ≤
(

1
3

)n √3
2 .

As
∑+∞
p=0

( 1
3
)p = 1

1−1/3 = 3
2 , for any positive integer p we have

∀ t ∈ [0, 1], |γn+p(t)− γn(t)| ≤
(

1
3

)n 3
2

√
3

2 .

The sequence γn is a Cauchy sequence in the space of continuous and complex-
valued functions defined on [0, 1]; its uniform limit exists and is also continuous.

On the other hand, the curve is not rectifiable. First, the definition of the
sequence γn makes it plain that every iteration increases the initial length of the
path by one-third:

`(γn) = 3×
(

4
3

)n−1
.

The length of γn tends to +∞ when n→ +∞. Now, every point at the junction
of the segments of the polyline γn also belongs to the Koch snowflake; more
precisely

∀m ∈ {0, . . . , 3× 4n−1}, γ
(

m

3× 4n−1

)
= γn

(
m

3× 4n−1

)
.

Therefore

`(γ) ≥
3×4n−1−1∑
m=0

∣∣∣∣γ ( m+ 1
3× 4n−1

)
− γ

(
m

3× 4n−1

)∣∣∣∣ = `(γn)

and thus `(γ) = +∞: the path γ is not rectifiable.
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Exercises

Primitives of Power Functions

Determine the primitives of the power z 7→ zn – defined on C if n nonnegative
and on C∗ otherwise – or prove that no such function exist.
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Primitive of a Rational Function

Let Ω = C \ {0, 1} and let f : Ω→ C be defined by

f(z) = 1
z(z − 1) .

Show that f has no primitive on Ω, but that it has a primitive on C \ [0, 1] and
determine its expression.

Reparametrization of Paths

Let α : [0, 1]→ C be a continuously differentiable path. Let φ : [0, 1]→ [0, 1] be
a continuously differentiable function such that φ(0) = 0, φ(1) = 1 and φ′(t) > 0
for any t ∈ [0, 1].

1. Show that β = α ◦ φ is a rectifiable path which has the same initial point,
terminal point and image as α.

2. Prove that for any continuous function f : α([0, 1])→ C,∫
α

f(z) dz =
∫
β

f(z) dz.

3. Prove that the paths α and β have the same length.

The Logarithm: Alternate Choices

Show that for any α ∈ R, the function z ∈ Cα 7→ 1/z defined on

Cα = C \ {reiα | r ≥ 0}.

has a primitive; describe the set of all its primitives.
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Connected Sets

Introduction

We characterize the subsets of the plane that are “in one piece”. Two slightly
different mathematical properties can play this role: path-connectedness, whose
definition is quite elementary, and connectedness, a slightly weaker – and arguably
more convoluted – property, but also a more robust and powerful one. The
difference matters only when one deals with “pathological” sets; for “well-behaved”
sets – and that includes all open sets – the two properties are equivalent.

In this document, we use the word “set” to mean “subset of the complex plane”
because this is what we need most of the time. However, the theory still works if
we interpret “set” as “subset of a given normed vector space” instead; the only
adaption that is required is the replacement of open disks by open balls.

Path-Connected/Connected Sets

Definition – Path-Connected Set. A set A is path-connected if any pair of
points of A can be joined by a path of A:

∀ (w, z) ∈ A2, ∃ γ ∈ C0([0, 1], A), γ(0) = w and γ(1) = z.

Definition – Dilation. A set B is a dilation of a set A if it is the union of a
collection of non-empty open disks whose centers are the points of A:

B =
⋃
a∈A

D(a, ra) and ∀ a ∈ A, ra > 0.

Remark – Non-Uniformity of Dilations. We borrowed the word dilation
from mathematical morphology, but our use of the word is not completely
standard. The dilation of a set A by the non-empty open disk D(0, r) would be

33
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classically defined as

B = A+D(0, r) = {a+ b | a ∈ A, b ∈ D(0, r)} =
⋃
a∈A

D(a, r).

By contrast, the definition that we use allows non-uniform dilations: the radius
of the disks may change with their centers.

Definition – Connected Set. A set is connected if all its dilations are path-
connected. A set which is not connected is disconnected.

Theorem – Path-Connected/Connected Set. Every path-connected set is
connected. Conversely, every open connected set is path-connected.

Proof. Let A be a path-connected set and B = ∪a∈ADa be a dilation of A. For
any points w and z in B, there are points a and b in A such that w ∈ Da and
z ∈ Db. There is a path that joins w and a in Da, a path that joins a and b in
A and a path that joins b and z in Db. The concatenation of these paths joins w
and z in B, hence A is connected.

Conversely, let A be an open connected set. For any a ∈ A, the distance ra
between a and the complement of A – which is a closed set – is positive, hence
the disk Da = D(a, ra) is a non-empty subset of A and A = ∪a∈ADa. The set A
is one of its dilations, hence it is path-connected. �

Corollary – Open Connected Sets. An open set is connected if and only if
it is path-connected.

Set Operations

Many properties of connected sets are similar to properties of path-connected
sets, so many statements exist in two variants. For example:

Theorem – Union of Sets With a Non-Empty Intersection. if A is a
collection of path-connected/connected sets whose intersection ∩A is non-empty,
then the union ∪A is path-connected/connected.

Proof. For path-connected sets: let a and b in ∪A. There are some sets A and
B in A such that a ∈ A and b ∈ B. The intersection ∩A is included in A ∩B,
hence A ∩B is not empty; let c ∈ A ∩B. There is a path of A that joins a and
c and a path of B that joins c and b; their concatenation joins a and b in ∪A.
Hence, this set is path-connected.

For connected sets: let ∪a∈∪ADa be a dilation of ∪A. We have⋃
a∈∪A

Da =
⋃
A∈A
∪a∈ADa.

For any A ∈ A, the set ∪a∈ADa is a dilation of A, hence it is path-connected;
the inclusion A ⊂

⋃
a∈ADa provides

∩A =
⋂
A∈A

A ⊂
⋂
A∈A
∪a∈ADa,
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hence the intersection of all ∪a∈ADa over A ∈ A is not empty. We may
therefore apply the result of the theorem for path-connected sets to the collection
{∪a∈ADa | A ∈ A}. Our arbitrary dilation of ∪A is path-connected, hence ∪A
is connected. �

Theorem – Disjoint Union of Open Sets. If A and B are two non-empty
open sets such that A ∩B = ∅, then A ∪B is not path-connected/connected.

Proof. Assume that γ is a path of A ∪B that joins a point a ∈ A and a point
b ∈ B. Consider the function

φ : t ∈ [0, 1] 7→ d(γ(t), A)− d(γ(t), B).

If z = γ(t) ∈ A, for example when t = 0, d(z,A) = 0 and as A is open and
A ∩ B = ∅, d(z,B) > 0, hence φ(t) < 0. Otherwise, for example when t = 1,
z = γ(t) ∈ B, d(z,B) = 0 and as B is open and A ∩B = ∅, d(z,A) > 0, hence
φ(t) > 0. But the function φ is also continuous; the intermediate value theorem
asserts the existence of a t ∈ ]0, 1[ such that φ(t) = 0, which is a contradiction.
Hence no such path γ can exist and A ∪B is not path-connected; as A ∪B is
open, it is not connected either. �

Connected sets also have some interesting properties that are not shared by all
path-connected sets; for example:

Theorem – Closure of Connected Sets. The closure of a connected set is
connected.

Proof. Let A be a connected set and let ∪b∈BDb be a dilation of its closure
B = A. For any b ∈ B, let rb be the distance between b and the complement of
this dilation. We have

∪b∈BDb = ∪b∈BD(b, rb).

Consider the dilation ∪a∈AD(a, ra) of A. It is a clearly a subset of the dilation
of B; actually, we can prove that both sets are equal. Assume that z belongs to
the dilation of B: there is a b ∈ B such that |z − b| < rb. As B is the closure of
A, there is a point a ∈ A such that |a− b| < (rb − |z − b|)/2; we have

|z − a| ≤ |z − b|+ |a− b| < rb − |a− b| ≤ ra,

hence the point z also belongs to the dilation of A. As the dilation of A is
path-connected, so is the dilation of B: B is connected. �

The equivalent statement is false for some path-connected sets. Actually, we may
leverage this difference to build a connected set which is not path-connected:

Example – The Topologist’s Sine Curve. Consider

A = {(x, sin 1/x) | x ∈ ]0, 1]}.

This set is path-connected – as the image by a continuous function of a path-
connected set – hence its closure

A = A ∪ {(0, y) | y ∈ [−1,+1]}

is connected; however, it is not path-connected.
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Figure 3.1: The Topologist’s Sine Curve.

Assume on the contrary that γ : [0, 1]→ C is a path of A that joins the points
a0 = (2/π, 1) and a∞ = (0, 0); it has to go through every point

an = (xn, yn), n ∈ N where
∣∣∣∣ xn = 1/((n+ 1/2)π)
yn = sin 1/xn = (−1)n

in this specific order. Indeed, given some tn ∈ [0, 1[ such that γ(tn) = an,
we have Re(γ(tn)) = xn. As Re(γ(1)) = Re(a∞) = 0, by continuity of t ∈
[0, 1] 7→ Re(γ(t)), there is a tn+1 ∈ ]tn, 1[ such that Re(γ(tn+1)) = xn+1. Since
for any x > 0, there is a unique real number y such that (x, y) ∈ A, this yields
γ(tn+1) = an+1. Now, since the sequence tn is increasing and bounded from
above, necessarily |tn+1 − tn| → 0 when n→ +∞. But on the other hand, for
any n ∈ N,

|γ(tn+1)− γ(tn)| = |an+1 − an|
≥ |yn+1 − yn|
= 2

Hence the function γ, despite being continuous and defined on the compact set
[0, 1] cannot be uniformly continuous, which is a contradiction.

Components

We define two concepts of components based respectively on path-connectedness
and connectedness.

Definition – Component. A (path-connected/connected) component of a non-
empty set A is a subset of A which is path-connected/connected and maximal
with respect to inclusion among such sets – that is, included in no other path-
connected/connected subset of A.

Theorem – Partition into Components. The path-connected/connected
components of a non-empty set A are a partition of A: they are a collection of
non-empty and pairwise disjoint subsets of A whose union is A.

Proof. The proof is identical for path-connected and connected components.
Let a ∈ A. Consider the collection Aa of all connected subsets of A that contain
the point a. The set Aa = ∪Aa is connected. By construction, the set Aa is
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maximal: it is a component of A. As every component of A is maximal, it
contains at least one point a ∈ A: it is therefore non-empty and equal to Aa.
Hence the union of all components of A is ∪a∈AAa = A. Finally, if two such
components Aa and Ab have a non-empty intersection c ∈ A, the set Aa ∪Ab is
connected and contains Aa and Ab, therefore Aa = Ab. �

Corollary – Connectedness & Components. A non-empty set is path-
connected/connected if and only if it has a single path-connected/connected
component.

Proof. If a set is path-connected/connected, it is one of its components, because
it is clearly connected and maximal. As the components form a partition of the
set, it is the only component. Conversely, if there is a unique component, again
because the components form a partition of the set, it is the set itself, which is
therefore path-connected/connected. �

Theorem – Components of Open Sets. The partitions of a non-empty open
set into path-connected components and connected components are identical.
All such components are open.

Proof. Let A be an open set and let B be a path-connected component of A.
For any b ∈ B, there is a non-empty open disk D centered on b which is included
in A. The disk D is a path-connected subset of A that contains a; it is therefore
included in the unique maximal path-connected subset of A that contains a: the
set B. Therefore, B is open.

The path-connected components of A are open and path-connected, hence they
are also connected. They are also maximal among the connected sets of A:
a connected component of A contains a path-connected component of A if
it contains a point of it; if it were to contain more than one path-connected
component, it would be the union several disjoint open sets and hence could not
be connected. �

Locally Constant Functions

Definition – Locally Constant Function. A function f defined on a set A
is locally constant if for any a in A, there is a non-empty open disk D centered
on a such that f is constant on A ∩D:

∀ a ∈ A, ∃ ε > 0, ∀ b ∈ A, |b− a| < ε ⇒ f(b) = f(a).

Theorem – Locally Constant Functions & Connected Sets. A set A is
connected if and only if every locally constant function defined on A is constant.

Proof. Let f be a locally constant function defined on A. Let a ∈ A and
B = {b ∈ A | f(b) = f(a)}. Assume that f is not constant, that is, that
C = A \ B is non-empty. As f is locally constant, the distance between any
point b of B and the set C is positive; we may define Db = D(b, rb) where
rb = d(b, C)/2 > 0. We may perform a similar construction for any point c of C
and define a disk Dc = D(c, rc) with rc = d(c,B)/2 > 0. By construction, the
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sets ∪b∈BDb and ∪c∈CDc are non-empty, open and disjoints, hence the dilation
∪a∈ADa of A is not path-connected. Therefore, A is not connected.

Conversely, if A is not connected, let ∪a∈ADa be a dilation of A which is not
path-connected. It has multiple (path-connected) components; let B be one of
them and C be the union of all the others. Since every component is non-empty
and open, B and C are both non-empty and open. Then, the function f defined
by f(z) = 1 if z ∈ B and f(z) = 0 if z ∈ C is locally constant; however, it is not
constant. �

Exercises

Image of Path-Connected/Connected Sets

Let f : A ⊂ C→ C be a continuous function.

Show that if A is path-connected/connected, its image f(A) is path-
connected/connected.

Complement of a Compact Set

Prove that the complement C \K of a compact subset K of the complex plane
has a single unbounded component.

Union of Separated Sets

Source: “Sur les ensembles connexes” (Knaster and Kuratowski 1921)

Let A and B be two non-empty subsets of the complex plane.

1. If A ∩B = ∅, is A ∪B always disconnected ?

2. Assume that d(A,B) > 0; show that A ∪B is not connected.

3. Assume that A∩B = ∅ and A∩B = ∅; show that A∪B is not connected.

Anchor Set

1. Prove that if A is a collection of path-connected/connected sets and there
is a set A∗ ∈ A such that ∀A ∈ A, A ∩ A∗ 6= ∅, then the union ∪A is
path-connected/connected.

2. A deformation retraction of a subset A of the complex plane onto a subset
B of A is a “continuous shrinking process” of A into B; formally, it is a
collection of paths γa of A, indexed by a ∈ A, such that:

• ∀ a ∈ A, γa(0) = a and γa(1) ∈ B,

• ∀ a ∈ B, ∀ t ∈ [0, 1], γa(t) = a,
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• the function (t, a) ∈ [0, 1]×A 7→ γa(t) is continuous.

(see e.g. (Hatcher 2002)). Show that if there is a deformation retraction
of A onto B and B is path-connected/connected, then A is also path-
connected/connected.
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Chapter 4

Cauchy’s Integral Theorem
– Local Version

Introduction

We derive in this document a first version of Cauchy’s integral theorem:

Theorem – Cauchy’s Integral Theorem (Local Version). Let f : Ω→ C
be a holomorphic function. For any a ∈ Ω, there is a radius r > 0 such that
the open disk D(a, r) is included in Ω and for any rectifiable closed path γ of
D(a, r), ∫

γ

f(z) dz = 0.

We will actually state and prove a slightly stronger version – one that does not
require the restriction to small disks if Ω is star-shaped.

In a subsequent document, we will prove an even more general result, the global
version of Cauchy’s integral theorem. It will be applicable if Ω is merely simply
connected (that is “without holes”).

Integral Lemma for Polylines

Lemma – Integral Lemma for Triangles. Let f : Ω→ C be a holomorphic
function. If ∆ is a triangle with vertices a, b and c which is included in Ω

∆ = {λa+ µb+ νc | λ ≥ 0, µ ≥ 0, ν ≥ 0 and λ+ µ+ ν = 1} ⊂ Ω

and if γ = [a→ b→ c→ a] is an oriented boundary of ∆ then∫
γ

f(z) dz = 0.

40
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Proof. Let a0 = a, b0 = b, c0 = c; consider the midpoints of the triangle edges:

d0 = b0 + c0
2 , e0 = a0 + c0

2 , f0 = a0 + b0
2 .

The sum of the integrals of f along the four paths [a0 → f0 → e0 → a0],
[f0 → b0 → d0 → f0], [e0 → d0 → c0 → e0], [d0 → e0 → f0 → d0] is equal to the
integral of f along γ. By the triangular inequality, there is at least one path in
this set, that we denote γ1, such that∣∣∣∣∫

γ1

f(z) dz
∣∣∣∣ ≥ 1

4

∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ .

We can iterate this process and come up with a sequence of paths γn such that∣∣∣∣∫
γn

f(z) dz
∣∣∣∣ ≥ 1

4n

∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ .

Denote ∆n the triangles associated to the γn; they form a sequence of non-empty
and nested compact sets. By Cantor’s intersection theorem, there is a point w
such that w ∈ ∆n for every natural number n. The differentiability of f at w
provides a complex-valued function εw, defined in a neighbourhood of 0, such
that limh→0 εw(h) = εw(0) = 0 and

f(z) = f(w) + f ′(w)(z − w) + εw(z − w)|z − w|

Consequently, for any ε > 0 and for any number n large enough,∣∣∣∣∫
γn

[f(z)− f(w)− f ′(w)(z − w)] dz
∣∣∣∣ ≤ εdiam ∆n × `(γn),

where the diameter of a subset A of the complex plane is defined as

diamA = sup {|z − w| | z ∈ A, w ∈ A}.

We have `(γn) = `(γ)/2n and diam ∆n = diam ∆0/2n. Additionally,∫
γn

f(w) dz =
∫
γn

f ′(w)(z − w) dz = 0

since the functions z ∈ C 7→ f(w) and z ∈ C 7→ f ′(w)(z − w) have primitives.
Consequently, for any ε > 0, for n large enough,

1
4n

∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ ≤ ∣∣∣∣∫

γn

f(z) dz
∣∣∣∣ ≤ 1

4n εdiam ∆0 × `(γ),

which is only possible if the integral of f along γ is zero. �

Definition – Star-Shaped Set. A subset A of the complex plane is star-shaped
if it contains at least one point c – a (star-)center, the set of which is called the
kernel of A – such that for any z in A, the segment [c, z] is included in A.

Lemma – Integral Lemma for Polylines. Let f : Ω→ C be a holomorphic
function where Ω is an open star-shaped subset of C. For any closed path
γ = [a0 → · · · → an−1 → a0] of Ω,∫

γ

f(z) dz = 0.
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Proof. Let c be a star-center of Ω and define an = a0; for any k ∈ {0, . . . , n−1},
the triangle with vertices c, ak and ak+1 is included in Ω. Hence, by the integral
lemma for triangles, the integral along the path γk = [c→ ak → ak+1 → c] of f
is zero. Now, as ∫

γ

f(z) dz =
n−1∑
k=0

∫
γk

f(z) dz,

the integral of f along γ is zero as well. �

Approximations of Rectifiable Paths by Polylines

To extend the integral lemma beyond closed polylines, we prove that polylines
provide appropriate approximations of rectifiable paths:

Lemma – Polyline Approximations of Rectifiable Paths. Let γ be a
rectifiable path. For any ε` > 0 and ε∞ > 0, there is an oriented polyline µ, with
the same endpoints as γ, such that

`(µ− γ) ≤ ε` and ∀ t ∈ [0, 1], |(µ− γ)(t)| ≤ ε∞.
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Figure 4.1: A 3-line approximation of the oriented unit circle.

Proof – Polyline Approximations of Rectifiable Paths. Suppose that
the path γ is continuously differentiable. Let (t0, . . . , tn) be a partition of the
interval [0, 1] and let µ be the associated polyline:

µ = [γ(t0)→ γ(t1)] |t1 · · · |tn−1 [γ(tn−1)→ γ(tn)]

The path γ and µ have the same endpoints. The path γ may be considered as
the concatenation γ = γ1 |t1 . . . |tn−1 γn with the paths γk defined by

∀ k ∈ {1, . . . , n}, ∀t ∈ [0, 1], γk(t) = γ (tk−1 + t(tk − tk−1)) ,
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Figure 4.2: A 4-line approximation of the oriented unit circle.
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Figure 4.3: A 5-line approximation of the oriented unit circle.
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hence we have

`(µ− γ) =
n∑
k=1

∫ 1

0
|γ(tk)− γ(tk−1)− γ′k(t)| dt.

As
γ(tk)− γ(tk−1) =

∫ tk

tk−1

γ′(s) ds

and

γ′k(t) = (tk − tk−1)γ′ (tk−1 + t(tk − tk−1))

=
∫ tk

tk−1

γ′ (tk−1 + t(tk − tk−1)) ds,

we have the inequality

`(µ− γ) ≤
∫ 1

0

[
n∑
k=1

∫ tk

tk−1

|γ′(s)− γ′(tk−1 + t(tk − tk−1))| ds
]
dt

The function γ′ is by assumption continuous, and hence uniformly continuous,
on [0, 1], therefore for any ε > 0, there is a δ(ε) > 0 such that, |γ′(s)− γ′(t)| < ε
whenever |s− t| < δ(ε). For any ε` > 0, for any partition (t0, . . . , tn) such that
|tk − tk−1| < δ(ε`) for any k ∈ {1, . . . , n}, we have

`(µ− γ) ≤
∫ 1

0

[
n∑
k=1

∫ tk

tk−1

ε` ds

]
dt = ε`.

For any ε∞ > 0, as

∀ t ∈ [0, 1], |µ(t)− γ(t)| ≤ |µ(0)− γ(0)|+ `(µ− γ) = `(µ− γ),

any partition (t0, . . . , tn) such that |tk − tk−1| < δ(ε∞) ensures that

∀ t ∈ [0, 1], |(µ− γ)(t)| ≤ ε∞.

If γ is merely rectifiable, the same approximation process, applied to each of its
continuously differentiable components provides the result. �

Cauchy’s Integral Theorem

We finally get rid of the polyline assumption:

Theorem – Cauchy’s Integral Theorem (Star-Shaped Version). Let
f : Ω→ C be a holomorphic function where Ω is an open star-shaped subset of
C. For any rectifiable closed path γ of Ω,∫

γ

f(z) dz = 0.
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Proof. Let ε > 0. Let r > 0 be smaller than the distance between γ([0, 1]) and
C \ Ω. The set

K = {z ∈ C | d(z, γ([0, 1])) ≤ r},
is compact and included in Ω. Consequently, the restriction of f to K is bounded
and uniformly continuous: there is a M > 0 such that

∀ z ∈ K, |f(z)| ≤M,

and a there is a ηε > 0 – smaller than or equal to r – such that

∀ z ∈ K, ∀w ∈ γ([0, 1]), |z − w| ≤ ηε ⇒ |f(z)− f(w)| ≤ ε

2(`(γ) + 1) .

Now, let γε be a closed polyline approximation of γ such that

`(γε − γ) ≤ ε

2M and ∀ t ∈ [0, 1], |(γε − γ)(t)| ≤ ηε.

By construction, γε belongs to K, hence it is a closed path of Ω. Therefore, the
integral lemma for polylines provides∫

γε

f(z) dz = 0.

The rectifiable γ and γε have a decomposition into continuously differentiable
paths associated to a common partition (t0, . . . , tn) of the interval [0, 1]:

γ = γ1 |t1 · · · |tn γn and γε = γ1ε |t1 · · · |tn γnε

The difference between the integral of f along γ and γε satisfies∣∣∣∣∫
γ

f(z) dz −
∫
γε

f(z) dz
∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

∫ 1

0
[(f ◦ γk)γ′k − (f ◦ γεk)γ′εk](t) dt

∣∣∣∣∣
Since for any k ∈ {1, . . . , n}

(f ◦ γk)γ′k − (f ◦ γεk)γ′εk = (f ◦ γk − f ◦ γεk)γ′k − (f ◦ γεk)(γ′k − γ′εk),
we have ∣∣∣∣∫

γ

f(z) dz −
∫
γε

f(z) dz
∣∣∣∣

≤

∣∣∣∣∣
n∑
k=1

∫ 1

0
[(f ◦ γk − f ◦ γεk)γ′k](t) dt

∣∣∣∣∣
+
∣∣∣∣∣
n∑
k=1

∫ 1

0
[(f ◦ γεk)(γ′k − γ′εk)](t) dt

∣∣∣∣∣
and thus ∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ ≤ max

t∈[0,1]
|f(γ(t))− f(γε(t))| × `(γ)

+ max
t∈[0,1]

|f(γε(t))| × `(γε − γ)

≤ ε

2(`(γ) + 1) × `(γ) +M × ε

2M
≤ ε.

As ε > 0 is arbitrary, the integral of f along γ is zero. �
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Consequences

Theorem – Cauchy’s Integral Formula for Disks. Let Ω be an open subset
of the complex plane and γ = c+ r[	] be an oriented circle such that the closed
disk D(c, r) is included in Ω. For any holomorphic function f : Ω→ C,

∀ z ∈ D(c, r), f(z) = 1
i2π

∫
γ

f(w)
w − z

dw.

Proof. Refer to the answers of exercise “Cauchy’s Integral Formula for Disks”
�

Corollary – Derivatives are Complex-Differentiable. The derivative of
any holomorphic function is holomorphic.

Proof. Refer to the answers of exercise “Cauchy’s Integral Formula for Disks”
�

Theorem – Morera’s Theorem. Let Ω be an open subset of C. A function
f : Ω → C is holomorphic if and only if it is continuous and locally, its line
integrals along rectifiable closed paths are zero: for any c ∈ Ω, there is a r > 0
such that D(c, r) ⊂ Ω and for any rectifiable closed path γ of D(c, r),∫

γ

f(z) dz = 0.

Proof. If f is holomorphic, then it is continuous and by Cauchy’s integral
theorem, its line integrals along rectifiable closed paths are locally zero. Con-
versely, if f is continuous and all its line integrals along closed rectifiable paths
are zero in some non-empty open disk D(c, r) of Ω, f satisfies the condition for
the existence of primitives in D(c, r). Any such primitive is holomorphic; since
derivatives are complex-differentiable its derivative is holomorphic too and f is
holomorphic in some neighbourhood of c. Since the initial assumption holds for
any c ∈ Ω, we can conclude that f is holomorphic on Ω. �

Theorem – Limit of Holomorphic Functions. Let Ω be an open subset of
C. If a sequence of holomorphic functions fn : Ω→ C converges locally uniformly
to a function f : Ω → C, that is if for any c ∈ Ω, there is a r > 0 such that
D(c, r) ⊂ Ω and

lim
n→+∞

sup
z∈D(c,r)

|fn(z)− f(z)| = 0,

then f is holomorphic.

Proof. The function f is continuous as a locally uniform limit of continuous
functions. Now, let c ∈ Ω and let r > 0 be such that D(c, r) ⊂ Ω and the
functions fn converge uniformly to f in D(c, r). By Cauchy’s integral theorem,
for any rectifiable closed path γ of D(c, r), the integral of fn along γ is zero.
Thus ∫

γ

f(z) dz = lim
n→+∞

∫
γn

f(z) dz = 0.

By Morera’s theorem, f is holomorphic. �

http://eul.ink/complex-analysis/Cauchy's%20Integral%20Theorem%20--%20Local%20Version/Exercises/#cauchys-integral-formula-for-disks
http://eul.ink/complex-analysis/Cauchy's%20Integral%20Theorem%20--%20Local%20Version/Exercises/#cauchys-integral-formula-for-disks
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Theorem – Liouville’s Theorem. Any holomorphic function defined on C
(any entire function) which is bounded is constant.

Proof. Let f : C → C be a holomorphic function such that |f(z)| ≤ κ for
any z ∈ C. Since derivatives are complex-differentiable, we may apply Cauchy’s
integral formula for disks to the function f ′ and to the oriented circle γ = z+r[	]
for r > 0 and z ∈ C. We have

f ′(z) = 1
i2π

∫
γ

f ′(w)
w − z

dw

and by integration by parts,

f ′(z) = 1
i2π

∫
γ

f(w)
(w − z)2 dw,

which yields by the M-L inequality

|f ′(z)| ≤ κ

r
.

This inequality holds for any r > 0, thus f ′(z) = 0. Consequently, the zero
function and f are both primitives of f ′; since the domain of f ′ is connected,
these two primitives differ by a constant and thus f is constant. �

Exercises

A Fourier Transform

We wish to compute for any real number ω the value of the integral

x̂(ω) =
∫ +∞

−∞
x(t)e−iωt dt

when x : R→ R is the Gaussian function defined by

∀ t ∈ R, x(t) = e−t
2/2.

We remind you of the value of the Gaussian integral (see e.g. Wikipedia):

x̂(0) =
∫ +∞

−∞
e−t

2/2 dt =
√

2π

1. Show that for any pair of real numbers τ and ω, we can compute∫ τ

−τ
x(t)e−iωt dt

from the line integral of a fixed holomorphic function on a path γ that
depends on τ and ω.

2. Use Cauchy’s integral theorem to evaluate x̂(ω).

https://en.wikipedia.org/wiki/Gaussian_integral
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Cauchy’s Integral Formula for Disks

Let Ω be an open subset of the complex plane and γ = c+ r[	]. We assume that
the closed disk D(c, r) is included in Ω (this is stronger than the requirement
that γ is a path of Ω).

Ω γ

c r

z

Figure 4.4: Geometry of Cauchy’s integral formula for disks.

We wish to prove that for any holomorphic function f : Ω→ C,

∀ z ∈ Ω, |z − c| < r ⇒ f(z) = 1
i2π

∫
γ

f(w)
w − z

dw.

1. What is the value of the line integral above when |z − c| > r?

2. Compute the line integral above when z = c as an integral with respect to
a real variable. When happens in this case when r → 0 ?

3. Let ε > 0 be such that |z|+ ε < r and let λ = z + ε[	]. Provide two paths
µ and ν whose images belong to (different) star-shaped subsets of Ω \ {z}
and such that for any continuous function g : Ω \ {z} → C,∫

γ

g(w) dw =
∫
λ

g(w)dw +
∫
µ

g(w) dw +
∫
ν

g(w)dw.

4. Prove Cauchy’s integral formula for disks.

5. Show that f ′(z) can be computed as a line integral on γ of an expression
that depends on f(w) and not on f ′(w). What property of f ′ does this
expression shows?
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The Fundamental Theorem of Algebra

Prove that every non-constant single-variable polynomial with complex coeffi-
cients has at least one complex root.

Image of Entire Functions

Show that any non-constant holomorphic function f : C → C has an image
which is dense in C:

∀w ∈ C, ∀ ε > 0, ∃ z ∈ C, |f(z)− w| < ε.



Chapter 5

The Winding Number

Definitions

The argument of a non-zero complex number is only defined modulo 2π. A
convenient way to describe mathematically this relationship is to associate to
any such number the set of admissible values of its argument:

Definition – The Argument Function. The set-valued (or multi-valued)
function Arg, defined on C∗ by

Arg z =
{
θ ∈ R

∣∣∣∣ eiθ = z

|z|

}
,

is called the argument function.

If we need a classic single-valued function instead, we have for example:

Definition – Principal Value of the Argument. The principal value of the
argument is the unique continuous function

arg : C \ R− → R

such that
arg 1 = 0

which is a choice of the argument on its domain:

∀ z ∈ C \ R−, arg z ∈ Arg z.

Proof (existence and uniqueness). Define arg on C \ R− → R by:

arg(x+ iy) =

∣∣∣∣∣∣
arctan y/x if x > 0,

+π/2− arctan x/y if y > 0,
−π/2− arctan x/y if y < 0.

This definition is non-ambiguous: if x > 0 and y > 0, we have

arctan x/y + arctan y/x = π/2

50
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and a similar equality holds when x > 0 and y < 0. As each of the three
expressions used to define arg has an open domain and is continuous, the function
itself is continuous. It is a choice of the argument thanks to the definition of
arctan: for example, if x > 0, with θ = arg(x+ iy), we have

sin θ
cos θ = tan θ = tan(arctan y/x) = y

x
,

hence, as cos θ > 0 and x > 0, there is a λ > 0 such that

x+ iy = λ(cos θ + i sin θ) = λeiθ,

This equation yields arg x+ iy ∈ Arg x+ iy. The proof for the half-planes y > 0
and y < 0 is similar.

If f is another continuous choice of the argument on C \R− such that f(1) = 0,
the image of C \R− by the difference f − arg is a subset of 2πZ that contains 0,
and it’s also path-connected as the image of a path-connected set by a continuous
function. Consequently, it is the singleton {0}: f and arg are equal. �

We cannot avoid the introduction of a cut in the complex plane when we search
for a continuous choice of the argument: there is no continuous choice of the
argument on C∗. However, for a continuous choice of the argument along a path
of C∗, there is no such restriction:

The following theorem is a special case of the path lifting property (in the context
of covering spaces; refer to (Hatcher 2002) for details).

Theorem – Continuous Choice of the Argument. Let a ∈ C and γ be a
path of C \ {a}. Let θ0 ∈ R be a value of the argument of γ(0)− a:

θ0 ∈ Arg(γ(0)− a).

There is a unique continous function θ : [0, 1] 7→ R such that θ(0) = θ0 which is
a choice of z 7→ Arg(z − a) on γ:

∀ t ∈ [0, 1], θ(t) ∈ Arg(γ(t)− a).

Proof. Let (x(t), y(t)) be the cartesian coordinates of γ(t) in the system with
origin a and basis (eiθ0 , ieiθ0). As long as x(t) > 0, the function

t 7→ θ0 + arg(x(t) + iy(t))

is a continuous choice of the argument of γ(t)− a. Let d be the distance between
a and γ([0, 1]) and let n ∈ N such that

|t− s| ≤ 2−n ⇒ |γ(t)− γ(s)| < d.

The condition x(t) > 0 is ensured for any t in [0, 2−n]. This construction of a
continuous choice may be iterated locally on every interval [k2−n, (k + 1)2−n]
with a new coordinate system to provide a global continuous choice of the
argument on [0, 1].

The uniqueness of a continuous choice is a consequence of the intermediate value
theorem: if we assume that there are two such functions θ1 and θ2 with the same



CHAPTER 5. THE WINDING NUMBER 52

initial value θ0, as θ1(0)− θ2(0) = 0, if θ1(t)− θ2(t) 6= 0 for some t ∈ [0, 1], then
either |θ1(t)− θ2(t)| < π, or there is a τ ∈ ]0, t[ such that θ1(τ)− θ2(τ) 6= 0 and
|θ1(τ)− θ2(τ)| < π. In any case, there is a contradiction since all values of the
argument differ of a multiple of 2π. �

Definition – Variation of the Argument. Let a ∈ C and γ be a path of
C \ {a}. The variation of z 7→ Arg(z − a) on γ is defined as

[z 7→ Arg(z − a)]γ = θ(1)− θ(0)

where θ is a continous choice of z 7→ Arg(z − a) on γ.

Proof (unambiguous definition). If θ1 and θ2 are two continuous choices of
z 7→ Arg(z − a) on γ, for any t ∈ [0, 1], they differ of a multiple of 2π. As the
function θ1 − θ2 is continuous, by the intermediate value theorem, it is constant.
Hence

(θ1 − θ2)(1) = (θ1 − θ2)(0),
and θ1(1)− θ1(0) = θ2(1)− θ2(0). �

Definition – Winding Number / Index. Let a ∈ C and γ be a closed path
of C \ {a}. The winding number – or index – of γ around a is the integer

ind(γ, a) = 1
2π [z 7→ Arg(z − a)]γ .

Proof – The Winding Number is an Integer. Let θ be a continuous choice
function of z 7→ Arg(z − a) on γ; as the path γ is closed, θ(0) and θ(1), which
are values of the argument of γ(0)− a = γ(1)− a, are equal modulo 2π, hence
(θ(1)− θ(0))/2π is an integer. �

Definition – Path Exterior & Interior. The exterior and interior of a
closed path γ are the subsets of the complex plane defined by

Ext γ = {z ∈ C \ γ([0, 1]) | ind(γ, z) = 0}.

and

Int γ = C \ (γ([0, 1]) ∪ Ext γ) = {z ∈ C \ γ([0, 1]) | ind(γ, z) 6= 0}.

Properties

Theorem – The Winding Number is Locally Constant. Let a ∈ C and
γ be a closed path of C \ {a}. There is a ε > 0 such that, for any b ∈ C and any
closed path β, if

|b− a| < ε and (∀ t ∈ [0, 1], |β(t)− γ(t)| < ε)

then β is a path of C \ {b} and

ind(γ, a) = ind(β, b).

Proof. Let ε = d(a, γ([0, 1]))/2. If |b−a| < ε and for any t ∈ [0, 1], |γ(t)−β(t)| <
ε, then clearly b ∈ C \ β([0, 1]). Additionally, for any t ∈ [0, 1] there are values
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θ1 of Arg(γ(t) − a) and θ2 of Arg(β(t) − b) such that |θ1 − θ2| < π/2. If we
select some values θ1,0 of Arg(γ(0) − a) and θ2,0 of Arg(β(0) − b) such that
|θ1,0 − θ2,0| < π/2, then the corresponding continuous choices θ1 et θ2 satisfy
|θ1(t)− θ2(t)| < π/2 for any t ∈ [0, 1](1). Consequently

|ind(γ, a)− ind(β, b)| =
∣∣∣∣θ1(1)− θ1(0)

2π − θ2(1)− θ2(0)
2π

∣∣∣∣ < 1
2 .

As both winding numbers are integers, they are equal. �

Corollary – The Winding Number is Constant on Components. Let γ
be a closed path. The function

z ∈ C \ γ([0, 1]) 7→ ind(γ, z)

is constant on each component of C \ γ([0, 1]). If additionally the component is
unbounded, the value of the winding number is zero.

Proof. The mapping z 7→ ind(γ, z) is locally constant – and hence constant –
on every connected component of C \ γ([0, 1]). If a belongs to some unbounded
component of this set, there is a b in the same component such that |b| > r =
maxt∈[0,1] |γ(t)|. It is possible to connect b to any point c such that |c| = r by a
circular path in C \ γ([0, 1]), thus we may assume that b ∈ R−. The function

θ : t ∈ [0, 1] 7→ arg(γ(t)− b)

is a continuous choice of z 7→ Arg(z − b) along γ and it satisfies

∀ t ∈ [0, 1], |θ(t)| = arctan Im(γ(t)− b)
Re(γ(t)− b) < arctan r

|b| − r
<
π

2 .

As γ is a closed path, θ(0) and θ(1) – which are equal modulo 2π – are actually
equal and

ind(γ, a) = ind(γ, b) = θ(1)− θ(0)
2π = 0

as expected. �

Simply Connected Sets

Definition – Simply/Multiply Connected Set & Holes.� Let Ω be an open
subset of the plane. A hole of Ω is a bounded component of its complement
C \ Ω. The set Ω is simply connected if it has no hole (if every component of its
complement is unbounded) and multiply connected otherwise.

Examples.
1Otherwise, by the intermediate value theorem, we could find some t ∈ ]0, 1] such that

|θ1(t)− θ2(t)| = π/2, but then, for every value θ1,t of Arg(γ(t)− a) and θ2,t of Arg(β(t)− b),
we would have

θ1,t − θ2,t = θ1(t)− θ2(t) + 2πk
for some k ∈ Z. Therefore, the choice of θ1,t and θ2,t such that |θ1,t − θ2,t| < π/2 would be
impossible.
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1. The open set Ω = {(x, y) ∈ R2 | x < −1 or x > 1} is not connected but
it is simply connected: its complement has a unique component which is
unbounded, hence it has no holes.

2. The open set Ω = C \ {2−n |n ∈ N} is multiply connected: its holes are
exactly the singletons of its complement.

Intuitively, we should be able to circle around any hole of Ω without leaving the
set; this idea leads to an alternate characterization of simply connected sets.

Theorem – Simply Connected Sets & The Winding Number. An open
subset Ω of the complex plane is simply connected if and only if the interior of
any closed path γ of Ω is included in Ω:

∀ z ∈ C \ γ([0, 1]), ind(γ, z) 6= 0 ⇒ z ∈ Ω,

or equivalently, if the complement of Ω is included in the exterior of γ:

∀ z ∈ C \ Ω, ind(γ, z) = 0.

Examples.

1. If γ is a closed path of Ω = {(x, y) ∈ R2 | x < −1 or x > 1} and z ∈ C\Ω,
since C \ Ω is connected and unbounded, z belongs to an unbounded
component of C \ γ([0, 1]). Thus ind(γ, z) = 0 for any z ∈ C \ Ω.

2. The open set Ω = C \ {2−n |n ∈ N} is open and multiply connected: for
example γ = 1 + 1/4[	] is a path of Ω, z = 1 is a point of C \ Ω and
ind(γ, 1) = 1.

Remark. Note that we may not always be able to encircle only one hole at
a time. For example, in the case of the set Ω = C \ {2−n |n ∈ N}, we can
find a closed path γ of C \ Ω such that ind(γ, 0) = 1, but then we also have
ind(γ, 2−n) = 1 for n large enough: we cannot encircle the hole {0} of Ω unless
we also encircle an infinity of extra holes.

Lemma. If the compact set K is a hole of the open set Ω, there is a compact
subset L of C \ Ω such that K ⊂ L and d(L, (C \ Ω) \ L) > 0.

Proof of the Lemma. The set C = C \ Ω is closed in C which is locally
compact, thus it is locally compact. Since C is Hausdorff, its subspace C is
also Hausdorff. By the Šura-Bura theorem (Remmert 1998, 304), K has a
neighbourhood base in C consisting in open compact subsets of C. Since C is a
neighbourhood of K in C, there is a compact set L such that K ⊂ L ⊂ C which
is open in C. Thus, its complement (C \ Ω) \ L is also closed in C. Since C is
closed, both sets are also closed in C. They are also disjoint by construction,
and thus d(L, (C \ Ω) \ L) > 0. �

Proof – Simply Connected Sets & The Winding Number. Assume that
Ω is simply connected and let γ be a closed path of Ω. Let z ∈ C \ Ω; this point
belongs to an unbounded connected component of C \ Ω and therefore to an
unbounded connected component of C \ γ([0, 1]), thus ind(γ, z) = 0.

Conversely, if Ω is not simply connected, the set C \ Ω has a hole K which is
contained in some compact subset L of C \ Ω such that the distance ε between
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L and (C \Ω) \L is positive. Let r < ε/
√

2; Define for any pair (k, l) of integers
the node nk,l = (k + il)r and Sk,l as the closed square with vertices nk,l, nk+1,l,
nk+1,l+1 and nk,l+1. The (positively) oriented boundary of the square Sk,l is the
polyline

[nk,l → nk+1,l → nk+1,l+1 → nk,l+1 → nk,l]
The collection of squares that intersect L is finite and covers L. Additionally, all
of its squares are included in Ω ∪ L.

For any square S in the cover of L and any interior point a of S if γ is the
oriented boundary of S, then ind(γ, a) = 1. Additionally, ind(µ, a) = 0 for the
oriented boundary µ of any other square in the collection. Consequently, if
Γ denotes the collection of oriented line segments that composes the oriented
boundaries of all squares of the cover of L, we have∑

γ∈Γ

1
2π [z 7→ Arg(z − a)]γ = 1.

Now if the line segment γ belongs to Γ and γ([0, 1]) ∩ L 6= ∅, then γ← also
belongs to Γ; if we remove all such pairs from Γ, the resulting collection Γ′ also
satisfies ∑

γ∈Γ′

1
2π [z 7→ Arg(z − a)]γ = 1.

and by construction the image of any γ in Γ′ is included in Ω. The original
collection Γ is balanced: for any square vertice n, the number of line segments
with n as an initial point and with n as a terminal point is the same. The
collection Γ′ has the same property. Consequently, the line segments of Γ′ may
be assembled in a finite sequence of closed paths γ1, . . . , γn and

n∑
k=1

ind(γk, a) = 1.

Every point of L is either an interior point of some square of the collection, or
the limit of such point; anyway, that means that

∀ z ∈ L,
n∑
k=1

ind(γk, z) = 1

and thus that there is at least one path γk such that ind(γk, z) 6= 0. �

A Complex Analytic Approach

If a closed path is rectifiable, we may compute its winding number as a line
integral; to prove this, we need the:

Lemma. Let a ∈ C and γ be a rectifiable path of C \ {a}. For any t ∈ [0, 1],
let γt be the path such that for any s ∈ [0, 1], γt(s) = γ(ts). The function
µ : [0, 1]→ C, defined by

µ(t) =
∫
γt

dz

z − a
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satisfies
∃λ ∈ C∗, ∀ t ∈ [0, 1], eµ(t) = λ× (γ(t)− a).

Proof. We only prove the lemma under the assumption that γ is continuously
differentiable; the rectifiable case is a straightforward extension.

We have for any t ∈ [0, 1]

µ(t) =
∫
γt

dz

z − a
=
∫ 1

0

γ′(ts)× t
γ(ts)− a ds =

∫ t

0

γ′(s)
γ(s)− ads,

hence
µ′(t) = γ′(t)

γ(t)− a

and the derivative of the quotient φ(t) = eµ(t)/(γ(t)− a) satisfies

φ′(t) = µ′(t)φ(t)− γ′(t)
γ(t)− aφ(t) = 0

which yields the result. �

Theorem – The Winding Number as a Line Integral. Let a ∈ C and γ
be a rectifiable path of C \ {a}. Then

[z 7→ Arg(z − a)]γ = Im
(∫

γ

dz

z − a

)
.

If the path γ is closed, then

ind(γ, a) = 1
i2π

∫
γ

dz

z − a
.

Proof. We use the function µ of the previous lemma. Applying the modulus to
both sides of the equation eµ(t) = λ×(γ(t)−a) provides eRe(µ(t)) = |λ|×|γ(t)−a|,
hence

eiIm(µ(t)) = λ

|λ|
γ(t)− a
|γ(t)− a| .

The function t ∈ [0, 1] 7→ Im(µ(t)) is – up to a constant – a continuous choice of
z 7→ Arg (z − a) on γ. Consequently,

[z 7→ Arg (z − a)]γ = Im(µ(1))− Im(µ(0)) = Im(µ(1)),

which is the desired result.

If additionally γ is a closed path, the equations

γ(0) = γ(1) and eRe(µ(t)) = |λ| × |γ(t)− a|

yield eRe(µ(0)) = eRe(µ(1)) and hence Re(µ(1)) = Re(µ(0)) = 0. Thus,

ind(γ, a) = 1
2π Im(µ(1)) = 1

i2πµ(1),

which concludes the proof. �



CHAPTER 5. THE WINDING NUMBER 57

References

Hatcher, Allen. 2002. Algebraic Topology. Cambridge University Press. https:
//www.math.cornell.edu/~hatcher/AT/AT.pdf.

Remmert, Reinhold. 1998. Classical Topics in Complex Function Theory. Transl.
by Leslie Kay. New York, NY: Springer.

Exercises

Star-Shaped Sets

Prove that every open star-shaped subset of C is simply connected.

The Argument Principle for Polynomials

Let p be the polynomial

p(z) = λ× (z − a1)n1 × · · · × (z − am)nm

where λ is a nonzero complex number, a1, . . . , am are distinct complex numbers
(the zeros or roots of the polynomial) and n1, . . . , nm are positive natural numbers
(the roots orders or multiplicities). Let γ be a closed path whose image contains
no root of p:

∀ t ∈ [0, 1], p(γ(t)) 6= 0.

The argument principle then states that

ind(p ◦ γ, 0) =
m∑
k=1

ind(γ, ak)× nk.

1. Application: Finding the Roots of a Polynomial.

Use the figures below to determine – according to the argument principle –
the number of roots z of the polynomial p(z) = z3 + z + 1 in the open unit
disk centered on the origin.

2. Argument Principle Proof (Elementary). For any k ∈ {1, . . . ,m},
we denote θk a continous choice of z 7→ Arg(z−ak) on γ. Use the functions
θk to build a continuous choice of z 7→ Arg z on p ◦ γ; then, prove the
argument principle.

3. Argument Principle Proof (Complex Analysis). Assume that γ is
rectifiable; write the winding number ind(p ◦ γ, 0) as a line integral, then
find another way to prove the argument principle in this context.

https://www.math.cornell.edu/~hatcher/AT/AT.pdf
https://www.math.cornell.edu/~hatcher/AT/AT.pdf
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Figure 5.1: Graph of t ∈ [0, 1] 7→ arg
[
(ei2πt)3 + (ei2πt) + 1

]
; this function has a

jump of −2π at t = 0.5 (where it is undefined). The dashed line represents a
continuous choice of the argument of t ∈ [0, 1] 7→ (ei2πt)3 + (ei2πt) + 1.
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Figure 5.2: Graph of t ∈ [0, 1] 7→ |(ei2πt)3 + (ei2πt) + 1|.
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Set Operations & Simply Connected Sets

Suppose that A, B and C \ C are open subsets of C. For each of the three
statements below,

• determine whether or not the statement is true (either prove it or provide
a counter-example);

• if the statement is false, find a sensible assumption that makes the new
statement true (and provide a proof).

The statements are:

1. Intersection. The intersection A∩B of two simply connected sets A and
B is simply connected.

2. Complement. The relative complement A \ C of a connected set C in a
simply connected set A is simply connected.

3. Union. The union A ∪B of two connected and simply connected sets A
and B is simply connected.



Chapter 6

Cauchy’s Integral Theorem
– Global Version

Path Sequences

It is convenient to state Cauchy’s integral theorem for finite sequences of paths
instead of paths. To this end, we generalize some of the concepts initially defined
for paths.

Definition – Opposite & Concatenation. The opposite of the path sequence
γ = (γ1, . . . , γn) is the path sequence

γ← = (γ←n , . . . , γ←1 ).

The concatenation of the path sequences

α = (α1, . . . , αk) and β = (β1, . . . , βl)

is the path sequence

α |β = (α1, . . . , αk, β1, . . . , βl).

Definition – Image. The image of the path sequence γ = (γ1, . . . , γn) is the
set

γ([0, 1]) =
n⋃
k=1

γk([0, 1]).

Definition – Winding Number, Exterior, Interior. If γ = (γ1, . . . , γn) is
a sequence of closed paths and a ∈ C is not on its image, the winding number of
γ around a is defined by

ind(γ, a) =
n∑
k=1

ind(γk, a).

60
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The exterior of γ is the set

Ext γ = {z ∈ C \ γ([0, 1]) | ind(γ, z) = 0}

and its interior is the set

Int γ = {z ∈ C \ γ([0, 1]) | ind(γ, z) 6= 0}

or equivalently
Int γ = C \ (γ([0, 1]) ∪ Ext γ).

Figure 6.1: A pair γ of two rectifiable closed paths in an open set Ω represented
in light grey. Both paths are concatenations of quadratic Bézier curves.

Definition – Length & Line Integral. Let γ = (γ1, . . . , γn) be a sequence of
rectifiable paths. The length of γ is defined as

`(γ) =
n∑
k=1

`(γk).

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
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Figure 6.2: This path sequence forms the outline of the capital “Q” letter in
the League Spartan typeface. The interior of the path sequence is represented
in dark grey; as the two paths are oriented in opposite directions, the interior
of the path sequence is included in Ω. The interior of the inner path does not
belong to the interior of the path sequence; a typographist would say that it is a
closed counter of the letter.

https://en.wikipedia.org/wiki/Computer_font#Outline_fonts
https://www.theleagueofmoveabletype.com/league-spartan
https://en.wikipedia.org/wiki/Counter_(typography)
https://en.wikipedia.org/wiki/Counter_(typography)
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The integral along γ of a complex-valued function f which is defined and
continuous on the image of γ is∫

γ

f(z) dz =
n∑
k=1

∫
γk

f(z) dz.

Cauchy’s Theorem & Corollaries

For the global version of Cauchy’s integral theorem, the star-shaped assumption
is replaced by a weaker geometric requirement:

Theorem – Cauchy’s Integral Theorem (Global Version). Let Ω be an
open subset of C and let f : Ω → C be a holomorphic function. Let γ be a
sequence of rectifiable closed paths of Ω. If Int γ ⊂ Ω then∫

γ

f(z) dz = 0.

Remark – One or Two Paths. This version of Cauchy’s integral theorem is
clearly applicable for a single path γ instead of a path sequence. Now, the next
common use case involves two rectifiable closed paths γ and µ of Ω. If they have
the same winding number with respect to any point which is not in Ω:

∀ z ∈ C \ Ω, ind(γ, z) = ind(µ, z),

then the interior of the path sequence (γ, µ←) is included in Ω and Cauchy’s
integral theorem is applicable. Its conclusion provides∫

γ

f(z) dz =
∫
µ

f(z) dz.

Remark – Simply Connected Sets. If Ω is simply connected, Cauchy’s
theorem is applicable for any sequence of rectifiable closed paths γ of Ω. Indeed
in any such set Ω, for any path γ – and thus for any sequence of paths γ – we
have Int γ ⊂ Ω. Since any star-shaped set is simply connected, the local version
of Cauchy’s theorem is a special case of the global version.

Cauchy’s residue theorem is a generalization of his integral theorem. It covers
the case where the interior of the path sequence γ is included in the domain
Ω of the holomorphic function f, except for a set of isolated singularities. The
integral of f along γ in this case can be computed in terms of the residues of
the function at these singularities.

Definition – Singularity. Let Ω be an open subset of C. A singularity of a
function f : Ω→ C is a point a of C \Ω. It is isolated if its distance to the other
singularities of f is positive:

∃ ε > 0, ∀ z ∈ C, (|z − a| < ε and z 6= a ) ⇒ z ∈ Ω.

Definition – Residue. Let a be an isolated singularity of the holomorphic
function f : Ω→ C. Let d be the distance between a and the other singularities
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of f (+∞ if a is the only singularity of f). The integral of f along γ = a+ r[	]
is defined and independent of r as long as 0 < r < d. We define the residue of f
at a as

res(f, a) = 1
i2π

∫
γ

f(z) dz

for any such r.

Examples – Singularity & Residue. Let a ∈ C and

f : z ∈ C \ {a} 7→ 1
z − a

.

The point a is the only singularity of f ; it is clearly isolated. For any r > 0 and
γ = a+ r[	] we have∫

γ

f(z) dz =
∫
γ

dz

z − a
= i2π × ind(γ, a) = i2π,

thus res(f, a) = 1. Now, let a ∈ C and let

f : z ∈ C \ {a} 7→ (z − a)n where n ∈ Z \ {−1}.

Since z ∈ C \ {a} 7→ (z − a)n+1/(n+ 1) is a primitive of f,∫
γ

f(z) dz =
∫
γ

(z − a)n dz = 0,

thus res(f, a) = 0.

Proof – Residue: independence with respect to the radius. Let r1 and
r2 be two real numbers in ]0, d[ and let γ1 = z + r1[	] and γ2 = z + r2[	]. If
z ∈ C \ Ω, either z = a and

ind(γ1, z) = ind(γ2, z) = 1,

or |z − a| ≥ d and
ind(γ1, z) = ind(γ2, z) = 0.

In any case the winding numbers are equal. The “One or Two Paths” remark
therefore provides ∫

γ1

f(z) dz =
∫
γ2

f(z) dz

which concludes the proof. �

Theorem – Cauchy’s Residue Theorem. Let Ω be an open subset of C and
let f : Ω → C be a holomorphic function. Let γ be a sequence of rectifiable
closed paths of Ω. If A is a finite set of isolated singularities of f such that

Int γ ⊂ Ω ∪A

then ∫
γ

f(z) dz = i2π
∑
a∈A

ind(γ, a)× res(f, a).
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Remark – Infinite Set of Singularities. Note that if we drop the assumption
that A is finite, the conclusion of the theorem still holds since only a finite number
of singularities of A may be in the interior of γ(1); the sum in the right-hand
side of the theorem equation may then have an infinite number of terms, but
only a finite number of them are non-zero.

Proof – Cauchy’s Residue Theorem. We may assume that the set A is
included in Int γ. If this assumption is not satisfied, replace A with A ∩ Int γ;
this new set A still satisfies Int γ ⊂ Ω ∪A and the conclusion of the theorem for
the new set does provide the result for the original set.

Let ε > 0 be such that for any a ∈ A, D(a, ε) ⊂ Ω ∪ {a} and let 0 < r < ε.
Define for every a in A the path γa by

γa(t) = a+ r[	]−ind(γ,a).

We clearly have ind(γa, a) = −ind(γ, a).

Let λ be the concatenation of γ and the sequence of all γa for a ∈ A. We now
prove that Intλ ⊂ Ω; we need to establish that ind(λ, z) = 0 for every z ∈ C \Ω.
For such a point z, either

1. z ∈ A.
In this case, ind(γz, a) = 0 for any other singularity a ∈ A. Therefore,

ind(λ, z) = ind(γ, z) + ind(γz, z) = 0.

2. z 6∈ Ω ∪A.
We have ind(γa, z) = 0 for any a ∈ A. Additionally, as Int γ ⊂ Ω ∪ A,
ind(γ, z) = 0. Finally, ind(λ, z) = 0.

Cauchy’s integral theorem then provides∫
λ

f(z)dz =
∫
γ

f(z) dz +
∑
a∈A

∫
γa

f(z) dz = 0,

By construction of the γa and the definition of residues, we have∫
γa

f(z) dz = −ind(γ, a)× i2π res(f, a).

�

There is a third equivalent form of Cauchy’s integral theorem: Cauchy’s integral
formula2. It gives the value of f at any point of the interior of γ as a function of
its values on the image of γ.

1Indeed, assume instead that there is a infinite sequence of distincts points of A in Int γ; by
compactness a subsequence of it converges to some point a in its closure. The singularities of
f are a closed set, thus a is itself a singularity. Since the boundary of Int γ is included in the
image of γ and hence in Ω, the point a actually belongs to Int γ. Now Int γ ⊂ Ω ∪A, therefore
a ∈ A, but by construction it is not isolated, which is a contradiction.

2The integral theorem implies the residue theorem which in turn implies the integral formula.
Finally, the proof of the integral theorem is straightforward if we assume that the integral
formula holds.
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Theorem – Cauchy’s Integral Formula. Let Ω be an open subset of C and
let f : Ω → C be a holomorphic function. Let γ be a sequence of rectifiable
closed paths of Ω and a ∈ Ω \ γ([0, 1]). If Int γ ⊂ Ω, then∫

γ

f(z)
z − a

dz = i2π × ind(γ, a)× f(a).

Proof. The function
g : z ∈ Ω \ {a} 7→ f(z)

z − a
is holomorphic. The point a is one of its isolated singularities. For A = {a}, we
have

Int γ ⊂ (Ω \ {a}) ∪A = Ω.
Additionally, if µ = a+ r[	],

res(g, a) = lim
r→0

1
i2π

∫
µ

g(z) dz = lim
r→0

∫ 1

0
f(a+ rei2πt) dt = f(a).

Therefore, Cauchy’s residue theorem provides∫
γ

f(z)
z − a

dz = i2π × ind(γ, a)× f(a)

which is Cauchy’s integral formula. �

The Proof

Definition – Path Sequence Decomposition. A decomposition of a sequence
of rectifiable paths γ = (γ1, . . . , γn) is a sequence of rectifiable paths

γ∗ = (γ∗1 , . . . , γ∗p1
, γ∗p1+1, . . . , γ

∗
pn , γ

∗
pn+1, . . . , γ

∗
p)

such that for a suitable set of partitions of the unity

γ1 = γ∗1 |t11 · · · |t1p1−1
γ∗p1

γ2 = γ∗p1+1 |t21 · · · |t2p2−p1−1
γ∗p2

...
γp = γ∗pn+1 |tn1 · · · |tnp−pn−1

γ∗p

Definition – Equivalent Path Sequences. Let nγ(µ) be the number of
occurences of the path µ in the path sequence γ. Two sequences of rectifiable
paths γ and λ are equivalent if they have decompositions γ∗ and λ∗ such that
for any path µ

nγ∗(µ)− nγ∗(µ←) = nλ∗(µ)− nλ∗(µ←).

Remark – Integral along Equivalent Paths. If the sequence of rectifiable
paths γ has a decomposition into a sequence of rectifiable paths γ∗, then for
every continuous and complex-valued function f defined on the image of γ,∫

γ

f(z) dz = 1
2
∑
µ

(nγ∗(µ)− nγ∗(µ←))×
(∫

µ

f(z) dz
)
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Figure 6.3: A path sequence made of arrows whose interior is included in Ω.
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Figure 6.4: We can apply the local version of Cauchy’s integral theorem “cell-by-
cell” to such a path to prove the global version of the theorem.
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Figure 6.5: The path sequence made of arrows (in grey) is a suitable approxima-
tion of the original outline: the integral on both path sequence of holomorphic
functions defined in Ω are equal.
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Figure 6.6: Indeed, the integral on the “difference” between the two paths
sequence (the concatenation of the original and the opposite of the grid approxi-
mation) is an integral on a collection of “small” closed paths for which the local
version of Cauchy’s integral theorem can be applied: all these integrals are equal
to zero.
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where the sum is taken over the paths µ such that µ or µ← has at least one
occurrence in γ∗. Consequently, if γ and λ are equivalent and f is defined and
continuous on the images of γ and λ,∫

γ

f(z) dz =
∫
λ

f(z) dz.

Definition – Path Diameter. The diameter of a path γ : [0, 1]→ C is defined
as the diameter of its image: it is the nonnegative real number

diam(γ) = diam(γ([0, 1])) = max {|z − w| | z ∈ γ([0, 1]), w ∈ γ([0, 1])}.

Theorem – Small Closed Paths Theorem. Let Ω be an open subset of C
and γ be a sequence of rectifiable closed paths of Ω such that Int γ ⊂ Ω. There is
a sequence of rectifiable closed paths µ of Ω of arbitrarily small diameter which
is equivalent to γ.

This geometric result and the local Cauchy theory yield the global version of
Cauchy’s integral theorem:

Proof – Cauchy’s Integral Theorem. Assume that Ω, f and γ satisfy the
assumptions of Cauchy’s integral theorem. Since the union of the image of γ
and its interior is a compact set, there is a ε > 0 such that the open set

Ω′ = {z ∈ Ω | d(z,C \ Ω) > ε}

contains the image of γ and its interior. By the small closed paths theorem,
there is a sequence of rectifiable closed paths µ = (µ1, . . . , µn) of Ω′ of diameter
less than ε which is equivalent to γ, and therefore such that∫

γ

f(z) dz =
∫
µ

f(z) dz.

The image of every path µk of diameter less than ε is included in the disk
centered on µk(0) and of radius ε. This disk belongs to Ω by construction and
thus the local version of Cauchy’s theorem is applicable. Finally,∫

µ

f(z) dz =
n∑
k=1

∫
µk

f(z) dz = 0.

�

The proof of the small closed paths theorem itself requires several lemmas.

Definition – Arrow. An arrow is an oriented line segment

[(k + il)2−n → (k′ + il′)2−n]

for some n ∈ N and k, l, k′, l′ ∈ Z such that

|k′ − k|+ |l′ − l| = 1.

Lemma – Small Paths & Path of Arrows. Let Ω be an open subset of C
and γ be a sequence of rectifiable closed paths of Ω. For any ε > 0, there are
two sequences λ1 and λ2 of rectifiable closed paths of Ω such that
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1. the path sequences γ and λ1 |λ2 are equivalent.

2. the diameter of every path of λ1 is smaller than ε.

3. λ2 has a decomposition into arrows.

Proof. We prove the result for a rectifiable closed path γ; the result for path
sequences is a simple corollary. Let n be a natural number and let (γ1, . . . , γm)
be a sequence of rectifiable paths such that γ = γ1 | · · · | γm and `(γk) < 2−n for
any k ∈ {1, . . . ,m}. Denote πn the function defined on C by

πn(z) = [Re(2nz)]2−n + i[Im(2nz)]2−n;

where the function [ · ] rounds a real number to (one of) the nearest integer(s).
For any z ∈ C, |πn(z)−z| < 2−n. The points πn(γk(0)) and πn(γk(1)) are distant
by less than 3× 2−n and thus may always be joined by a path λ2,k which is the
concatenation of at most four consecutive arrows of length 2−n.

Define the rectifiable closed path λ1,k as the concatenation:

λ1,k = γk | [γk(1)→ πn(γk(1))] |λ←2,k | [πn(γk(0))→ γk(0)]

The length of the closed path λ1,k is smaller than 7× 2−n, hence its diameter
is smaller than 7/2× 2−n. A suitable choice of n provides diam(λ1,k) < ε. The
paths λ1 = (λ1,1, . . . , λ1,m) and λ2 = (λ2,1, . . . , λ2,m) satisfy the statement of
the lemma. �

Lemma – Small Closed Paths Theorem (Arrow Version). Let Ω be an
open subset of C and let γ be a sequence of rectifiable closed paths of Ω with
a decomposition into arrows and such that Int γ ⊂ Ω. There is a sequence of
rectifiable closed paths µ of Ω of arbitrarily small diameter which is equivalent
to γ.

Proof – Small Closed Paths Theorem (Arrow Version). Any sequence
γ of rectifiable closed paths made of arrows may be decomposed further into a
sequence γ∗ of arrows of the same length 2−n for an arbitrary large n. Now, we
may associate to this level of decomposition a family indexed by integers k and
l of square cells

Ck,l = {(k + il + s+ it)2−n | (s, t) ∈ [0, 1]2}.

with centers
ck,l = k + 0.5 + i(l + 0.5).

For every arrow µ of length 2−n, the number nγ∗(µ)− nγ∗(µ←) only depends
on the numbers ind(γ, c) where c is the center of a cell (or actually with respect
to any other point of the cell – the index is constant in each cell) and thus, two
path sequences with the same set of winding numbers are equivalent. Consider
for example the vertical arrow

µ = [(k + il)2−n → (k + i(l + 1))2−n]

and the associated left cell Ck−1,l and Ck,l. If we edit γ∗ to replace every
occurence of µ with the polyline
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µ2 = [(k + il)2−n → (k + 1 + il)2−n →
(k + 1 + i(l + 1))2−n → (k + i(l + 1))2−n]

and every occurence of µ← by µ←2 , we have increased the index of the right cell
(with center ck,l) by nγ∗(µ)− nγ∗(µ←) and the index of every other cell remains
the same. By construction, for this new path sequence γ2, we have nγ∗2 (µ) = 0
and n∗γ2

(µ←) = 0; the left and right cells belongs to the same component of
C \ γ2([0, 1]). Therefore the index of γ2 around both cells is the same which
means that

ind(γ, ck−1,l) = ind(γ, ck,l) + nγ∗(µ)− nγ∗(µ←).

The treatment of horizontal arrows is similar.

Now, consider the sequence of centers (c1, . . . , cm) such that ind(γ, cp) 6= 0 and
the path sequence λ = (λ1, . . . , λm) where λp is either the concatenation of
ind(γ, cp) times the boundary of the cell with center cp oriented counterclockwise
if this winding number is positive, or the concatenation of −ind(γ, cp) times the
boundary of the cell of center cp oriented clockwise if it is negative. Every path
λp is rectifiable; the corresponding cell with center cp is included in Int γ and
therefore λp([0, 1]) is included in Ω. Additionally, by construction, for every cell
center c, ind(γ, c) = ind(λ, c) and therefore γ and λ are equivalent. The diameter
of λp is smaller than 2−n; a suitably large choice of n makes the diameter as
small as required and this concludes the proof. �

Proof – Small Closed Paths Theorem. Let ε > 0 such that that the open
set

Ω′ = {z ∈ Ω | d(z,C \ Ω) > ε}

contains the image of γ and its interior. Let λ1 and λ2 be the path sequences
provided by the small paths & path of arrows lemma with Ω = Ω′.

The image of every path µ of the sequence λ1 is included in the disk centered on
µ(0) of radius ε which is itself included in Ω. Any point z ∈ C \Ω belongs to the
unbounded component of C \ µ([0, 1]), thus ind(µ, z) = 0. Consequently, for any
such z,

ind(λ2, z) = ind(γ, z)

and thus Intλ2 ⊂ Ω. The conclusion of the theorem then follows from the
application of the arrow version of the small closed paths theorem to the sequence
of paths λ2. �

Exercises

Cauchy’s Converse Integral Theorem

Let Ω be an open subset of C.
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Suppose that for every holomorphic function f : Ω→ C,∫
γ

f(z) dz = 0

for some sequence γ of closed rectifiable paths of Ω. What conclusion can we
draw? What if the property holds for every sequence γ of closed rectifiable paths
of Ω?

Cauchy Transform of Power Functions

Compute for any n ∈ Z and any z ∈ C such that |z| 6= 1 the line integral

φ(z) = 1
i2π

∫
[	]

wn

w − z
dw.



Chapter 7

Power Series

Convergence of Power Series

Definition & Theorem – Radius of Convergence. Let c ∈ C and an ∈ C
for every n ∈ N. The radius of convergence of the power series

+∞∑
n=0

an(z − c)n

is the unique r ∈ [0,+∞] such that the series converges if |z−c| < r and diverges
if |z − c| > r. The disk D(c, r) – the largest open disk centered on c where the
series converges – is the open disk of convergence of the series.

The radius of convergence r is the inverse of the growth ratio of the sequence
an, defined as the infimum in [0,+∞] of the set of values σ ∈ [0,+∞) such that
an is eventually dominated by σn:

∃m ∈ N, ∀n ∈ N, (n ≥ m) ⇒ |an| ≤ σn.

(or equivalently, such that ∃κ > 0, ∀n ∈ N, |an| ≤ κσn.) This growth ratio is
equal to lim supn→+∞ |an|1/n, which leads to the Cauchy-Hadamard formula1:

r = 1
lim sup
n→+∞

|an|1/n
.

By convention here, 1/0 = +∞ and 1/(+∞) = 0.

Proof. Let ρ be the growth ratio of the sequence an. If a complex number z
satisfies |z − c| < ρ−1, ρ is finite and there is a σ > ρ such that |z − c| < σ−1.
Eventually, we have |an| ≤ σn and thus

|an(z − c)n| ≤ (σ|z − c|)n.
1to compute the limit superior of a sequence of (extended) real numbers, consider all

subsequences that converge (as extended real numbers: in [−∞,+∞]) and take the supremum
of their limits.

75
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As σ|z − c| < 1, the series
∑+∞
n=0 an(z − c)n is convergent. Conversely, if

|z − c| > ρ−1, ρ > 0 and there is a σ < ρ such that |z − c| > σ−1. As σ < ρ,
there is a strictly increasing sequence of n ∈ N such that |an| > σn and thus
|an(z − c)n| > (σσ−1)n = 1. Since its terms do not converge to zero, the series∑+∞
n=0 an(z − c)n is divergent.

We now prove that the growth ratio of |an| is equal lim supn |an|1/n. Indeed, for
any σ greater than the growth ratio ρ, eventually |an| ≤ σn, hence |an|1/n ≤
σ and lim supn |an|1/n ≤ σ, therefore lim supn |an|1/n ≤ ρ. Conversely, if σ
is smaller than the growth ratio, there is a strictly increasing sequence of
n ∈ N such that |an| > σn, hence |an|1/n > σ and lim supn |an|1/n ≥ σ, thus
lim supn |an|1/n ≥ ρ. �

Example – A Geometric Series. Consider the power series
+∞∑
n=0

(−1/2)nzn.

Since |(−1/2)n| = 1/2n ≤ σn eventually if and only if σ ≥ 1/2, the growth bound
of the geometric sequence (−1/2)n is 1/2. Thus the open disk of convergence of
this power series is D(0, 2).

Example – A Lacunary Series. Consider the power series:
+∞∑
n=0

z2n = z + z2 + z4 + z8 + · · · .

The “lacunary” adjective refers to the large gaps between nonzero coefficients;
These coefficients are defined by

an =
∣∣∣∣ 1 if ∃ p ∈ N, n = 2p,

0 otherwise.

It is plain that |an| ≤ σn eventually if and only if σ ≥ 1. Hence the growth
bound of the sequence if 1 and the open disk of convergence of the power series
is D(0, 1).

Lemma – Multiplication of Power Series Coefficients. The radius of
convergence of the power series

∑+∞
n=0 anbn(z − c)n is at least the product of

the radii of convergence of the series
∑+∞
n=0 an(z − c)n and

∑+∞
n=0 bn(z − c)n. In

particular, for any nonzero polynomial sequence

an = α0 + α1n+ · · ·+ αpn
p,

the radii of convergence of
∑+∞
n=0 anbn(z− c)n and

∑+∞
n=0 bn(z− c)n are identical.

Proof. Denote by ρa and ρb the respective growth bounds of the sequences an
and bn; the growth bound of the product sequence anbn is at most ρaρb: for any
σ > ρaρb, we may find some σa > ρa and σb > ρb such that σ = σaσb. Since
|an| ≤ (σa)n and |bn| ≤ (σb)n eventually, |anbn| ≤ σn eventually.

The growth bound of any polynomial sequence an is at most 1: the inequality

|α0 + α1n+ · · ·+ αpn
p| ≤ ρn
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holds for any ρ > 1 eventually. Now, for any nonzero polynomial sequence an
and any sequence bn, eventually |bn| is dominated by a multiple of |anbn|, thus
the growth bound of |bn| is at most the growth bound of |anbn|. Reciprocally,
the growth bound of |anbn| is at most the product of the growth bound of |an| –
at most one – and the growth bound of |bn| and thus at most the growth bound
of |bn|. �

Theorem – Locally Normal Convergence. The convergence of the power
series

∑+∞
n=0 an(z − c)n in its open disk of convergence D(c, r) is locally normal:

for any z ∈ D(c, r), there is an open neighbourghood U of z in D(c, r) such that

∃κ > 0, ∀ z ∈ U,
+∞∑
n=0
|an(z − c)n| ≤ κ

or equivalently, for every compact subset K of D(c, r),

∃κ > 0, ∀ z ∈ K,
+∞∑
n=0
|an(z − c)n| ≤ κ.

Proof. If K is compact subset of D(c, r) and ρ = sup {|z − c| | z ∈ K},

∀ z ∈ K,
+∞∑
n=0
|an(z − c)n| ≤

+∞∑
n=0
|an|ρn.

Since the growth bound of the sequence an and |an| are identical, the radius
of convergence of the series

∑+∞
n=0 |an|zn is r. Given that |ρ| < r, the series∑+∞

n=0 |an|ρn is convergent; all its terms are non-negative real numbers, thus the
sum is finite: there is a κ > 0 such that

∑+∞
n=0 |an|ρn ≤ κ. �

Remark – Other Types of Convergence. The locally normal convergence
implies the absolute convergence:

∀ z ∈ D(c, r),
+∞∑
n=0
|an(z − c)n| < +∞.

It also provides the locally uniform convergence: on any compact subset K
of D(c, r), the partial sums

∑p
n=0 an(z − c)n converge uniformly to the sum∑+∞

n=0 an(z − c)n:

lim
p→+∞

sup
z∈K

∣∣∣∣∣
p∑

n=0
an(z − c)n −

+∞∑
n=0

an(z − c)n
∣∣∣∣∣ = 0.

Power Series and Holomorphic Functions

Theorem – Power Series Derivative. A power series and its formal deriva-
tive

+∞∑
n=0

an(z − c)n and
+∞∑
n=1

nan(z − c)n−1.
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have the same radius of convergence r. The sum

f : z ∈ D(c, r) 7→
+∞∑
n=0

an(z − c)n

is holomorphic; its derivative is the sum of the formal derivative:

∀ z ∈ D(c, r), f ′(z) =
+∞∑
n=1

nan(z − c)n−1.

More generally, the p-th order derivative of f is defined for any p ∈ N and

∀ z ∈ D(c, r), f (p)(z) =
+∞∑
n=p

n(n− 1) · · · (n− p+ 1)an(z − c)n−p.

Lemma. For any z ∈ C, h ∈ C∗ and n ≥ 2,∣∣∣∣ (z + h)n − zn
h

− nzn−1
∣∣∣∣ ≤ n(n− 1)

2 (|z|+ |h|)n−2|h|.

Proof – Lemma. Using the identity an − bn = (a− b)
∑n−1
m=0 a

mbn−1−m yields

(z + h)n − zn = h

n−1∑
m=0

(z + h)mzn−1−m,

hence

(z + h)n − zn
h

− nzn−1 =
n−1∑
m=0

(z + h)mzn−1−m −
n−1∑
m=0

zmzn−1−m

=
n−1∑
m=0

[(z + h)m − zm] zn−1−m.

By the same identity, we also have

|(z + h)m − zm| =
∣∣∣∣∣h

m−1∑
l=0

(z + h)lzm−1−l

∣∣∣∣∣ ≤ m(|z|+ |h|)m−1|h|.

Therefore

∣∣∣∣ (z + h)n − zn
h

− nzn−1
∣∣∣∣ ≤

[
n−1∑
m=0

m (|z|+ |h|)m−1(|z|+ |h|)n−1−m

]
|h|

≤ n(n− 1)
2 (|z|+ |h|)n−2|h|

as expected. �
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Proof – Power Series Derivative. LetD(c, r) be the open disk of convergence
of the series

f(z) =
+∞∑
n=0

an(z − c)n.

The radii of convergence of the series

+∞∑
n=1

nan(z − c)n−1 and
+∞∑
n=0

nan(z − c)n

are equal. Since the coefficient sequence of the latter series is the product of an
and a nonzero polynomial sequence, the open radius of convergence of f and
of its the formal derivative are identical. For any z ∈ D(c, r) and h ∈ C, define
e(z, h) as

e(z, h) = f(z + h)− f(z)
h

−
+∞∑
n=1

nan(z − c)n−1.

A straightforward calculation leads to

e(z, h) =
+∞∑
n=1

an

[
(z + h− c)n − (z − c)n

h
− n(z − c)n−1

]
,

hence, using the lemma, we obtain

|e(z, h)| ≤
[+∞∑
n=2

n(n− 1)
2 |an|(|z − c|+ |h|)n−2

]
× |h|.

The power series
+∞∑
n=2

n(n− 1)
2 |an|zn−2

has the same radius of convergence than

+∞∑
n=2

n(n− 1)
2 an(z − c)n−2

which is the the formal derivative of order 2 of the original series, hence the
three series have the same radius of convergence r. Consequently, for any h such
that |z − c|+ |h| < r,

+∞∑
n=2

n(n− 1)
2 |an|(|z − c|+ |h|)n−2 < +∞

and therefore

lim
h→0

f(z + h)− f(z)
h

=
+∞∑
n=1

nan(z − c)n−1.

The statement about the p-th order derivative of f can be obtained by a simple
induction on p. �
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Theorem & Definition – Taylor Series. If the complex-valued function
f has a power series expansion centered at c inside the non-empty open disk
D(c, r), it is the Taylor series of f :

∀ z ∈ D(c, r), f(z) =
+∞∑
n=0

f (n)(c)
n! (z − c)n.

Proof. If f(z) =
∑+∞
n=0 an(z− c)n, then for any p ∈ N, the p-th order derivative

of f inside D(c, r) is given by

f (p)(z) =
+∞∑
n=p

n(n− 1) . . . (n− p+ 1)an(z − c)n−p

and consequently, f (p)(c) = p!ap. �

Note that the above theorem is only a uniqueness result; it says nothing about
the existence of the power series expansion. This is the role of the following
theorem.

Theorem – Power Series Expansion. Let Ω be an open subset of C, let
c ∈ Ω and r ∈ ]0,+∞] such that the open disk D(c, r) is included in Ω. For any
holomorphic function f : Ω→ C, there is a power series with coefficients an such
that

∀ z ∈ D(c, r), f(z) =
+∞∑
n=0

an(z − c)n.

Its coefficients are given by

∀ ρ ∈ ]0, r[ , an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	].

Proof – Power Series Expansion. For any n ∈ N, the complex number

an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	]

is independent of ρ as long as 0 < ρ < r. Indeed, if ρ1 and ρ2 are two such numbers,
denote γ1 = c+ ρ1[	] and γ2 = c+ ρ2[	]. The interior of the sequence of paths
µ = γ1 | γ←2 is included in D(c, r) \ {c} where the function z 7→ f(z)/(z − c)n+1

is holomorphic. Hence, by Cauchy’s integral theorem,∫
µ

f(z)
(z − c)n+1 dz =

∫
γ1

f(z)
(z − c)n+1 dz −

∫
γ2

f(z)
(z − c)n+1 dz = 0.

Now, let z ∈ D(c, r) and let ρ ∈ ]0, r[ such that |z − c| < ρ. Cauchy’s integral
formula provides

f(z) = 1
i2π

∫
γ

f(w)
w − z

dw.

For any w ∈ γ([0, 1]), we have
1

w − z
= 1

(w − c)− (z − c) = 1
w − c

1
1− z−c

w−c
.
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Since ∣∣∣∣ z − cw − c

∣∣∣∣ = |z − c|
ρ

< 1,

we may expand f(w)/(w − z) into

f(w)
w − z

= f(w)
w − c

1
1− z−c

w−c
=

+∞∑
n=0

f(w)
w − c

(
z − c
w − c

)n
.

The term of this series is dominated by

sup|w−c|=ρ |f(w)|
ρ

(
|z − c|
ρ

)n
;

the convergence of the series is normal – and thus uniform – with respect to the
variable w. Finally

f(z) =
∫
γ

[+∞∑
n=0

f(w)
(w − c)n+1 (z − c)n

]
dw

=
+∞∑
n=0

[∫
γ

f(w)
(w − c)n+1 (z − c)n dw

]

=
+∞∑
n=0

[∫
γ

f(w)
(w − c)n+1 dw

]
(z − c)n

which is the desired expansion. �

Laurent Series

Definition – Annulus. Let c ∈ C and r1, r2 ∈ [0,+∞]. We denote by

A(c, r1, r2) = {z ∈ C | r1 < |z − c| < r2}

the open annulus with center c, inner radius r1 and outer radius r2.

Examples – Annuli.

1. The open annulus A(0, 0,+∞), centered on the origin, with inner radius 0
and outer radius +∞, is the set C∗.

2. The setsA(0, 0, 1), A(0, 1, 2) andA(0, 2,+∞) are three open annuli centered
on the origin and included in the open set Ω = C\{i, 2}. They are maximal
in Ω – if we decrease their inner radius and/or increase their outer radius
the resulting annulus is not a subset of Ω anymore.

Definition – Laurent Series. The Laurent series centered on c ∈ C with
coefficients an ∈ C for every n ∈ Z is

+∞∑
n=−∞

an(z − c)n.
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It is convergent for some z ∈ C \ {c} if the series

+∞∑
n=0

an(z − c)n and
+∞∑
n=1

a−n(z − c)−n

are both convergent – otherwise it is divergent. When the Laurent series is
convergent its sum is defined as

+∞∑
n=−∞

an(z − c)n =
+∞∑
n=0

an(z − c)n +
+∞∑
n=1

a−n(z − c)−n.

Theorem – Convergence of Laurent Series. Let c ∈ C and let an ∈ C
for n ∈ Z. The inner radius of convergence r1 ∈ [0,+∞] and outer radius of
convergence r2 ∈ [0,+∞] of the Laurent series

∑+∞
n=−∞ an(z − c)n defined by

r1 = lim sup
n→+∞

|a−n|1/n and r2 = 1
lim sup
n→+∞

|an|1/n
.

are such that the series converges in A(c, r1, r2) and diverges if |z − c| < r1 or
|z − c| > r2. In this open annulus of convergence, the convergence is locally
normal.

Proof – Convergence of Laurent Series. The first series converges if |z− c|
is smaller than the radius of convergence r2 of this power series and diverges if
it is greater. We may rewrite the second series as:

+∞∑
n=1

a−n(z − c)−n =
+∞∑
n=1

a−n

(
1

z − c

)n
.

Consequently, it converges if |1/(z− c)| is smaller than the radius of convergence
1/r1 of the power series

∑+∞
n=1 a−nz

n, that is if |z − c| > r1, and diverges if
|1/(z − c)| is greater than 1/r1, that is |z − c| is smaller than r1.

Now, for any z ∈ A(c, r1, r2), there is an open neighbourhood U of z where∑+∞
n=0 an(z − c)n is normally convergent and an open neighbourhood V of

(z − c)−1 in C∗ where
∑+∞
n=1 a−nw

n is normally convergent. The Laurent series∑+∞
n=−∞ an(z−c)n is normally convergent in the open neighbourhood U ∩{w−1 +

c | w ∈ V } of z. �

Theorem – Laurent Series Expansion. Let Ω be an open subset of C, let
c ∈ C and r1, r2 ∈ [0,+∞] such that r1 < r2 and the open annulus A(c, r1, r2)
is included in Ω. For any holomorphic function f : Ω → C, there is a Laurent
series with coefficients an such that

∀ z ∈ A(c, r1, r2), f(z) =
+∞∑

n=−∞
an(z − c)n.

Its coefficients are given by

∀ ρ ∈ ]r1, r2[ , an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	].
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Proof – Laurent Series Expansion. For any integer n, the coefficient

an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	]

is independent of ρ ∈ ]r1, r2[ – refer to the proof of “Power Series Expansion” for
a detailled argument.

Let z ∈ A(c, r1, r2) and ρ1, ρ2 ∈ ]r1, r2[ such that ρ1 < |z − c| < ρ2. Let
γ1 = c+ ρ1[	] and γ2 = c+ ρ2[	]; Cauchy’s integral formula provides

f(z) = 1
i2π

∫
γ2

f(w)
w − z

dw − 1
i2π

∫
γ1

f(w)
w − z

dw

As in the proof of “Power Series Expansion”, we can establish that

1
i2π

∫
γ2

f(w)
w − z

dw =
+∞∑
n=0

[
1
i2π

∫
γ2

f(w)
(w − c)n+1 dw

]
(z − c)n.

A similar argument, based on a series expansion of
1

w − z
= − 1

(z − c)− (w − c) = − 1
z − c

1
1− w−c

z−c

yields

1
i2π

∫
γ1

f(w)
w − z

dw = −
−∞∑
n=−1

[
1
i2π

∫
γ1

f(w)
(w − c)n+1 dw

]
(z − c)n.

The combination of both expansions provides the expected result. �

Exercises

The Fibonacci Sequence

We search for a closed form of the Fibonacci sequence an, defined by

a0 = 0, a1 = 1, ∀n ∈ N, an+2 = an + an+1.

1. Show that the golden ratio

φ = 1 +
√

5
2

is the largest solution of the equation x2 = x+1 and that the other solution
is ψ = −1/φ.

2. Establish that for any n ∈ N, an ≤ φn.

3. Show that the radius of convergence of the generating function

f(z) =
+∞∑
n=0

anz
n

is at least 1/φ.
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4. Compute f(z) when |z| < 1/φ.

5. Find a closed form for an, n ∈ N.

Entire Functions Dominated By Polynomials

Show that if a holomorphic function f : C→ C is dominated by a polynomial P
of order p

∀ z ∈ C, |f(z)| ≤ |P (z)|

then it is a polynomial whose degree is at most p.

Existence of Primitives

Show that the function

f : z ∈ C \ [−1, 1] 7→ π

z

1
sin π/z

has a primitive.

A Removable Set

Let f : C→ C be a continuous function which is holomorphic on C \ U (where
U = {z ∈ C | |z| = 1}).

Prove that f is an entire function.

Derivative of Power Series

Provide an alternate proof of the existence and value of the derivative of the
sum

∑+∞
n=0 an(z − c)n in its open disk of convergence.

Hint: a locally uniform limit of a sequence of holomorphic functions is holomor-
phic.



Chapter 8

Zeros & Poles

Preamble

In this chapter, we study the behavior of any holomorphic functions in the
neighbourhood of a point that may or may not be in its domain of definition.
When the function is not defined at the point of interest – in other words when
it is a singularity – we only study the case where it is isolated.

Definition – Isolated Point. A point c of a subset C of C is isolated (in C)
if it is in some neighbourhood of c the only point of C:

∃ r > 0, ∀ z ∈ C, |z − c| < r ⇒ z = c.

Remark – Isolated Points in Closed Sets. Note that a point c is isolated in
the closed set C if and only if C \ {c} is still closed. This is directly applicable to
singularities of a function defined on an open set Ω, which belongs by definition
to the closed set C = C \ Ω.

Definition – Isolated Singularity. A singularity of a function f : Ω → C
defined on an open subset Ω of C is a point c of C \ Ω. It is isolated if

∃ r > 0, ∀ z ∈ C, (z 6= c and |z − c| < r)⇒ z ∈ Ω,

in other words if there is a radius r > 0 such that the annulus A(c, 0, r) is a
subset of Ω. Alternatively, it is isolated if and only if Ω ∪ {c} is open.

Zeros of Holomorphic Functions

Definition – Zero & Multiplicity. Let Ω be an open subset of the complex
plane. A zero (or root) c of a function f : Ω → C is a point c ∈ Ω such that
f(c) = 0; it is of multiplicity p for some positive number p if

∃ a∗ ∈ C∗, f(z) ∼
c
a∗(z − c)p

85
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or equivalently
∃ a ∈ C∗, lim

z→c

f(z)
(z − c)p = a∗.

A zero of multiplicity 1 is simple; zeros of higher multiplicity (double, triple, etc.)
are multiple.

Example – Simple Zero. Let f : Ω→ C be a holomorphic function. If c is a
zero of f but not of its derivative f ′, then

lim
z→c

f(z)
(z − c)1 = lim

z→c

f(z)− f(c)
z − c

= f ′(c) 6= 0,

thus f(z) ∼
c
f ′(c)(z − c)1 and c is a simple zero of f.

Theorem – Characterization of Zero Multiplicity. A zero c of a holomor-
phic function f : Ω→ C is of multiplicity p if and only if one of the equivalent
condition holds:

1. The function f and exactly its first p− 1 derivatives are zero at c:

f(c) = 0, f ′(c) = 0, . . . , f (p−1)(c) = 0 and f (p)(c) 6= 0.

2. The Taylor expansion of f at c is

f(z) =
+∞∑
n=p

an(z − c)n with ap 6= 0.

3. There is a holomorphic function a : Ω→ C such that

∀ z ∈ Ω, f(z) = a(z)(z − c)p and a(c) 6= 0.

Proof. The formula n!an = f (n)(c) holds for any n ∈ N hence condition 1 and
2 are equivalent. The theorem statement is otherwise a direct consequence of
the local behavior of holomorphic functions lemma (refer to the appendix). �

Zeros of a holomorphic functions have finite multiplicities, except in very specific
circumstances:

Lemma – Zero With No (Finite) Multiplicity. Let f : Ω → C be a
holomorphic function defined on a connected set Ω. If c is a zero of f but has no
finite multiplicity, then f is identically zero.

Proof. By assumption, f (n)(c) = 0 for every number n. Consider the function
χ : Ω→ C defined by

χ(z) =
∣∣∣∣ 0 if ∀n ∈ N, f (n)(z) = 0,

1 otherwise.

We can prove that the function χ is locally constant. Indeed, if χ(z) = 1, there
is a number n such that f (n)(z) 6= 0; by continuity, the function f (n) has no
zero in some neighbourghood of z; thus the function χ is equal to 1 in this
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neighbourghood. If instead χ(z) = 0, then the Taylor expansion of f at z shows
that f is zero in a suitable neighbourhood of z, where χ is also zero.

As the set Ω is connected, the function χ is actually constant. On the other
hand, χ(c) = 0, hence the function χ is identically zero on Ω, which means that
the function f is also identically zero on Ω. �

Lemma – Zeros of Finite Multiplicity are Isolated. Let f : Ω→ C be a
holomorphic function. If c is a zero of multiplicity p of f, it is isolated:

∃ r > 0, ∀ z ∈ Ω, (f(z) = 0 and |z − c| < r) ⇒ z = c.

Proof. Let c be a zero of multiplicity p of f for some positive number p. There
is a holomorphic function a : Ω → C such that f(z) = a(z)(z − c)p on Ω and
a(c) 6= 0. By continuity of a at c, there is a r > 0 such that the disk D(c, r) is a
subset of Ω ∪ {c} on which a has no zero. The function f therefore has no zero
on D(c, r) \ {c} either: the point c is an isolated zero of f. �

Theorem – Isolated Zeros Theorem I. Let f : Ω → C be a holomorphic
function defined on a connected open set Ω. Unless f is identically zero, each of
its zeros is isolated.

Proof. A direct consequence of the two above lemmas. �

Remark. More often than not, we leverage the isolated zeros theorem to prove
that some holomorphic function is identically zero. In other words, we rely on
the contraposition of the theorem. The statement of this contraposition may be
slightly rephrased with the introduction of the concept of limit point.

Definition – Limit Point. A point c ∈ C is a limit point of a set C ⊂ C if
every open annulus A(c, 0, r) intersects C:

∀ r > 0, A(c, 0, r) ∩ C 6= ∅

or equivalently, if the distance between c and C \ {c} is zero.

Theorem – Isolated Zeros Theorem II. Let f : Ω → C be a holomorphic
function defined on a connected set Ω. If the set of zeros of f has a limit point
in Ω, then f is identically zero.

Proof. If the set of zeros of f has a limit point in Ω, then by continuity of f at
this point, it is a zero of f, which is clearly not isolated; thus, f is identically
zero. �

Remark. Despite its apparent simplicity, the importance of the isolated zeros
theorem is difficult to overestimate. However, it is a rather low-level tool; the
corresponding high-level tool is a permanence principle for functional equations.

Theorem – Principle of Permanence. Let F be a complex-valued function
of n complex variables, defined and complex-differentiable on some open subset
of Cn. Let Ω be an open connected subset of C and (f1, . . . , fn) : Ω 7→ Cn be
a n-uple of holomorphic functions whose image is included in the domain of
definition of F. If the set of points z ∈ Ω such that F (f1(z), . . . , fn(z)) = 0 has
a limit point in Ω, then

∀ z ∈ Ω, F (f1(z), . . . , fn(z)) = 0.
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Proof. Under the assumptions of the theorem, the function

z ∈ Ω 7→ F (f1(z), . . . , fn(z))

is defined and holomorphic on Ω (it is complex-differentiable as the composition
of complex-differentiable functions) on Ω. Its set of zeros has a limit point in Ω,
which is connected, thus it is identically zero. �

Corollary – Uniqueness Principle. Two functions f1 : Ω→ C and f2 : Ω→
C defined and holomorphic on some open connected subset of Ω with the same
values on a set with a limit point in Ω are identical.

Proof. Set F (w1, w2) = w1 − w2 and apply the permanence principle. �

Example – A Trigonometric Identity. The identity

sin2 z + cos2 z = 1

holds for every z ∈ C. Indeed, it is satisfied on the real line: every real number
is a zero of the holomorphic function f : z ∈ C 7→ sin2 z + cos2 z − 1. Every real
number is a limit point of R in C, hence f is identically zero and the identity may
be extended to the whole complex plane. Alternatively, apply the permanence
principle with F (w1, w2) = w2

1 + w2
2 − 1, f1(z) = sin z and f2(z) = cos z.

Isolated Singularities of Holomorphic Functions

Definition – Typology of Isolated Singularities. Let Ω be an open subset
of the complex plane and f : Ω → C be a holomorphic function. An isolated
singularity c of f is:

• a removable singularity if there is a holomorphic extension of f over c, that
is, a holomorphic function a : Ω ∪ {c} → C such that

∀ z ∈ Ω, f(z) = a(z).

• a pole of multiplicity p for some p ∈ N∗ if there is a a∗ ∈ C∗ such that

f(z) ∼
c

a∗

(z − c)p or equivalently lim
z→c

f(z)(z − c)p = a∗.

• an essential singularity otherwise.

Theorem – Characterization of Removable Singularities. An isolated
singularity c of a holomorphic function f : Ω → C is removable if and only if
one of the following conditions holds:

1. The Laurent expansion of f in some non-empty open annulus A(c, 0, r) is
a power series (its coefficients an are zero if n < 0).

2. The value f(z) has a limit in C when z → c.

3. The function f is bounded in some non-empty open annulus A(c, 0, r).
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Proof. The validity of the criteria 1 and 2 is a direct consequence of the local
behavior of holomorphic functions lemma (refer to the appendix). It is also plain
that condition 3 is a consequence of condition 2. Conversely, if condition 2 holds
and

|f(z)| ≤ m whenever 0 < |z − c| < r,

define γ = c+ ρ[	] for 0 < ρ < r. For any n < 0,

|an| =
∣∣∣∣ 1
i2π

∫
γ

f(z)
(z − c)n+1 dz

∣∣∣∣ ≤ mρ−n → 0 when ρ→ 0

thus condition 1 holds. �

Theorem – Characterization of Pole Multiplicity. An isolated singularity
of a holomorphic function f : Ω→ C is a pole of multiplicity p if and only if one
of the equivalent condition holds:

1. The Laurent expansion of f in some non-empty open annulus A(c, 0, r) is

f(z) =
+∞∑
n=−p

an(z − c)n with a−p 6= 0.

2. There is a holomorphic function a : Ω→ C such that

∀ z ∈ Ω, f(z) = a(z)
(z − c)p and a(c) 6= 0.

Proof. A straightforward consequence of the local behavior of holomorphic
functions lemma. �

Theorem – Characterization of Poles. An isolated singularity c of a holo-
morphic function f : Ω→ C is a pole (of multiplicity p) if and only if the inverse
1/f is defined in some open annulus A(c, 0, r), has a holomorphic extension to
D(c, r) and c is a zero (of multiplicity p) of this extension. Alternatively, c is a
pole of f if and only if

|f(z)| → +∞ when z → c.

Proof. If the point c is a pole of order p of f, there is a holomorphic function
a : Ω→ C such that

∀ z ∈ Ω, f(z) = a(z)
(z − c)p and a(c) 6= 0.

Let r > 0 be such that a(z) 6= 0 on D(c, r). The function z 7→ 1/f(z) is
holomorphic on ∈ D(c, r) \ {c}, the function b : z 7→ 1/a(z) is holomorphic on
D(c, r), b(c) 6= 0 and

∀ z ∈ D(c, r) \ {c}, 1
f(z) = b(z)(z − c)p

Thus the point c is a removable singularity of 1/f and a zero of order p of
its holomorphic extension over c. The converse statement may be proved by a
similar method.
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The condition |f(z)| → +∞ when z → c is equivalent to

1/f(z)→ 0 when z → c.

This property holds if and only if f has a holomorphic extension over c and c is
a zero of this extension. As 1/f is not identically zero locally, this zero has a
finite multiplicity p and hence c is a pole of order p of f. �

Computation of Residues

Theorem – Computation of Residues. Let Ω be an open set of C, f : Ω→ C
be a holomorphic function and c be an isolated singularity of f. If the Laurent
series expansion of f in some non-empty annulus A(c, 0, r) ⊂ Ω is

f(z) =
+∞∑

n=−∞
an(z − c)n

then
res(f, c) = a−1.

Proof. By definition of the residue, for any 0 < ρ < r,

res(f, c) = 1
i2π

∫
ρ[	]+c

f(z)dz = 1
i2π

∫
ρ[	]+c

[ +∞∑
n=−∞

an(z − c)n
]
dz.

The convergence of the Laurent series expansion is uniform on any compact
subset of A(c, 0, r), hence

res(f, c) =
+∞∑

n=−∞

[
an

1
i2π

∫
ρ[	]+c

(z − c)ndz
]
.

When n 6= −1, the function z 7→ (z − c)n has a primitive in C∗, hence all the
terms but one in the right-hand side of the equation are equal to zero. Finally,

res(f, c) = a−1

[
1
i2π

∫
ρ[	]+c

dz

z − c

]
= a−1,

as expected. �

Corollary – Residue of Poles. Let Ω be an open set of C, f : Ω → C be a
holomorphic function and c be an isolated singularity of f. If c is a pole of f
whose multiplicity is at most p:

∃ a ∈ C, lim
z→c

f(z)(z − c)p = a,

then
res(f, c) = lim

z→c

1
(p− 1)!

dp−1

dzp−1 (f(z)(z − c)p)
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Proof. Given the assumption on the multiplicity of c, the Laurent series
expansion of f on D(c, r) \ {c} for r small enough is

f(z) =
+∞∑
n=−p

an(z − c)n, 0 < |z − c| < r

thus

f(z)(z − c)p =
+∞∑
m=0

am−p(z − c)m, 0 < |z − c| < r.

The right-hand side of this equation displays no negative power of z; this series is
therefore convergent on the whole diskD(c, r) where the function z 7→ f(z)(z−p)p
can be extended to a function g which is holomorphic. As the residue a−1 of f
at c is the coefficient of (z − c)p−1 in this Taylor expansion, we have

a−1 = g(p−1)(c)
(p− 1)! = lim

z→c

g(p−1)(z)
(p− 1)!

which provides the expected formula. �

Corollary – Residue of Simple Poles I. Let Ω be an open set of C, f : Ω→ C
be a holomorphic function and c be an isolated singularity of f. The point c is a
simple pole of f if and only if

∃ a ∈ C∗, lim
z→c

f(z)(z − c) = a,

and then
res(f, c) = lim

z→c
f(z)(z − c)

Proof. Trivial. �

Corollary – Residue of Simple Poles II. Let f : Ω→ C be a holomorphic
function and let c be an isolated singularity of f. If there are two holomorphic
functions g and h on Ω such that

f = g

h
where g(c) 6= 0, h(c) = 0, h′(c) 6= 0,

then c is a simple pole of f and

res(f, c) = g(c)
h′(c) .

Proof. Given the assumptions, we have

lim
z→c

(z − c)f(z) = lim
z→c

z − c
h(z)− h(c)g(z) = g(c)

h′(c) 6= 0,

hence c is a simple pole of f whose residue is g(c)/h′(c). �
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Appendix – Local Behavior of Holomorphic Func-
tions

Lemma – Local Behavior of Holomorphic Functions. Let f : Ω 7→ C be
a holomorphic function defined on some open subset Ω of C. Let c ∈ C be a
point which is either in the domain of definition of f or an isolated singularity
of f ; in any case, there is a r > 0 such that D(c, r) ⊂ Ω ∪ {c}.

For any p ∈ Z and a∗ ∈ C, the following properties are equivalent:

1. We have
lim
z→c

f(z)
(z − c)p = a∗.

2. There is a function a : Ω ∪ {c} → C such that

∀ z ∈ Ω, f(z) = a(z)(z − c)p and lim
z→c

a(z) = a(c) = a∗.

3. There are some an ∈ C defined for n ≥ p such that

∀ z ∈ Ω ∩D(c, r), f(z) =
+∞∑
n=p

an(z − c)n and ap = a∗.

4. There is a holomorphic function a : Ω ∪ {c} → C, such that

∀ z ∈ Ω, f(z) = a(z)(z − c)p and a(c) = a∗.

Proof. If condition 1 holds, the function a : Ω ∪ {c} → C defined by

a(z) = f(z)
(z − c)p if z ∈ Ω \ {c} and a(c) = a∗

satisfies condition 2.

If condition 2 holds, the function a is continuous, thus for any compact set
K ⊂ D(c, r), there is a finite m such that

∀ z ∈ K ∩ Ω, |a(z)| =
∣∣∣∣ f(z)
(z − c)p

∣∣∣∣ ≤ m.
Hence, if 0 < ρ < r and γ = c + ρ[	], the n-th coefficient an of the Laurent
expansion of f in D(c, r) \ {c} satisfies

an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz = 1

i2π

∫
γ

f(z)
(z − c)p (z − c)p−n−1 dz

and by the M-L inequality,

|an| ≤

[
sup
|z|=ρ

∣∣∣∣ f(z)
(z − c)p

∣∣∣∣
]
ρp−n.
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If n < p, the right-hand side of this inequality tends to zero when ρ → 0,
therefore an = 0. If n = p on the other hand,

ap = 1
i2π

∫
γ

f(z)
(z − c)p+1 dz =

∫ 1

0
a(c+ ρei2πt) dt

and hence ap = limz→c a(z) = a∗. Now if c ∈ Ω, the Taylor expansion of f in
D(c, r) provides a Laurent expansion of f inD(c, r)\{c}; this expansion is unique,
hence the coefficient sequences are equal and the initial Laurent expansion is
valid in D(c, r).

If condition 3 holds, the series

+∞∑
k=0

ak+p(z − c)k

is convergent in D(c, r) \ {c} and hence in D(c, r). Its sum ac(z) satisfies f(z) =
ac(z)(z − c)p in Ω ∩D(c, r). Consequently, the function a : Ω ∪ {c} → C may be
defined unambiguously by

a(z) = ac(z) if z ∈ D(c, r) and a(z) = f(z)
(z − c)p otherwise

and it is holomorphic.

Finally if condition 4 holds, it is plain that condition 1 holds. �

Exercises

The Weierstrass-Casorati Theorem

Let f : Ω→ C be a holomorphic function and let a ∈ C be an essential singularity
of f . Show that the image of f is dense in C:

∀w ∈ C, ∀ ε > 0, ∃ z ∈ Ω, |f(z)− w| < ε.

Hint: assume instead that some complex number w is not in the closure of the
image of f ; study the function z 7→ 1/(f(z)− w) in a neighbourhood of a.

The Maximum Principle

Let Ω be an open connected subset of the complex plane and let f : Ω→ C be
a holomorphic function. Show that if |f | has a local maximum at some a ∈ Ω,
then f is constant.
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The Π Function

We introduce the Π function, a holomorphic extension of the factorial.

1. Find the domain in the complex plane of the function

Π : z 7→
∫ +∞

0
tze−t dt

and show that it is holomorphic.

2. Prove that whenever Π(z) is defined, Π(z + 1) is also defined and

Π(z + 1) = (z + 1)Π(z).

Compute Π(n) for every n ∈ N.

3. Let Ω be an open connected subset of the complex plane that contains the
domain of Π and such that Ω + 1 ⊂ Ω. Prove that if Π has a holomorphic
extension on Ω (still denoted Π), it is unique and satisfies the functional
equation

∀ z ∈ Ω, Π(z + 1) = (z + 1)Π(z).

4. Prove the existence of such an extension Π on

Ω = C \ {k ∈ Z | k < 0}.

5. Show that every negative integer is a simple pole of Π; compute the
associated residue.

Singularities and Residues

Analyze the singularities (location, type, residues) of

z 7→ sin πz
πz

, z 7→ 1
(sin πz)2 , z 7→ sin π

z
, z 7→ 1

sin π
z

.

Integrals of Functions of a Real Variable

See “Technologie de calcul des intégrales à l’aide de la formule des résidus”
(Demailly 2009, chap. III, sec. 4) for a comprehensive analysis of the computation
of integrals with the the residue theorem.

1. For any n ≥ 2, compute ∫ +∞

0

dx

1 + xn
.

2. Compute ∫ +∞

0

√
x

1 + x+ x2 dx.
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Chapter 9

Integral Representations

Complex Differentiation of Integrals

Theorem – Complex-Differentiation under the Integral Sign. Let Ω be
an open subset of C and (X,µ) be a measurable space. Let f : Ω×X → C be a
function such that:

1. for every z in Ω, x ∈ X 7→ f(z, x) is µ-measurable,

2. for any z0 ∈ Ω, there is a neighborhood V of z0 in Ω and a µ-integrable
function g : X → R+ such that

∀ z ∈ V, |f(z, x)| ≤ g(x) µ-a.e.

3. for µ-almost every x ∈ X, the function z ∈ Ω 7→ f(z, x) is holomorphic.

Then the function z ∈ Ω 7→
∫
X
f(z, x) dµ(x) is holomorphic and its derivative at

any order n is

∂n

∂zn

[∫
X

f(z, x) dµ(x)
]

=
∫
X

∂nz f(z, x) dµ(x).

Proof. Let z0 in Ω and V be as in assumption 2; let r > 0 be a radius such
that D(z0, r) ⊂ V and let γ = z0 + r[	]. The Cauchy formula, followed by an
integration by parts, yields for µ-almost every x ∈ X and any z ∈ D(z0, r/2)

∂zf(z, x) = 1
i2π

∫
γ

∂zf(w, x)
w − z

dw = 1
i2π

∫
γ

f(w, x)
(w − z)2 dw,

which by the M-L estimation lemma provides the bound

|∂zf(z, x)| ≤ 4|g(x)|
r

.

The difference quotient of z 7→
∫
X
f(z, x) dµ(x) at z0 is equal to∫

X

f(z0 + h, x)− f(z0, x)
h

dµ(x).

96



CHAPTER 9. INTEGRAL REPRESENTATIONS 97

Let h be a complex number such that |h| < r/2. For µ-almost every x ∈ X, the
function φ : t ∈ [0, 1] 7→ f(z0 + th, x) is continuous on [0, 1], differentiable on
]0, 1[ and satisfies

|φ′(t)| = |∂zf(z0 + th, x)||h| ≤ g(x)
r
|h|.

Hence, the mean value inequality yields∣∣∣∣f(z0 + h, x)− f(z0, x)
h

∣∣∣∣ = |φ(1)− φ(0)|
|h|

≤ 4g(x)
r

.

Since
lim
h→0

f(z0 + h, x)− f(z0, x)
h

= ∂zf(z0, x) µ-a.e.,

Lebesgue’s dominated convergence theorem provides the result for n = 1. Now,
the function ∂zf also satisfies the three assumptions required by the theorem,
hence by induction, the theorem statement holds at any order n. �

Corollary – Complex-Differentiation of Line Integrals. Let f : Ω×Λ→ C
where Ω and Λ are two subsets of C and Ω is open. Assume that

1. f is a continuous function.

2. for any w ∈ Λ, the function z ∈ Ω 7→ f(z, w) is holomorphic.

Then, for any sequence of rectifiable paths γ of Λ, the function z ∈ Ω 7→∫
γ
f(z, w) dw is holomorphic and

∂

∂z

[∫
γ

f(z, w) dw
]

=
∫
γ

∂zf(z, w) dw.

Proof. We prove the result for any continuously differentiable path γ of Λ (the
case of a sequence of rectifiable paths is a simple corollary). By definition of the
line integral, ∫

γ

f(z, w) dw =
∫

[0,1]
f(z, γ(t))γ′(t) dt.

Now,

1. For any z ∈ Ω, the function t ∈ [0, 1] 7→ f(z, γ(t))γ′(t) is continuous and
therefore Lebesgue measurable.

2. Let z0 ∈ Ω and let r > 0 be such that K = D(z0, r) ⊂ Ω. The restriction
of f to the compact set K × γ([0, 1]) is bounded by some constant κ.
Therefore, for any z ∈ D(z0, r), the function t ∈ [0, 1] 7→ f(z, γ(t))γ′(t) is
dominated by t ∈ [0, 1] 7→ κ|γ′(t)| which is Lebesgue integrable.

3. For any t ∈ [0, 1], the function z ∈ Ω 7→ f(z, γ(t))γ′(t) is holomorphic; its
derivative is ∂zf(z, γ(t))γ′(t).

Consequently, the differentiation of Lebesgue integrals theorem provides the
existence of ∂z

[∫
γ
f(z, w) dw

]
and its value:

∂

∂z

[∫
γ

f(z, w) dw
]

=
∫

[0,1]
∂zf(z, γ(t))γ′(t) dt.

The right-hand side is equal to
∫
γ
∂zf(z, w) dw. �
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The Laplace Transform

Definition – The Laplace Transform. Let f : R+ → C be a Lebesgue
measurable function. We denote by σ the extended real number defined by

σ ∈ [−∞,+∞] = inf
{
σ+ ∈ R

∣∣∣∣∣
∫
R+

|f(t)|e−σ
+t dt < +∞

}
.

If s ∈ C and Re(s) > σ, the function t ∈ R+ 7→ f(t)e−st is Lebesgue integrable.
The Laplace transform of f is the function

L[f ] : {s ∈ C | Re(s) > σ} → C

defined by
L[f ](s) =

∫
R+

f(t)e−st dt.

Proof – Definition of the Laplace Transform. For any s ∈ C, the function
t ∈ R+ 7→ f(t)e−st is Lebesgue measurable . If additionally Re(s) > σ, then
there is some σ+ such that σ < σ+ < Re(s) and t 7→ |f(t)|e−σ+t is Lebesgue
integrable. Thus,∫

R+

|f(t)e−st| dt =
∫
R+

|f(t)|e−Re(s)t dt ≤
∫
R+

|f(t)|e−σ
+t dt < +∞.

and therefore t ∈ R+ 7→ f(t)e−st is Lebesgue integrable. �

Example – Laplace Transform of Exponential Functions. For any λ ∈ C,
the function t ∈ R+ 7→ eλt is Lebesgue measurable. Additionally,

∀ t ≥ 0, |f(t)|e−σ
+t = e−(σ+−Re(λ))t,

hence the function t ∈ R+ 7→ |f(t)|e−σ+ is Lebesgue integrable if and only
if σ+ > Re(λ). The infimum σ of all such σ+ is therefore Re(λ). Now, if
Re(s) > Re(λ),

L[f ](s) =
∫
R+

e(λ−s)t dt =
[
e(λ−s)t

λ− s

]+∞

0
= 1
s− λ

.

Theorem – Derivative of the Laplace Transform. The Laplace transform
of a Lebesgue measurable function f : R+ → C is holomorphic on its domain of
definition and

(L[f ])′(s) = L[t 7→ −tf(t)](s).

Proof. Let Ω = {s ∈ C | Re(s) > σ}.

1. For any s ∈ Ω, the function t 7→ f(t)e−st is Lebesgue measurable.

2. Let s ∈ Ω and let r > 0 be such that ε = Re(s) − σ − r > 0. For any
w ∈ D(s, r), we have Re(w) > Re(s)− r = σ + ε, thus∫

R+

|f(t)e−wt| dt =
∫
R+

|f(t)|e−Re(w)t dt ≤
∫
R+

|f(t)|e−(σ+ε)t dt < +∞.
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3. For almost any t ≥ 0, s 7→ f(t)e−st is holomorphic and

∂s[f(t)e−st] = −tf(t)e−st.

We can therefore differentiate under the integral sign and obtain

∂

∂s

∫ +∞

0
f(t)e−st dt =

∫ +∞

0
−tf(t)e−st dt = L[t 7→ −tf(t)](s)

as expected. �

Example – Laplace Transform of Polynomials. The constant function
defined by f(t) = 1 for t ≥ 0 is an exponential function (as 1 = e0×t); its Laplace
transform is defined for Re(s) > 0 and equal to 1/s. Now, this Laplace transform
has a derivative at every of order n which is

(−1)nn!
sn+1 .

It is also the Laplace transform of t ∈ R+ 7→ (−t)n. Thus, by linearity, the
Laplace transform of the polynomial f(t) =

∑n
p=0 apt

p is

L[f ](s) =
n∑
p=0

app!
1

sp+1 .

Cauchy’s Integral Theorem – Dixon’s Proof

In (Dixon 1971), John D. Dixon provides a short proof of the global version
of Cauchy’s Formula, using the local Cauchy theory. The proof relies on the
following key result:

Lemma – Integral of the Difference Quotient. Let Ω be an open subset
of the complex plane, f be a holomorphic function on Ω and γ be a sequence of
rectifiable closed paths of Ω. The function

z ∈ Ω \ γ([0, 1]) 7→
∫
γ

f(z)− f(w)
z − w

dw

has a holomorphic extension on Ω.

Proof. We may define the function g : Ω× Ω→ C by

g(z, w) = f(z)− f(w)
z − w

if z 6= w and g(w,w) = f ′(w).

The continuity and complex-differentiability of g at any point (z, w) ∈ Ω2 such
that z 6= w is plain. Now, let c ∈ Ω and let r > 0 be a radius such that the
closure of the disk D = D(c, r) is included in Ω. Using the Taylor expansion of
f in this disk, we derive for any z ∈ D and w ∈ D:

f(z)− f(w)
z − w

= 1
z − w

+∞∑
n=0

an((z − c)n − (w − c)n)

=
+∞∑
n=1

an

[
n−1∑
p=0

(z − c)n−1−p(w − c)p
]
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The right-hand side of this equation is a uniformly convergent sum of continuous
functions of (w, z) ∈ D2 . Thus, its limit is a continuous function of (w, z) and
we have

lim
(w,z)→(c,c),w 6=z

f(z)− f(w)
z − w

=
+∞∑
n=1

nan(w − c)n−1 = f ′(w) = g(w,w),

thus this continuous function is actually g. Additionally, for every w ∈ D, every
function of the sum is a holomorphic function with respect to z, hence its uniform
limit z ∈ D 7→ g(z, w) is also holomorphic.

Now the function
z ∈ Ω 7→

∫
γ

g(z, w)dw

clearly extends the function of the lemma statement. It also satisfies the assump-
tions of the complex-differentiation of line integrals result, thus it is holomorphic.
�

For completeness, here is Dixon’s proof of Cauchy’s formula:

Proof – Cauchy’s Integral Formula. Let Ω be an open subset of C and let
f : Ω 7→ C be a holomorphic function. Let γ be a sequence of rectifiable closed
paths of Ω such that Int γ ⊂ Ω.

Introduce the holomorphic extension h to Ω of

z ∈ Ω \ γ([0, 1]) 7→ 1
i2π

∫
γ

f(z)− f(w)
z − w

dw

and define the function φ : C 7→ C by

φ(z) = h(z) if z ∈ Ω, φ(z) = − 1
i2π

∫
γ

f(w)
w − z

dw if z ∈ Ext γ.

This definition is unambiguous: if z ∈ Ω ∩ Ext γ, then

h(z) = 1
i2π

∫
γ

f(z)− f(w)
z − w

dw

= f(z)ind(γ, z)− 1
i2π

∫
γ

f(w)
z − w

dw

= − 1
i2π

∫
γ

f(w)
z − w

dw

.

The function φ is holomorphic on Ω and also on Ext γ by the complex-
differentiation of line integrals theorem. Hence, it is holomorphic on C.
Additionally, if |z| > r = max{|w| | w ∈ γ([0, 1])}, then z ∈ Ext γ, thus if M is
an upper bound of f on the image of γ,

|φ(z)| ≤ 1
2π

M

|z| − r
× `(γ)

and |φ(z)| → 0 when |z| → +∞. By Liouville’s Theorem, φ is identically zero;
hence, if z ∈ Ω,

1
i2π

∫
γ

f(w)
z − w

dw = 1
i2π

∫
γ

f(z)
z − w

dw = ind(γ, z)f(z),



CHAPTER 9. INTEGRAL REPRESENTATIONS 101

which is Cauchy’s integral formula. �

The Π Function

Definition – Π Function. The Π function is defined for all complex numbers
z such that Re(z) > −1 by

Π(z) =
∫ +∞

0
tze−t dt

It is a holomorphic function whose n-th order derivative is given by

Π(n)(z) =
∫ +∞

0
(ln t)ntze−t dt.

Proof – Π Function. For any z ∈ C and any t > 0,
tze−t = ez ln t−t and |tze−t| = eRe(z) ln t−t = tRe(z)e−t.

Thus, if Re(z) > −1, the function t ∈ R∗+ 7→ tze−t is Lebesgue integrable. Let
z ∈ C such that Re(z) > −1 and let r = (Re(z) + 1)/2 > 0. For any h ∈ C such
that |h| < r and any t > 0,

|t(z+h)e−t| = tRe(z+h)e−t < max(tRe(z)−r, tRe(z)+r)e−t

and the right-hand side of this inequality is a Lebesgue integrable function of t.
Finally, for any t > 0, the function z 7→ tze−t is holomorphic on the domain of
the Π function and at any order n,

∂nz t
ze−t = ∂nz e

z ln t−t = (ln t)ntze−t.
The assumptions of differentiation under the integral sign are met and the
application of this theorem provides the desired result. �
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Exercises

Functions of Several Complex Variables

Let n ≥ 2, let Ω be an open subset of Cn and let f : Ω 7→ C a continuous function.
Show that f is complex-differentiable in Ω if and only if for any (z1, . . . , zn) ∈ Ω,
the partial function

fk,z : w 7→ f(z1, . . . , zk−1, w, zk+1, . . . , zn)
is holomorphic.

https://doi.org/10.2307/2038614


Chapter 10

Complex-Step
Differentiation

Introduction

You may already have used numerical differentiation to estimate the derivative
of a function, using for example Newton’s finite difference approximation

f ′(x) ≈ f(x+ h)− f(x)
h

.

The implementation of this scheme in Python is straightforward:

def FD(f, x, h):
return (f(x + h) - f(x)) / h

However, the relationship between the value of the step h and the accuracy of
the numerical derivative is more complex. Consider the following sample data:

Expression Value
exp′(0) 1
FD(exp, 0, 1e-4) 1.000050001667141
FD(exp, 0, 1e-8) 0.99999999392252903
FD(exp, 0, 1e-12) 1.000088900582341

The most accurate value of the numerical derivative is obtained for h = 10−8

and only 8 digits of the result are significant. For the larger value of h = 10−4,
the accuracy is limited by the quality of the Taylor development of exp at the
first order; this truncation error decreases linearly with the step size. For the
smaller value of h = 10−12, the accuracy is essentially undermined by round-off
errors in computations.

In this document, we show that complex-step differentiation may be used to
get rid of the influence of the round-off error for the computation of the first
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derivative. For higher-order derivatives, we introduce a spectral method, a fast
algorithm with an error that decreases exponentially with the number of function
evaluations.

Computer Arithmetic

You may skip this section if you are already familiar with the representation of
real numbers as “doubles” on computers and with their basic properties. At the
opposite, if you wish to have more details on this subject, it is probably a good
idea to have a look at the classic “What every computer scientist should know
about computer arithmetic” (Goldberg 1991).

In the sequel, the examples are provided as snippets of Python code that often
use the Numerical Python (NumPy) library; first of all, let’s make sure that all
NumPy symbols are available:

>>> from numpy import *

Floating-Point Numbers: First Contact

The most obvious way to display a number is to print it:

>>> print pi
3.14159265359

This is a lie of course: print is not supposed to display an accurate information
about its argument, but something readable. To get something unambiguous
instead, we can do:

>>> pi
3.141592653589793

When we say “unambiguous”, we mean that there is enough information in this
sequence of digits to compute the original floating-point number; and indeed:

>>> pi == eval("3.141592653589793")
True

Actually, this representation is also a lie: it is not an exact decimal representation
of the number pi stored in the computer memory. To get an exact representation
of pi, we can request the display of a large number of the decimal digits:

>>> def all_digits(number):
... print "{0:.100g}".format(number)
>>> all_digits(pi)
3.141592653589793115997963468544185161590576171875

Asking for 100 digits was actually good enough: only 49 of them are displayed
anyway, as the extra digits are all zeros.

Note that we obtained an exact representation of the floating-point number pi
with 49 digits. That does not mean that all – or even most – of these digits

http://www.numpy.org/
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are significant in the representation the real number of π. Indeed, if we use the
Python library for multiprecision floating-point arithmetic mpmath, we see that

>>> import mpmath
>>> mpmath.mp.dps = 49; mpmath.mp.pretty = True
>>> +mpmath.pi
3.141592653589793238462643383279502884197169399375

and both representations are identical only up to the 16th digit.

Binary Floating-Point Numbers

Representation of floating-point numbers appears to be complex so far, but it’s
only because we insist on using a decimal representation when these numbers are
actually stored as binary numbers. In other words, instead of using a sequence
of (decimal) digits fi ∈ {0, 1, . . . , 9} to represent a real number x as

x = ±(f0.f1f2 . . . fi . . . )× 10e

we should use binary digits – aka bits – fi ∈ {0, 1} to write:

x = ±(f0.f1f2 . . . fi . . . )× 2e.

These representations are normalized if the leading digit of the significand
(f0.f1f2 . . . fi . . . ) is non-zero; for example, with this convention, the rational
number 999/1000 would be represented in base 10 as 9.99 × 10−1 and not as
0.999 × 100. In base 2, the only non-zero digit is 1, hence the significand of a
normalized representation is always (1.f1f2 . . . fi . . . ).

In scientific computing, real numbers are usually approximated to fit into a 64-bit
layout named “double”1. In Python standard library, doubles are available as
instances of float – or alternatively as float64 in NumPy.

A triple of

• sign bit s ∈ {0, 1},

• biased exponent e ∈ {1, . . . , 2046} (11-bit),

• fraction f = (f1, . . . , f52) ∈ {0, 1}52.

represents a normalized double

x = (−1)s × 2e−1023 × (1.f1f2 . . . f52).

The doubles that are not normalized are not-a-number (nan), infinity (inf) and
zero (0.0) (actually signed infinities and zeros), and denormalized numbers. In
the sequel, we will never consider such numbers.

1“Double” is a shortcut for “double-precision floating-point format”, defined in the IEEE
754 standard, see (IEEE Task P754 1985). A single-precision format is also defined, that uses
only 32 bits. NumPy provides it under the name float32.

https://mpmath.googlecode.com/svn/trunk/doc/build/index.html
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Accuracy

Almost all real numbers cannot be represented exactly as doubles. It makes
sense to associate to a real number x the nearest double [x]. A “round-to-nearest”
method that does this is fully specified in the IEE754 standard (see IEEE Task
P754 1985), together with alternate (“directed rounding”) methods.

To have any kind of confidence in our computations with doubles, we need to be
able to estimate the error in the representation of x by [x]. The machine epsilon,
denoted ε in the sequel, is a key number in this respect. It is defined as the gap
between 1.0 – that can be represented exactly as a double – and the next double
in the direction +∞.

>>> after_one = nextafter(1.0, +inf)
>>> after_one
1.0000000000000002
>>> all_digits(after_one)
1.0000000000000002220446049250313080847263336181640625
>>> eps = after_one - 1.0
>>> all_digits(eps)
2.220446049250313080847263336181640625e-16

This number is also available as an attribute of the finfo class of NumPy that
gathers machine limits for floating-point data types:

>>> all_digits(finfo(float).eps)
2.220446049250313080847263336181640625e-16

Alternatively, the examination of the structure of normalized doubles yields di-
rectly the value of ε: the fraction of the number after 1.0 is (f1, f2, . . . , f51, f52) =
(0, 0, . . . , 0, 1), hence ε = 2−52, a result confirmed by:

>>> all_digits(2**-52)
2.220446049250313080847263336181640625e-16

The machine epsilon matters so much because it provides a simple bound on the
relative error of the representation of a real number as a double. Indeed, for any
sensible rounding method, the structure of normalized doubles yields

|[x]− x|
|x|

≤ ε.

If the “round-to-nearest” method is used, you can actually derive a tighter bound:
the inequality above still holds with ε/2 instead of ε.

Significant Digits

This relative error translates directly into how many significant decimal digits
there are in the best approximation of a real number by a double. Consider the
exact representation of [x] in the scientific notation:

[x] = ±(f0.f1 . . . fp−1 . . . )× 10e.
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We say that it is significant up to the p-th digit if

|x− [x]| ≤ 10e−(p−1)

2 .

On the other hand, the error bound on [x] yields

|x− [x]| ≤ ε

2 |x| ≤
ε

2 × 10e+1.

Hence, the desired precision is achieved as long as

p ≤ − log10 ε/2 = 52 log10 2 ≈ 15.7.

Consequently, doubles provide a 15-th digit approximation of real numbers.

Functions

Most real numbers cannot be represented exactly as doubles; accordingly, most
real functions of real variables cannot be represented exactly as functions op-
erating on doubles either. The best we can hope for are correctly rounded
approximations. An approximation [f ] of a function f of n variables is correctly
rounded if for any n-uple (x1, . . . , xn), we have

[f ](x1, . . . , xn) = [f([x1], . . . , [xn])].

The IEEE 754 standard (see IEEE Task P754 1985) mandates that some functions
have a correctly rounded implementation; they are:

add, substract, multiply, divide, remainder and square root.

Other standard elementary functions – such as sine, cosine, exponential, log-
arithm, etc. – are usually not correctly rounded; the design of computation
algorithms that have a decent performance and are provably correctly rounded is
a complex problem (see for example the documentation of the Correctly Rounded
mathematical library).

Complex Step Differentiation

Forward Difference

Let f be a real-valued function defined in some open interval. In many concrete
use cases, we can make the assumption that the function is actually analytic
and never have to worry about the existence of derivatives. As a bonus, for any
real number x in the domain of the function, the (truncated) Taylor expansion

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
2 h2 + · · ·+ f (n)

n! h
n +O(hn+1)

http://lipforge.ens-lyon.fr/www/crlibm/
http://lipforge.ens-lyon.fr/www/crlibm/
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is locally valid2. A straighforward computation shows that

f ′(x) = f(x+ h)− f(x)
h

+O(h)

The asymptotic behavior of this forward difference scheme – controlled by the
term O(h1) – is said to be of order 1. An implementation of this scheme is
defined for doubles x and h as

FD(f, x, h) =
[

[[f ]([x] + [h])− [f ](x)]
[h]

]
.

or equivalently, in Python as:

def FD(f, x, h):
return (f(x + h) - f(x)) / h

Round-Off Error

We consider again the function f(x) = exp(x) used in the introduction and
compute the numerical derivative based on the forward difference at x = 0 for
several values of h. The graph of h 7→ FD(exp, 0, h) shows that for values of
h near or below the machine epsilon ε, the difference between the numerical
derivative and the exact value of the derivative is not explained by the classic
asymptotic analysis.

10−16 10−12 10−8 10−4 100

0

1

2

Graph of h 7→ FD(exp, 0, h)

FD(exp, 0, h)

[exp′(0)]

[ϵ/h]

Figure 10.1: Forward Difference Scheme Values.

If we take into account the representation of real numbers as doubles however,
we can explain and quantify the phenomenon. To focus only on the effect of the

2Bachmann-Landau notation. For a real or complex variable h, we write ψ(h) = O(φ(h))
if there is a suitable deleted neighbourhood of h = 0 where the functions ψ and φ are defined
and the inequality |ψ(h)| ≤ κ|φ(h)| holds for some κ > 0. When N is a natural number, we
write ψ(N) = O(φ(N)) if there is a n such that ψ and φ are defined for N ≥ n and for any
such N, the inequality |ψ(N)| ≤ κ|φ(N)| holds for some κ > 0.
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round-off errors, we’d like to get rid of the truncation error. To achieve this, in
the following computations, instead of exp, we use exp0, the Taylor expansion
of exp of order 1 at x = 0; we have exp0(x) = 1 + x.

Assume that the rounding scheme is “round-to-nearest”; select a floating-point
number h > 0 and compare it to the machine epsilon:

• If h� ε, then 1 + h is close to 1, actually, closer to 1 than from the next
binary floating-point value, which is 1 + ε. Hence, the value is rounded to
[exp0](h) = 1, and a catastrophic cancellation happens:

FD(exp0, 0, h) =
[

[[exp0](h)− 1]
h

]
= 0.

• If h ≈ ε, then 1 + h is closer from 1 + ε than it is from 1, hence we have
[exp0](h) = 1 + ε and

FD(exp0, 0, h) =
[

[[exp0](h)− 1]
h

]
=
[ ε
h

]
.

• If ε� h� 1, then [1 + h] = 1 + h± ε(1 + h) (the symbol ± is used here
to define a confidence interval3). Hence

[[exp0](h)− 1] = h± ε± ε(2h+ ε+ εh)

and [
[[exp0](h)− 1]

h

]
= 1± ε

h
+ ε

h
(3h+ 2ε+ 3hε+ ε2 + ε2h)

therefore
FD(exp0, 0, h) = exp′0(0)± ε

h
± ε′, ε′ � ε

h
.

Going back to FD(exp, 0, h) and using a log-log scale to display the total error,
we can clearly distinguish the region where the error is dominated by the round-
off error – the curve envelope is log(ε/h) – and where it is dominated by the
truncation error – a slope of 1 being characteristic of schemes of order 1.

Higher-Order Scheme

The theoretical asymptotic behavior of the forward difference scheme can be
improved, for example if instead of the forward difference quotient we use a
central difference quotient. Consider the Taylor expansion at the order 2 of
f(x+ h) and f(x− h):

f(x+ h) = f(x) + f ′(x)(+h) + f ′′(x)
2 (+h)2 +O

(
h3)

and
f(x− h) = f(x) + f ′(x)(−h) + f ′′(x)

2 (−h)2 +O
(
h3) .

3Plus-minus sign and confidence interval. The equation a = b±c should be interpreted
as the inequality |a− b| ≤ |c|.
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FD error

Figure 10.2: Forward Difference Scheme Error.

We have
f ′(x) = f(x+ h)− f(x− h)

2h +O(h2),

hence, the central difference scheme is a scheme of order 2, with the
implementation:

CD(f, x, h) =
[

[[f ]([x] + [h])− [f ]([x]− [h])]
[2× [h]]

]
.

or equivalently, in Python:

def CD(f, x, h):
return 0.5 * (f(x + h) - f(x - h)) / h

The error graph for the central difference scheme confirms that a truncation
error of order two may be used to improve the accuracy. However, it also shows
that a higher-order actually increases the region dominated by the round-off
error, making the problem of selection of a correct step size h even more difficult.

Complex Step Differentiation

If the function f is analytic at x, the Taylor expansion is also valid for (small
values of) complex numbers h. In particular, if we replace h by a pure imaginary
number ih, we end up with

f(x+ ih) = f(x) + f ′(x)ih+ f ′′(x)
2 (ih)2 +O(h3)
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Figure 10.3: Central Difference Scheme Error.

If f is real-valued, using the imaginary part yields:

Im
(
f(x+ ih)

h

)
= f ′(x) +O(h2).

This is a method of order 2. The straightforward implementation of the complex-
step differentiation is

CSD(f, x, h) =
[

Im([f ]([x] + i[h]))
[h]

]
.

or equivalently, in Python:

def CSD(f, x, h):
return imag(f(x + 1j * h)) / h

The distinguishing feature of this scheme: it almost totally gets rid of the
truncation error. Indeed, let’s consider again exp0; when x and y are floating-
point real numbers, the sum x+ iy can be computed with any round-off, hence,
if h is a floating-point number, [exp0](ih) = [1 + ih] = 1 + ih and consequently,
Im([exp0](ih)) = h, which yields

CSD(exp0, 0, h) =
[
h

h

]
= 1 = exp′0(0).

Spectral Method

The complex step differentiation is a powerful method but it also has limits. We
can use it to compute the first derivative of a real analytic function f, but not its
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Figure 10.4: Complex Step Difference Scheme Error.
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second derivative because our estimate x 7→ CSD(f, x, h) of the first derivative
is only available for real values of x, hence the method cannot be iterated. We
cannot use it either if we know that f is analytic but not real-valued.

We introduce in this section an alternate method to compute first, second and
higher-order derivatives of – real or complex-valued – analytic functions. More
details may be found in (Fornberg 2006) and (Trefethen 2000).

Computation Method

Let f be a function that is holomorphic in an open neighbourhood of x ∈ R that
contains the closed disk with center x and radius r. In this disk, the values of f
can be computed by the Taylor series

f(z) =
+∞∑
n=0

an(z − x)n, an = f (n)(x)
n! .

The open disk of convergence of the series has a radius that is larger than r,
thus the growth bound of the sequence an is smaller than 1/r. Hence,

∃κ > 0, ∀n ∈ N, |an| ≤ κ r−n.

Let h ∈ (0, r) and N be a positive integer; let fk be the sequence of N values of
f on the circle with center x and radius h defined by

fk = f(x+ hwk), w = e−i2π/N , k = 0, . . . , N − 1.

Estimate and Accuracy

The values fk can be computed as

fk =
+∞∑
n=0

an(hwk)n =
N−1∑
n=0

[+∞∑
m=0

an+mNh
n+mN

]
wk(n+mN).

Notice that we have wk(n+mN) = wkn(wN )km = wkn. Hence, if we define

cn = anh
n + an+Nh

n+N + · · · =
+∞∑
m=0

an+mNh
n+mN ,

we end up with the following relationship between the values fk and cn:

fk =
N−1∑
n=0

wkncn.

It is useful because the coefficients cn/hn provide an approximation of an:∣∣∣an − cn
hn

∣∣∣ ≤ κr−n +∞∑
m=1

(h/r)mN = κr−n
(h/r)N

1− (h/r)N
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There are two ways to look at this approximation: if we freeze N and consider
the behavior of the error when the radius h approaches 0, we derive

an = cn
hn

+O(hN )

and conclude that the approximation of an is of order N with respect to h; on
the other hand, if we freeze h and let N grow to +∞, we obtain instead

an = cn
hn

+O(e−αN ) with α = − log(h/r) > 0,

in other words, the approximation is exponential with respect to N.

Computation of the Estimate

The right-hand side of the equation

fk =
N−1∑
n=0

wkncn.

can be interpreted as a classic matrix-vector product; the mapping from the
cn to the fk is known has the discrete Fourier transform (DFT). The inverse
mapping – the inverse discrete Fourier transform – is given by

cn = 1
N

N−1∑
n=0

w−knfk.

Both the discrete Fourier transform and it inverse can be computed by algorithms
having a O(N logN) complexity (instead of the O(N2) of the obvious method),
the aptly named fast Fourier transform (FFT) and inverse fast Fourier transform
(IFFT). Some of these algorithms actually deliver the minimal complexity only
when N is a power of two, so it is safer to pick only such numbers if you don’t
know exactly what algorithm you are actually using.

The implementation of this scheme is simple:

from numpy.fft import ifft
from scipy.misc import factorial

def SM(f, x, h, N):
w = exp(-1j * 2 * pi / N)
k = n = arange(N)
f_k = f(x + h * w**k)
c_n = ifft(f_k)
a_n = c_n / h ** n
return a_n * factorial(n)

Error Analysis

The algorithm introduced in the previous section provides approximation methods
with an arbitrary large order for n-th order derivatives. However, the region in
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Figure 10.5: Spectral Method Error

which the round-off error dominates the truncation error is large and actually
increases when the integer n grows. A specific analysis has to be made to control
both kind of errors.

We conduct the detailled error analysis for the function

f(z) = 1
1− z

at x = 0 and attempt to estimate the derivatives up to the fourth order. We
have selected this example because an = 1 for every n, hence the computation
of the relative errors of the results are simple.

Round-off error

We assume that the main source of round-off errors is in the computations of the
fk. The distance between fk and its approximation [fk] is bounded by |fk| × ε/2;
the coefficients in the IFFT matrix are of modulus 1/N, hence, if the sum is
exact, we end up with an absolute error on cn bounded by M(h)× ε/2 with

M(h) = max
|z−x|=h

|f(z)|.

Hence the absolute error on an = cn/h
n is bounded by M(h)ε/(2hn). Using the

rough estimate |an| ' κr−n, we end up with a relative error for an controlled by(
M(h)
κ

ε

2

)(
h

r

)−n
On our example, we can pick M(h) = 1/(1 − h), κ = 1, and r = 1, hence the
best error bound we can hope for is obtained for the value of h that minimizes
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1/((1− h)hn)ε/2; the best h and round-off error bound are actually

h = n

n+ 1 and round-off(an) ≤ (n+ 1)n+1

nn
ε

2 .

The error bound is always bigger than the structural relative error ε/2 and
increases with n, hence the worst case is obtained for the highest derivative order
that we want to compute, that is n = 4. If for example we settle on a round-off
relative error of 1000 times ε/2, we can select h = 0.2.

Truncation error

We have already estimated the difference between an and cn/h
n; if we again

model |an| as κr−n, the relative error of this estimate is bounded by

(h/r)N
1− (h/r)N '

(
h

r

)N
,

hence to obtain a truncation error of the same magnitude than the truncation
error – that is 1000× ε/2, we may select N such that 0.2N ≤ 1000× ε/2, that is

N ≥
⌈

log(1000× ε/2)
log 0.2

⌉
= 19.

We pick for N the next power of two after 19; the choices h = 0.2 and N = 32
yield the following estimates of the first 8 n-th order derivatives of f.

n f (n)(0) estimate relative error
0 1.0000000000000000 0.0
1 0.9999999999999998 2.2× 10−16

2 1.9999999999999984 7.8× 10−16

3 6.0000000000000284 4.7× 10−15

4 23.999999999999996 1.1× 10−16

5 120.00000000001297 1.1× 10−13

6 720.00000000016007 2.2× 10−13

7 5040.0000000075588 1.5× 10−12

Appendix

Augustin-Louis is the proud author of a very simple Python CSD code fragment
that people cut-and-paste in their numerical code:

from numpy import imag
def CSD(f, x, h=1e-100):

return imag(f(x + 1j * h)) / h

One day, he receives the following mail:
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Dear Augustin-Louis,

We are afraid that your Python CSD code is defective; we used it
to compute the derivative of f(x) =

√
|x| at x = 1 and got 0. We’re

pretty sure that it should be 0.5 instead.

Yours truly,

Isaac & Gottfried Wilhelm.

1. Should the complex-step differentiation method work in this case?

2. How do you think that Isaac and Gottfried Wilhelm have implemented
the function f? Would that explain the value of CSD(f, x=1.0) that they
report?

3. Can you modify the CSD code fragment to “make it work” with the kind of
function and implementation that Isaac and Gottried Wilhelm are using?
Of course, you cannot change their code, only yours.
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Chapter 11

Poisson Image Editing

Introduction

Poisson Image Editing refers to a family of methods introduced in (Pérez,
Gangnet, and Blake 2003) that rely on the resolution of the Poisson equation to
perform seamless editing of images. Typical use cases include: healing of images
from damaged or missing data, image enhancements, e.g. the removal of skin
blemishes in portraits, heavy image editing, for example the concealement of
objects.

The GNU Image Manipulation Program (GIMP) “Heal tool” implements a
Poisson Image Editing method1, described in the documentation as “a smart
clone tool on steroids”, because:

Pixels are not simply copied from source to destination, but the area
around the destination is taken into account before cloning is applied.

Let’s demonstrate Poisson image editing with GIMP. Say that we want to hide
the watch in the image below, in a way one cannot guess that there was an item
to begin with.

We first select a disk in a region of the image where there is no object, to capture
the texture of the background behind the objects. GIMP displays this region
with a dashed line (see “GIMP Heal tool in action” figure). We make sure that
the disk is big enough to cover a significant part of the watch, and small enough
to avoid the objects that are close to it. Then we graft this heal source on top of
the lower part of the watch, then on its upper part. The final result is a seamless
removal of the watch from the picture.

1the GIMP developers state that they use the method described in (Georgiev 2005), a
variant of the original design that is invariant under relighting, but a closer examination of the
source code shows that they actually use the original method.

117

http://www.gimp.org/
http://docs.gimp.org/en/gimp-tool-heal.html
https://git.gnome.org/browse/gimp/tree/app/paint/gimpheal.c
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Figure 11.1: GIMP Toolbox – The Heal tool is featured by the band-aid icon.

Figure 11.2: Photograph by Vadim Sherbakov, licensed under Unsplash Creative
Commons Zero License.

https://unsplash.com/photos/tCICLJ5ktBE
https://unsplash.com/license
https://unsplash.com/license
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Figure 11.3: The GIMP Heal tool in action.

Figure 11.4: Work in progress (zoom in)
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Figure 11.5: The Poisson edited image

Modelling the Problem

Consider a circular image fragment φ that requires some editing. If the image
resolution is good enough, it is sensible to model this fragment as a function φ
of two continuous variables x and y, defined inside the unit disk

D = {(x, y) ∈ R2 |x2 + y2 < 1}

and on its boundary ∂D.

If we deal with grayscale images, we can assume that φ is real-valued, even with
values in [0, 1] after a suitable normalization of the image intensity. Color images
can easily be modelled too, for example as triples of real-valued functions, one
for each channel in a RGB decomposition.

We search for a new image fragment ψ, that matches exactly the original fragment
φ on the boundary ∂D and whose texture matches approximately the texture of
a third image fragment χ in D.We assume that the texture of an image fragment
is essentially captured by its gradient field; for the sake of simplicity, we measure
the dissimilarity of two gradients with the quadratic mean of their difference.

To summarize, we are trying to solve:

min
ψ

∫
D

‖∇(ψ − χ)‖2 with ψ|∂D = φ|∂D.

If we set u = ψ−χ and f = (φ−χ)|∂D, we end up with a function u that solves
the variational Dirichlet problem: the minimization of the Dirichlet energy of u,
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subject to the Dirichlet boundary condition f :

min
u

∫
D

‖∇u‖2 with u|∂D = f.

We may also search u as a solution of the Dirichlet problem:

∆u = 0 on D with u|∂D = f

as both problems are – at least informally – equivalent. Indeed, given two
candidate solutions u and u+ ε to the variational problem, we have∫

D

‖∇(u+ ε)‖2 =
∫
D

‖∇u‖2 + 2
∫
D

∇u · ∇ε+
∫
D

‖ε‖2,

hence u is a minimizer if and only if

∀ ε such that ε|∂D = 0,
∫
D

∇u · ∇ε = 0

Given Green’s first identity, this condition holds if and only if ∆u = 0 on D.

In the sequel we study the Dirichlet problem in the classic setting:

Definition – Dirichlet Problem. Given a continuous function f : ∂D → R,
a classic solution of the Dirichlet problem is a function u : D → R which is
continuous in D, twice continously differentiable in D, and such that

∆u = 0 on D with u|∂D = f.

Harmonic Functions

Definition – Harmonic functions. A function u : Ω→ R defined in an open
subset Ω of C is harmonic if it is twice continuously differentiable and ∆u = 0
on Ω.

Theorem – The real part of a holomorphic function is harmonic.

Proof. First we prove that u = Re f is twice continuously differentiable when
f : Ω→ C is holomorphic. The operator Re is real-linear and continuous hence
it is real-differentiable and dRez = Re for any z ∈ C. On the other hand, f is
real-differentiable and dfz(h) = f ′(z)× h. Therefore, u is real-differentiable and
duz(h) = Re(f ′(z)× h). Consequently,

∂u

∂x
(x, y) = Re(f ′(z)× 1) and ∂u

∂y
(x, y) = Re(f ′(z)× i).

The partial derivatives of first order of u are continuous. They also appear as
real parts of holomorphic functions, hence we can repeat the computation of
partial derivatives with the same scheme to prove that u is twice continuously
differentiable.

Now, for any function u that is twice continuously differentiable, we have

∆u =
(
∂

∂x
+ i

∂

∂y

)(
∂u

∂x
− i∂u

∂y

)
.
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If u = Re f and v = Im f where f is holomorphic, then

f ′ = ∂u

∂x
+ i

∂v

∂x
= ∂u

∂x
− i∂u

∂y
,

hence
∆u = ∂f ′

∂x
+ i

∂f ′

∂y
= 0

by the complex form of the Cauchy-Riemann equation for f ′. �

There is a partial converse theorem:

Theorem – A harmonic function is locally the real part of a holo-
morphic function. If u : Ω → R is harmonic, for any z ∈ Ω, there is an
open neighbourhood V of z and a holomorphic function f : V → C such that
u|V = Re f.

Actually, we will show a stronger result: the global existence of a holomorphic
function if the domain of definition of the harmonic function is simply connected.
But first, we need the following lemma:

Lemma. If u : Ω→ R is harmonic, the function f : Ω→ C defined by

f(x+ iy) = ∂u

∂x
(x, y)− i∂u

∂y
(x, y)

is holomorphic.

Proof. As u is twice continuously differentiable, f is continuously differentiable
and its partial derivatives are given by

∂f

∂x
= ∂2u

∂x2 − i
∂2u

∂x∂y
,
∂f

∂y
= ∂2u

∂y∂x
− i∂

2u

∂y2 .

Consequently, the complex form of the Cauchy-Riemann equation holds:

∂f

∂y
− i∂f

∂x
=
(
∂2u

∂y∂x
− ∂2u

∂x∂y

)
− i∆u = 0.

It follows that the function f is holomorphic. �

Now, we may prove the converse theorem.

Proof. Assume that u : Ω→ R is harmonic and that Ω is simply connected. By
Cauchy’s integral theorem, the integral along any closed rectifiable path of Ω of
the holomorphic function f of the lemma is zero, thus it has a primitive. Any
such primitive g satisfies:

g′(x+ iy) = f(x+ iy) = ∂u

∂x
(x, y)− i∂u

∂y
(x, y).

Let ũ = Re g and ṽ = Im g; we have

g′(x+ iy) = ∂ũ

∂x
(x, y) + i

∂ṽ

∂x
(x, y) = ∂ũ

∂x
(x, y)− i∂ũ

∂y
(x, y),

hence dũ = du. Up to the correction of f by a constant value in each connected
component of Ω, this result yields ũ = u. �
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A consequence of the converse theorem:

Theorem – Harmonic functions are smooth (of class C∞).

Proof. Every harmonic function is locally the real part of a holomorphic
function. The same method that we used to prove that such a function is twice
continuously differentiable can actually be used to prove that it is of class C∞.

Theorem – The Maximum Principle. Let Ω be an open connected subset
of C and u : Ω→ R be an harmonic function. If u has a maximum or a minimum
on Ω, then u is constant.

Proof. We use the maximum principle that holds for the modulus of holomorphic
functions, first in a special case. Assume that u has a maximum on Ω and
additionally that Ω is simply connected. There is a holomorphic function f
on Ω such that Re f = u. The function g = exp f is holomorphic on Ω and
|g| = exp Re(f) = expu, hence |g| has a maximum in Ω, therefore g is a constant
λ ∈ C∗. Let µ be a complex number such that eµ = λ; the image of Ω by f is
necessarily a subset of {µ}+ i2πZ. Since f(Ω) is the image of a connected set
by a continuous function, it is connected and thus, it is a singleton. Finally, f –
and therefore u – are constant.

We now consider the general case: we only assume that u has a maximum on Ω
at some point z0. Let z ∈ Ω; we can find some connected and simply connected
open subset V of Ω that contains z0 and z(2). Using the result obtained in
the special case proves that the function u is constant on V and in particular
u(z) = u(z0). As z is arbitrary, that proves that u is constant on Ω.

If u has a minimum instead of a maximum, we may apply the previous result to
to the function −u that is also harmonic and has a maximum. �

The Dirichlet Problem

We will prove soon that the Dirichlet problem has a unique solution; what we
can already prove is the:

Lemma – Uniqueness of the Solution. There is at most one classic solution
u to the Dirichlet problem with continuous boundary condition f.

Proof. The Dirichlet problem is linear, hence we only need to prove that if
u = 0 on the boundary of D, then u = 0 in D. The function u is continous on
D, therefore it has a maximum and a minimum. By the maximum principle for
harmonic functions, if the maximum or the minimum is attained in D, then u is
constant in D, and by continuity on the boundary, u = 0 on D. Otherwise, the
minimum and maximum of u are both attained on ∂D and therefore they are
both 0; we also conclude in this case that u = 0 on D. �

2for example, consider a polyline γ = [z0 → z1 → · · · → zn−1 → zn] of Ω that joins z0 and
zn = z; we may assume that it is simple (that the function γ is injective). If r > 0 is small
enough, the open connected set V = γ([0, 1]) +D(0, r) is included in Ω, connected and simply
connected.
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Harmonic/Fourier Analysis

Lemma – Elementary Solutions. Let n ∈ N. If f(eiθ) = cos(nθ + φ), then
u(reiθ) = rn cos(nθ + φ)

solves the Dirichlet problem with boundary condition f.

Proof. The function u is continuous and its restriction on ∂D is f. Moreover, if
|z| < 1, u(z) = Re(eiφzn); as the function z 7→ eiφzn is holomorphic in D, the
function u is harmonic in D. �

Figure 11.6: On the left, a greyscale representation of the function reiθ 7→ cos 3θ.
On the right, the uniform image used as a source for the Poisson editing.

Figure 11.7: On the left, in the circle, (boundary) values extracted from the
original image; in the disk, the solution (reiθ 7→ r3 cos 3θ) to the corresponding
Dirichlet problem. On the right, the original image edited with this solution.

This result can be readily extended to finite trigonometric series: if for some
finite sequence of real-valued coefficients (an) and (φn), f : ∂D → R can be
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decomposed as
f(θ) =

∑
n

an cos(nθ + φn)

then by linearity, the function

u(reiθ) =
∑
n

anr
n cos(nθ + φn)

is a solution of the corresponding Dirichlet problem. Now, if f∗ is merely
continuous but can be uniformly approximated to the precision ε by the finite
trigonometric series f :

sup
θ
|f∗(eiθ)− f(eiθ)| ≤ ε

and if u∗ is a solution to the Dirichlet problem with boundary condition f∗,
then by linearity, u∗ − u is a solution to the Dirichlet problem with boundary
condition f∗ − f ; the maximum principle then provides

sup
|z|≤1

|u∗(z)− u(z)| ≤ ε.

Now, Fejér’s theorem ensures that the approximation of f∗ by finite trigonometric
series can be achieved with an arbitrary small precision ε > 0. Hence, we can
build an abritrarily precise uniform approximation of the solution to the Dirichlet
problem.

Figure 11.8: Approximations of the solution of the Dirichlet problem with
boundary condition f(eiθ) = 0.25 + 0.75/(5 − 4 cos θ) based on Fourier series
expansions of length 1 to 6. Refer to the appendix for details.

http://en.wikipedia.org/wiki/Fej%C3%A9r%27s_theorem
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The Poisson Kernel

The main result of this section:

Theorem – Solution of the Dirichlet Problem. The Dirichlet problem
with a continuous boundary condition f has a unique classic solution u, given in
the unit disk by the Poisson integral

u(reiθ) = 1
2π

∫ π

−π

1− r2

1− 2r cos(θ − α) + r2 f(eiα) dα.

Let’s start with some definitions:

Definition – Poisson Kernel. The Poisson kernel is the function P defined
in the unit disk by

P (reiθ) = 1− r2

1− 2r cos θ + r2 .

−π −π/2 0 π/2 π

angle θ

0

1

2

3

4

5
P (reiθ) =

1 − r2

1 − 2r cos θ + r2

r = 0

r = 1/5

r = 1/3

r = 1/2

r = 2/3

Figure 11.9: Poisson Kernel – Graphs of [θ 7→ P (reiθ)]

Definition – Poisson Integral Operator. The Poisson integral operator P
maps a continuous function f defined on the boundary of the unit disk to the
the function P[f ] defined inside the unit disk by

P[f ](reiθ) = 1
2π

∫ π

−π
P (rei(θ−α))f(eiα) dα.

Accordingly, the main result of this section may be restated as:

Theorem – Solution of the Dirichlet Problem. Let f : ∂D → R be
continuous. The function u : D 7→ R defined as u|D = P[f ] and u|∂D = f is the
unique classic solution of the Dirichlet problem with boundary condition f.

The proof of this fundamental result requires several lemmas.
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Lemma – Poisson Kernel, Alternate Representations. The Poisson ker-
nel satisfies:

P (z) = 1
1− z −

1
1− 1/z = Re

[
1 + z

1− z

]
.

Hence, it is harmonic.

Proof. Start with the formula of the first alternate representation and write

1
1− z −

1
1− 1/z =

[
1

1− z −
1
2

]
+
[

1
2 −

z

z − 1

]
.

This expression can be simplified into

1
2

[
2

1− z −
1− z
1− z

]
+ 1

2

[
z − 1
z − 1 −

2z
z − 1

]
= 1

2

[
1 + z

1− z + 1 + z

1− z

]
,

which is the second alternate representation. On the other hand, the identity

1 + z

1− z = (1 + z)(1− z)
(1− z)(1− z)

leads to the equation

Re
[

1 + z

1− z

]
= 1− |z|2

1− 2Re z + |z|2

which is equivalent to the original definition of the Poisson kernel. �

Lemma – Poisson Kernel, Fourier Series. The Poisson kernel has the
following (locally uniformly convergent) Fourier expansion

P (reiθ) =
+∞∑

n=−∞
r|n|einθ.

Proof. Rewrite the first alternate representation of the Poisson kernel as

P (z) = 1
1− z −

1
1− 1/z = 1

1− z + z
1

1− z .

The two terms of the right-hand side are sums of geometric series with ratio z
and z respectively and can be expanded accordingly. This process yields the
Fourier expansion formula. Both power series are locally uniformly convergent,
hence the Fourier expansion also has this property. �

Lemma – Poisson Integral, Harmonicity. Let f : ∂D → R be continuous.
The function P[f ] is harmonic in D.

Proof. The definition of the Poisson integral operator and the second alternate
representation of the Poisson kernel yield

P[f ](z) = 1
2π

∫ π

−π
Re
[

1 + ze−iα

1− ze−iα

]
f(eiα) dα = Re

[
1

2π

∫ π

−π

1 + ze−iα

1− ze−iα f(eiα) dα
]
.

The function [
z 7→ 1

2π

∫ π

−π

1 + ze−iα

1− ze−iα f(eiα) dα
]
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is holomorphic by differentiation under the integral sign, hence P [f ] is harmonic
as the real part of a holomorphic function. �

Lemma – Poisson Integral, Boundary Values. For any continuous function
f : ∂D → R, the function u : D 7→ R defined as

u|D = P[f ] and u|∂D = f

is continous on D.

Proof (see e.g. Rudin (1987)). We denote P[f ] the function defined in D
as P [f ] and on ∂D as f. The formula that defines the Poisson kernel shows that
it is positive everywhere in D. Moreover, the expansion of the Poisson kernel as
a Fourier series yields that for any r < 1,

1
2π

∫ π

−π
P (reiθ) dθ = 1.

Given these two properties, it is clear that for any f ∈ C0(∂D,R),

sup
D

|P[f ]| ≤ sup
∂D
|f |.

Let (fp) be a sequence of real-valued finite trigonometric sums that converges
to f uniformly (see section Harmonic/Fourier Analysis); for any p ∈ N, we can
write

fp(eiθ) =
∑
m

cmpe
inθ, cmp = c(−m)p,

hence

P[fp](reiθ) = 1
2π

∫ π

−π

[∑
n

r|n|ein(θ−α)

][∑
m

cmpe
imα

]
dα,

which yields

P[fp](reiθ) =
∑
n

∑
m

r|n|cnpe
inθ

[
1

2π

∫ π

−π
ei(m−n)α dα

]
=
∑
m

r|m|cmpe
imθ.

Consequently, for any p ∈ N, P[fp] belongs to C0(D,R). Moreover,

sup
D

|P[f ]− P[fp]| = sup
D

|P[f − fp]| ≤ sup
D

|f − fp| → 0 when p→ +∞,

hence P[f ] can be uniformly approximated by a sequence of functions that are
continuous on D, therefore it is continuous. �

Appendix

Linear Gradient

What happens if you heal a region in the left of the image below with a source
taken from the right of the image?
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Figure 11.10: On the left, a linear gradient image; on the right, a uniform image.

Analytic Boundary Condition

We search for approximate solutions to the Dirichlet problem associated with

f(eiθ) = 1
4

[
1 + 3

5− 4 cos θ

]
.

1. Check that f is defined and continuous in ∂D; compute its range.

2. Find a holomorphic function, defined in C∗, that extends f and show that
it is unique; we also denote f this extension.

3. Show that
f(z) = 1

2

[
1

2− z + 1
2− z−1

]
;

determine the Laurent series expansion of f in a neighbourghood of ∂D.

4. Find a finite trigonometric series that approximates f with the precision ε =
10−2; provide an approximate solution of the Dirichlet problem associated
to f with the same precision.
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Chapter 12

Discrete-Time Signals in
the Frequency Domain

Introduction

Discrete-time signals are obtained by the sampling of continous-time signals –
real-valued functions of a real-valued time – at a constant rate (see e.g. Strang
(2000)). The analysis of many of their properties are simpler to carry out “in the
frequency domain”, once a Fourier transform has been applied to the original
data (also called representation in the signal “in the time domain”).

In the classical setting, the Fourier transform generates functions of the frequency.
However, the signals with arguably the simplest frequency content, sinusoidal
signals, then cannot be represented in the frequency domain. Hence, this theory
should be considered a partial failure, or at least incomplete.

Extensions of the classical approach uses generalized functions of the frequency
to represent discrete-time signals in the frequency domain. We introduce in
this document a type of generalized functions called hyperfunctions (Sato 1959;
Kaneko 1988), whose foundation is complex analysis, that fits perfectly the needs
of discrete-time signal processing.

Terminology & Notation

Signals and Domains

We use in this document a convenient convention that is more popular among
physicists than it is among mathematicians. In a given application domain –
for us, that is digital signal processing – when an object has several equivalent
representations as functions, we use the same name for the object, and distinguish
the representations by (a superset of the) domain of definition of the function.
To every such domain we also associate fixed variable names.

130
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In this document, we are dealing with discrete-time signals with a sample period
∆t (or sample rate ∆f = 1/∆t). A signal x is is represented in the time domain
as a function x(t) where t ∈ Z∆t, in the frequency (or Fourier) domain as the
function x(f) where f ∈ R/∆f, and in the complex (or Laplace) domain as a
function x(z) where z ∈ C. We often implicitly favor some representation and
refer for example to x(t) as “the signal” instead of “the representation of the
signal x in the time domain”.

If t is a free variable, x(t) denotes a function of the time t, if it is bound to some
value, the value of the function. If there is some ambiguity in the choice of the
representation, we use an assignment syntax, for example x(t = 0) instead of
x(0), because it could be mistaken as x(f = 0).

Sets and Functions

The set of functions from A to B is denoted A→ B.

The set C is the complex plane; U refers to the unit circle centered on the origin:

U = {z ∈ C , |z| = 1}.

The symbol ∂U denotes the boundary of U. Its positively oriented boundary, the
closed path t ∈ [0, 1] 7→ ei2πt, is denoted [	].

For any r > 0, Dr is the open disk with radius r centered on the origin:

Dr = {z ∈ C , |z| < r}

and for any r ∈ [0, 1[ , Ar is the open annulus with internal radius r and external
radius 1/r:

Ar = {z ∈ C , r < |z| < 1/r}.

Iverson Bracket

We1 denote { · } the function defined by:

{b} =
∣∣∣∣ 1 if b is true,

0 if b is false.

This elementary notation supercedes many other ones. For example, we can
use {x ∈ A} instead of χA(x) to denote the characteristic function of the set A,
{i = j} instead of δij to denote the Kronecker delta, {t ≥ 0} instead of H(t) to
denote the Heaviside function.

1Actually, Kenneth Iverson originally used the syntax ( · ) while Donald Knuth prefers [ · ]
(see Knuth 1992).
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Finite Signals

Definition – Signal (Time Domain), Sampling Period/Rate A discrete-
time signal x(t) is a real or complex-valued function defined on Z∆t for some
∆t > 0, the signal sampling period (or sampling time); the number ∆f = 1/∆t
is the signal sampling rate (or sampling frequency).

In the sequel, all signals are discrete-time, hence we often drop this qualifier.
Also, in this introductory section, although many definitions and results are
valid in a more general setting, for the sake of simplicity, we always assume that
signals are finite:

Definition – Finite Signal. A discrete-time signal x(t) is of finite support –
or simply finite – if x(t) = 0 except for a finite set of times t.

Fourier Transform

Definition – Signal in the Frequency Domain, Fourier Transform. A
signal x(t) is represented in the frequency domain as x(f), the (discrete-time)
Fourier transform of x(t), defined for f ∈ R by:

x(f) = ∆t
∑
t∈Z∆t

x(t)e−i2πft.

Remark – Frequency Domain. Note that x(f) is ∆f -periodic. Indeed, for
any f ∈ R and t = n∆t with n ∈ Z,

e−i2π(f+∆f)t = e−i2πft(e−i2π)n = e−i2πft

and therefore

x(f + ∆f) = ∆t
∑
t∈Z∆t

x(t)e−i2π(f+∆f)t = x(f).

As x(f) does not really depend directly of the value of f ∈ R, but only on the
value of f ∈ R modulo some multiple of ∆f , we may alternatively define x(f) as
a function defined on the frequency domain R/∆f, and totally forget about the
periodicity, because it is now captured by the domain definition. An alternate –
arguably less contrived – way to deal with the periodicity is to consider only the
values of x(f) on one period, for example in the interval [−∆f/2,∆f/2[ .

Remark – Fourier Transform of Continuous-Time Signals. The discrete-
time Fourier transform formula is similar to the continous-time Fourier transform
formula

x(f) =
∫ +∞

−∞
x(t)e−i2πft dt.

Actually, if x(t) if defined for every t ∈ R and not only t ∈ Z∆t – if our discrete-
time signal samples the continuous-time signal x(t) – the discrete-time Fourier
transform is the continuous one with the integral replaced by its Riemann sum.
In many respects, the operator ∆t

∑
t∈Z∆t plays the same role for discrete-time
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signals than the integral with respect to the time t plays for continous-time
signal.

Theorem – Inversion Formula. If x(t) is a finite signal, represented in the
frequency domain as x(f), we have

x(t) =
∫ +∆f/2

−∆f/2
x(f)ei2πft df.

Remark – Continuous-Time Signals (Inverse Fourier Transform). The
Fourier inversion formula for discrete-time signals is also very similar to its
counterpart for continuous-time signals, that is:

x(t) =
∫ +∞

−∞
x(f)ei2πft df.

Two differences are obvious: for continous-time time signals, the formula is
meaningful for any t ∈ R while in discrete-time, it is only meaningful for t ∈ Z∆t;
for continous-time signals, the integral with respect to the frequency f ranges
over R while for discrete-time signals, it ranges over [−∆f/2,∆f/2[ . Unlike
continous-time signals, the information contained in discrete-time signals is
structurally contained in a bounded frequency band of width ∆f.

Proof – Inversion Formula. The right-hand side of the Fourier inversion
formula is equal to∫ +∆f/2

−∆f/2

[
∆t

∑
τ∈Z∆t

x(t = τ)e−i2πfτ
]
ei2πft df.

With the integral and sum symbols swapped, t = n∆t and τ = m∆t, we get

∑
m∈Z

x(t = m∆t)
[

1
∆f

∫ +∆f/2

−∆f/2
ei2πf(n−m)∆t df

]
.

A straightforward computation yields

1
∆f

∫ +∆f/2

−∆f/2
ei2πf(n−m)∆t df = {n = m},

hence we have∫ +∆f/2

−∆f/2
x(f)ei2πfn∆t df =

∑
m∈Z

x(t = m∆t)× {n = m} = x(t = n∆t)

which is the desired result. �

z-Transform

There is yet another useful representation of a finite signal – this time as a
function of a complex variable z – and it is closely related to the frequency-
domain representation.
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Definition – Signal in the Complex Domain, z-Transform. A signal x(t)
is represented in the complex domain as x(z), the z-transform of x(t), defined
for some z ∈ C by:

x(z) = ∆t
∑
t∈Z∆t

x(t)z−t/∆t = ∆t
∑
n∈Z

x(t = n∆t)z−n.

Remark – z-Transform Domain for Finite Signals. When x(t) is finite,
the z-transform x(z) is defined for any z ∈ C∗ ; it can be extended to C if
x(t) = 0 when t > 0.

We have the straightforward, but nevertheless very useful:

Theorem – z-Transform to Fourier Transform. The frequency domain
representation of a signal x(f) is related to the complex domain representation
x(z) by:

x(f) = x(z = ei2πf∆t).

Example – Unit Impulse. The unit impulse signal 1 is defined in the time
domain as

1(t) = (1/∆t)× {t = 0}.

It is equal to zero outside t = 0 and satisfies

∆t
∑
t∈Z∆

1(t) = 1.

Convolution and Filters

Definition – Convolution. The convolution of the signals x(t) and y(t) is the
signal (x ∗ y)(t) defined by:

(x ∗ y)(t) = ∆t
∑
τ∈Z∆t

x(τ)y(t− τ).

Theorem – Representation of the Convolution in the Frequency Do-
main. For finite signals, we have

(x ∗ y)(f) = x(f)× y(f).

Proof. The definition of the convolution yields

(x ∗ y)(f) = ∆t
∑
t∈Z∆t

[
∆t

∑
τ∈Z∆t

x(τ)y(t− τ)
]
e−i2πft.

We may write the exponential e−i2πft as e−i2πfτ ×e−i2πf(t−τ). Using the change
of variable t′ = t− τ then leads to

(x ∗ y)(f) =
[

∆t
∑
τ∈Z∆t

x(τ)e−i2πfτ
]
×

[
∆t

∑
t′∈Z∆t

y(t′)e−i2πft
′

]
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which is the desired result. �

Example – Unit Impulse. For any finite signal x, the definition of convolution
yields

(1 ∗ x) = x(t) = (x ∗ 1)(t).
In other words, the signal 1 is a unit for the convolution. This also also clear from
its frequency domain representation: indeed, we have 1(z) = 1 and 1(f) = 1,
and therefore

(1 ∗ x)(f) = 1(f)× x(f) = x(f) = x(f)× 1(f) = (x ∗ 1)(f).

Definition – Filter, Impulse Response, Frequency Response, Transfer
Function. A filter is an operator mapping an input signal x(t) to an output
signal y(t) related by the operation

y(t) = (h ∗ u)(t)

where h(t) is a signal called the filter impulse response. The filter frequency
response is h(f) and its transfer function is h(z).

Remark – Impulse Response. The “impulse response” terminology is justi-
fied by the fact that if u(t) = 1(t), then y(t) = h(t): the impulse response is the
filter output when the filter input is the unit impulse. For obvious reasons, the
filters we have introduced so far are called finite impulse response (FIR) filters.

Quickly Decreasing Signals

The assumption that x(t) is finite simplifies the theory of frequency domain
representation of signals, but it is also very restrictive. For example, in speech
analysis, we routinely use auto-regressive filters; their impulse responses are
are not finite, and yet their frequency representation is needed, for example to
analyze the acoustic resonances of the vocal tract (or “formants”).

Fortunately, the theory can be extended beyond finite signals. The extension is
quite straightforward if x(t) decrease quickly when t→ ±∞, where by “quickly
decreasing” we mean that it has a sub-exponential decay:

Definition – Quickly Decreasing Signal. A signal x(t) with sample period
∆t is quickly decreasing if

∃σ > 0, ∃κ > 0, ∀ t ∈ Z∆t, |x(t)| ≤ κe−σ|t|.

Given a quickly decreasing signal x(t) in the time domain, as in the finite signal
case, its representation in the frequency domain is

x(f) = ∆t
∑
t∈Z∆t

x(t)ei2πft

and in the complex domain

x(z) = ∆t
∑
n∈Z

x(t = n∆t)z−n.

http://en.wikipedia.org/wiki/Formant
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However, the sums are not finite anymore; we consider that the values of the
functions x(f) and x(z) are well defined when the sums are absolutely summable.

Theorem – Quickly Decreasing Signal. Any quickly decreasing signal x
can be equivalently represented as:

1. a quickly decreasing function x(t),

2. a holomorphic function x(z) defined on some neighbourhood of U,

3. a ∆f -periodic and analytic function x(f) on R.

Theorem – Inversion Formulas. Let x(t) be quickly decreasing signal and
x(z) be its representation in the complex domain, defined in the annulus Aρ for
some ρ ∈ [0, 1[ . For any r > 0 such that r∂U ⊂ Aρ, we have

x(t = n∆t) = 1
i2π

∫
r[	]

x(z)
∆t z

n−1 dz.

As a special case, we have

x(t) =
∫ +∆f/2

−∆f/2
x(f)ei2πft df.

Proof. If x(t) ≤ κe−σ|t| with κ > 0 and σ > 0, then

lim sup
n→+∞

n
√
|∆t× x(t = −n∆t)| ≤ e−σ∆t,

hence ∆t
∑
n∈−N x(t = n∆t)z−n is defined and holomorphic in the disk {z ∈

C , |z| < eσ∆t}. Similarly,

lim sup
n→+∞

n
√
|∆t× x(t = n∆t)| ≤ e−σ∆t,

hence ∆t
∑
n∈N∗ x(t = n∆t)z−n is defined and holomorphic in the annulus

{z ∈ C , |z| > e−σ∆t}. Finally x(z) = ∆t
∑
n∈Z x(t = n∆t)z−n is defined and

holomorphic in Aρ with ρ = e−σ∆t. The Cauchy formula for the computation of
the coefficient of a Laurent series expansion yields for any r ∈ ]ρ, 1/ρ[

∆t× x(t = −n∆t) = 1
i2π

∫
r[	]

x(z)
zn+1 dz,

which is equivalent to the z-domain inversion formula. This formula yields

|x(t = n∆t)| ≤ κrrn

with
κr = sup

|z|=r

|x(z)|
∆t .

for any r ∈ ]ρ, 1/ρ[ . Hence for any r ∈ ]ρ, 1[

|x(t = n∆t)| ≤ κr exp
(

log r
∆t n∆t

)
,
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and as 1/r ∈ ]1, 1/ρ[ , we also have

|x(t = n∆t)| ≤ κ1/r exp
(
− log r

∆t n∆t
)
.

Consequently, for any r ∈ ]ρ, 1[ , |x(t)| ≤ κe−σ|t| with κ = max(κr, κ1/r) and
σ = −(log r)/∆t.

If x(z) is holomorphic in a neighbourhood of the unit circle, then x(f) = x(z =
ei2πf∆t) is ∆f -periodic and analytic. Conversely, if x(f) analytic and ∆f -
periodic, it has a holomorphic extension, that we still denote x(f), in some open
neighbourhood V of R in C. We can always ensure that x(f) is actually defined
on as a tubular neighbourhood Vε of R for some ε > 0, where

Vε = R +Dε = {f ∈ C , |Im f | < ε}.

Indeed, we can select ε > 0 such that Uε = [−∆f/2,+∆f/2] +Dε is included
in V, and define a new analytic extension x′(f) on Vε by x′(f) = x(f − k∆f)
where k ∈ Z is such that f − k∆f ∈ Uε (by the isolated zeros theorem, this
definition is unambigous). Let σ = 2πε; for any z ∈ Aρ with ρ = e−σ∆t,
φ(z) = x(f = (log z)/i2π∆t) is independent of the determination of log z ; it is
holomorphic and x(f) = φ(z = ei2πf∆t).

Finally, starting from

x(t = n∆t) = 1
i2π

∫
[	]

x(z)
∆t z

n−1 dz,

we may introduce the path f 7→ ei2πf∆t for f ∈ [−∆f/2,∆f/2], and we get

x(t = n∆t) = 1
i2π

∫ +∆f/2

−∆f/2

x(z = ei2πf∆t)
∆t ei2πf(n−1)∆t(i2π∆tei2πf∆t)df,

which after simplifications, yields for any t ∈ Z∆t,

x(t) =
∫ +∆f/2

−∆f/2
x(f)ei2πftdf,

the expected result. �

Example – Auto-Regressive Filter. The filter whose impulse response h(t)
is given by

h(t = n∆t) = (1/∆t)× 2−n × {n ≥ 0}
is an auto-regressive filter, ruled for finite inputs u(t) by the dynamics

y(t) = 1/2× y(t−∆t) + u(t).

The transfer function h(z) of this filter is

h(z) = ∆t
∑
n∈Z

h(t = n∆t)z−n =
∑
n∈N

(1/2z)n.

This sum is absolutely convergent when |1/2z| < 1, that is |z| > 1/2, and

h(z) = 1
1− 1/2z = z

z − 1/2 .
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Consequently,

h(f) = ei2πf∆t

ei2πf∆t − 1/2 .

The modulus and argument of this complex-valued function are called the filter
frequency response magnitude and phase. They are usually displayed on separate
graphs. We know that h(f) is ∆f -periodic. Moreover, here h(t) is real-valued,
hence for any f ∈ R, h(−f) = h(f). We can therefore plot the graphs for
f ∈ [0,+∆f/2] because all the information stored in the frequency response is
available in this interval. The Python code below can be used to generate the
graph data for ∆f = 8000 Hz.

from numpy import *

df = 8000.0
dt = 1.0 / df
N = 1000
f = linspace(0.0, 0.5 * df, N)
z_f = exp(1j * 2 * pi * f * dt)
h_f = z_f / (z_f - 0.5)
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Slowly Increasing Signals

Once again the theory of representation of signals in the frequency domain can
be extended, this time beyond quickly increasing signals. However, we will
have to abandon the representation of x(f) as a function, to adopt instead the
representation of x(f) as a hyperfunction.

The extension will be valid as long as x(t) “increases slowly” when t→ ±∞, or
more precisely, has an infra-exponential growth:

Definition – Slowly Increasing Signal. A signal x(t) with sample period
∆t is slowly increasing if

∀σ > 0, ∃κ > 0, ∀ t ∈ Z∆t, |x(t)| ≤ κeσ|t|.

Remark. Quicky decreasing signals are obviously slowly increasing, but this
class also include all bounded signals, and even all signals that are dominated
by polynomials.

Remark. There is a way to get rid of the factor κ in the definition of slowly
increasing signal. Instead, we can check that the signal is eventually dominated
by every increasing exponential function of |t|:

∀σ > 0, ∃ τ ∈ N∆t, ∀ t ∈ Z∆t, |t| > τ ⇒ |x(t)| ≤ eσ|t|.

Fourier Transform

Definition – Abel-Poisson Windowing. Let r ∈ [0, 1[ . We denote xr(t) the
signal derived from x(t) by

xr(t) = r|t/∆t|x(t),

the application of the Abel-Poisson window r|t/∆t| to the original signal x(t).
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Remark. The family of signals xr(t) indexed by r, approximates x(t): for any
t ∈ Z∆t, xr(t)→ x(t) when r ↑ 1.

Remark. If x(t) is only known to be slowly increasing, we cannot define its
Fourier transform classically. However, for any r ∈ [0, 1[ , the signal xr(t) is
quickly decreasing and we may therefore compute its Fourier transform xr(f);
we then leverage this property to define the Fourier transform x(f) of x(t) as
the family of functions xr(f) indexed by r:

Definition – Signal in the Frequency Domain, Fourier Transform. The
representation x(f) in the frequency domain of a slowly increasing signal x(t) is
the ∆f -periodic function with values in [0, 1[→ C defined by:

x(f) = r ∈ [0, 1[ 7→ xr(f) ∈ C.

The periodic hyperfunctions are then simply defined as the images of slowly
increasing signals by the Fourier transform:

Definition – Periodic Hyperfunction. A ∆f-periodic hyperfunction is a
function

φ : R→ [0, 1[→ C

such that there is a slowly increasing signal x(t) with sample rate ∆f satisfying

φ(f)(r) = xr(f).

Remark – Multiple Representations in the Frequency Domain. A
signal x(t) that is quickly decreasing is also slowly increasing; therefore it has
two distincts representations in the frequency domain: a periodic function

f ∈ R 7→ x(f) ∈ C,

and a periodic hyperfunction

f ∈ R 7→ x(f) ∈ [0, 1[→ C.

Here, the Fourier-transform-as-a-function x(f) is the uniform limit of the Fourier-
transform-as-a-hyperfunction xr(f) when r ↑ 1, hence we can easily recover the
function representation of x(f) from its hyperfunction representation.

Remark – Hyperfunctions as Limits. Is x(f) the limit of xr(f) when r ↑ 1?
The short answer is “yes”, but only when the question is framed appropriately,
and we still lack of few tools to do it now. At this stage, it is probably more
fruitful to think of x(f) as the approximation process r 7→ xr(f) itself than of
its limit2.

Example – Fourier Transform of a Constant Signal. Let x(t) = 1 for
every t ∈ Z∆t. This signal is not quickly decreasing, but it is slowly increasing,

2A similar situation happens in the construction of real numbers, at the stage where the
rational numbers are available, but not yet the real numbers. You can then think of “π” as the
sequence of decimal approximations 3, 31/10, 314/100, etc., but the question “Is π the limit of
this sequence?” is meaningless. It only starts to make sense when you have constructed the
set of real numbers, embedded the rational numbers in it and defined a topology on the real
numbers. Then, finally, the answer is “yes”!
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hence we may compute its Fourier transform as a periodic hyperfunction. By
definition, xr(t) = r|t/∆t|x(t) = r|t/∆t|, hence

xr(f) = ∆t
∑
n∈Z

r|n|e−i2πfn∆t.

We may split the sum in two:

xr(f) = ∆t
∑
n≤0

(rei2πf∆t)−n + ∆t
∑
n>0

(re−i2πf∆t)n.

Both terms in the right-hand side are sums of geometric series, which yields

∆t
∑
n≤0

(rei2πf∆t)−n = ∆t
1− rei2πf∆t ,

∆t
∑
n>0

(re−i2πf∆t)n = ∆t× re−i2πf∆t

1− re−i2πf∆t = − ∆t
1− r−1ei2πf∆t .

Hence, if we define
x±(z) = ∆t

1− z ,

we can write xr(f) as

xr(f) = x±(z = rei2πf∆t)− x±(z = r−1ei2πf∆t).

We may compute another useful expression of xr(f)

xr(f) = ∆t
1− rei2πf∆t −

∆t× re−i2πf∆t

1− re−i2πf∆t = ∆t(1− r2)
1− 2r cos 2πf∆t+ r2

The representation of the functions xr(f) for several values of r clearly demon-
strates how the energy of the signals concentrates around f = 0 when r ↑ 1.
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Standard Defining Function

The example of Fourier transform x(f) computed in the previous section exhibited
a very specific structure that is actually shared by all periodic hyperfunctions:

Theorem & Definition – Standard Defining Function. For every slowly
increasing signal x(t), there is a unique function x±(z) – called standard defining
function of x(f) – holomorphic in C \U, with x±(z =∞) = lim|z|→+∞ x(z) = 0,
such that for any r ∈ [0, 1[:

xr(f) = x±(rei2πf∆t)− x±(r−1ei2πf∆t).

This function is defined by:

x±(z) =
∣∣∣∣ x+(z) = +∆t

∑
n≤0 x(t = n∆t)z−n if |z| < 1,

x−(z) = −∆t
∑
n>0 x(t = n∆t)z−n if |z| > 1,

Proof – Standard Defining Function. The definition xr(t) = r|t/∆t|x(t)
yields

xr(f) = ∆t
∑
n∈Z

r|n|x(t = n∆t)e−i2πfn∆t.

We split the right-hand side in two sums:

xr(f) = ∆t
∑
n≤0

x(t = n∆t)(rei2πf∆t)−n

+ ∆t
∑
n>0

x(t = n∆t)(r−1ei2πf∆t)−n

To prove the expansion of x± properly defines a (holomorphic) function on
C \ U, we have to demonstrate that the power series in the right-hand side of
this definition are absolutely convergent on the suitable domains. We only do it
for the first expansion (the method for the second one is similar). Let |z| < 1;
as x(t) is slowly increasing, for any σ > 0, there is a κ > 0 such that for any
t ≤ 0, |x(t)| ≤ κeσ|t| = κe−σt. Hence, for any nonnegative integer n, we have
|x(t = n∆t)z−n| ≤ κ|eσ∆tz|−n.We may select a σ > 0 such that |eσ∆tz| = r < 1.
The general term of the series is then dominated by ∆t · κr−n which establishes
the absolute convergence. Note that as only negative powers of z are used in the
expansion of x−(z), we have x±(∞) = 0.

If we set z = rei2π∆t, we can write xr(f) = x±(z) − x±(1/z). Hence, if two
functions φ and ψ were suitable standard defining functions for x(f), for any z
such that |z| < 1, we would have φ(z)−φ(1/z) = ψ(z)−ψ(1/z), or φ(z)−ψ(z) =
ψ(1/z)−φ(1/z). The right-hand side χ(z) of this equation is antiholomorphic: χ
is holomorphic, hence φ−ψ is holomorphic and anti-holomorphic at the same time
on the open unit disk, therefore it is constant. As φ(0)−ψ(0) = ψ(∞)−φ(∞) = 0,
φ and ψ are identical on the open unit disk and consequently on C \ U. �

Theorem – Inversion Formula. Any holomorphic function defined on C \ U
and equal to 0 at z = ∞ is the standard defining function x±(z) of a unique
slowly increasing signal x(t), defined for any r ∈ ]0, 1[ by

x(t = n∆t) = 1
i2π

[∫
r[	]
−
∫
r−1[	]

]
x±(z)

∆t zn−1 dz.
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Proof – Inversion Formula. As x±(z) = x+(z) = ∆t
∑
n≤0 x(t = n∆t)z−n

inside the unit circle, when n ≤ 0, ∆t× x(t = n∆t) is the (−n)-th coefficient of
the Taylor expansion of x+(z). Hence, when t ≤ 0, for all r ∈ ]0, 1[ ,

∆t× x(t = n∆t) = 1
i2π

∫
r[	]

x±(z)zn−1 dz.

Outside the unit circle, the line integral∫
r−1[	]

x±(z)zn−1 dz

is independent of r ∈ ]0, 1[ , equal to its limit value when r ↑ 1. When n ≤ 0, as
x±(z =∞) = 0, |z × x±(z)zn−1| → 0 when |z| → ∞. Consequently, by Jordan’s
lemma, this line integral is zero and the inversion formula holds for t ≤ 0.

If t = n∆t > 0, x±(z)zn−1 = x+(z)zn−1 inside the unit circle and has a Taylor
series expansion. Hence it is holomorphic in the unit disk and for any r ∈ ]0, 1[ ,∫

r[	]
x±(z)zn−1 dz = 0.

Outside the unit circle x±(z) = x−(z) = −∆t
∑
n>0 x(t = n∆t)z−n. The n-th

coefficient of this Laurent series expansion is ∆t × x(t = n∆t), hence for any
r ∈ ]0, 1[ ,

∆t× x(t = n∆t) = 1
i2π

∫
r−1[	]

x±(z)zn−1 dz,

and the inversion formula holds for t < 0. �

Example – Inversion Formula. Consider the signal whose Fourier transform
has for standard defining function

x±(z) = ∆t
1− z .

The inversion formula provides

x(t = n∆t) = 1
i2π

[∫
r[	]
−
∫
r−1[	]

]
zn−1

1− z dz.

The right-hand side is a line integral over the sequence of paths γ made of
r[	] (oriented counter-clockwise) and r−1[	] (oriented clockwise). We have
ind(γ, 0) = 0 and ind(γ, 1) = −1, hence the residues theorem yields

x(t = n∆t) = 1
i2π

∫
γ

zn−1

1− z dz = −res
(
zn−1

1− z , z = 1
)

= 1.

Non-Standard Defining Functions

Definition – Defining Function. Let x(f) be a ∆f -periodic hyperfunction
with standard defining function x±(z). A holomorphic function φ(z) defined on
V \ U where V is an open neighbourghood of U is a defining function of x(f) if
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φ(z)− x±(z) has an holomorphic extension to V. In the sequel, unless we use
the “standard” qualifier, the notation x±(z) will be used to denote any of the
defining function of a signal x(t).

Theorem – Inversion Formula. Any holomorphic function defined on Aρ \U
for some ρ ∈ [0, 1[ is a defining function x±(z) of a unique slowly increasing
signal x(t), defined for any r ∈ ]ρ, 1[ by

x(t) = 1
i2π

[∫
r[	]
−
∫
r−1[	]

]
x±(z)

∆t zn−1 dz.

Remark. The domain of definition of a defining function x±(z) always contains a
subset Aρ \U for some ρ ∈ [0, 1[ . As this restriction conveys enough information
to described the signal x(t), it is harmless and the assumption made in the
theorem that the defining function is actually defined on such set is not overly
restrictive.

Proof – Inversion Formula. The inversion formula holds for the standard
defining function. Hence, if x±(z) is a defining function defined on Aρ for some
ρ ∈ [0, 1[ and φ(z) denotes the difference between it and the standard one, the
inversion formula is also valid for x±(z) if for any r ∈ ]ρ, 1[ , we have

1
i2π

[∫
r[	]
−
∫
r−1[	]

]
φ(z)
∆t z

n−1 dz = 0.

As φ(z) can be extended analytically to Aρ, by the Cauchy integral theorem,
this equality holds. �

Example – Quickly Decreasing Signals. If x(t) is a quickly decreasing
signal, its z-transform x(z) is defined in some open neighbourhood of U by

x(z) = ∆t
∑
n∈Z

x(t = n∆t)z−n

(see section Quickly Decreasing Signals); on the other hand its standard defining
function x±(z) is given by

x±(z) =
∣∣∣∣ x+(z) = +∆t

∑
n≤0 x(t = n∆t)z−n if |z| < 1,

x−(z) = −∆t
∑
n>0 x(t = n∆t)z−n if |z| > 1.

As x(z) is defined and holomorphic on some open neighbourhood of U, x−(z)
and x+(z) can be extended as holomorphic functions to such a domain ; if we still
denote x−(z) and x+(z) these extensions, we can write x(z) = x+(z)− x−(z).
Hence, the difference between

x±(z) = +x(z)× {|z| < 1},

and the standard defining function has an analytic extension – that is x−(z) – in
a neighbourhood of U and x±(z) qualifies as a defining function. The function

x±(z) = −x(z)× {|z| > 1},

for similar reasons, also does.
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Ordinary Functions as Hyperfunctions

We still need to make our frequency-domain representations as hyperfunctions
consistent with the classical framework. If a signal has a classical frequency-
domain representation, as a complex-valued, locally integrable, ∆f -periodic
function x(f) – or “ordinary function” representation – what is its frequency-
domain representation as a hyperfunction?

The answer is – at least conceptually – pretty straightforward: if x(f) is an
ordinary function, the classic time-domain representation of x(t) is given by

x(t) =
∫ +∆f/2

−∆f/2
x(f)ei2πft df.

In particular, x(t) is a bounded signal, hence it is slowly increasing signal, and
we may define its frequency-domain representation as a hyperfunction: this is
the representation of x(f) as a hyperfunction.

Theorem – Hyperfunction Representation of an Ordinary Function.
If x(f) is an ordinary function, the standard defining function x±(z) of its
representation as a hyperfunction is defined by:

x±(z) =
∫ +∆f/2

−∆f/2
x(f) ∆t

1− ze−i2πf∆t df.

Proof. According to our construction of the representation of x(f) as a hyper-
function, for any complex number z such that |z| < 1, we have

x+(z) = ∆t
∑
n≤0

[∫ +∆f/2

−∆f/2
x(f)ei2πfn∆t df

]
z−n.

The series

∆t
∑
n≤0

x(f)ei2πfn∆tz−n = x(f)∆t
∑
m≥0

(ze−i2πfm∆t)m

converges as a locally integrable function of f to x(f)∆t/(1− ze−i2πf∆t), hence
the formula for x±(z) of the theorem holds for |z| < 1.

If the complex number z satisfies |z| > 1, we have

x−(z) = −∆t
∑
n>0

[∫ +∆f/2

−∆f/2
x(f)ei2πfn∆t df

]
z−n,

and the series

−∆t
∑
n>0

x(f)ei2πfn∆tz−n = −x(f)∆t
∑
n>0

(z−1ei2πfm∆t)n

converges as a locally integrable function of f to

−x(f)∆t(z−1ei2πf∆t)/(1− z−1ei2πf∆t) = x(f)∆t/(1− ze−i2πf∆t),
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hence the formula for x±(z) of the theorem also holds for |z| > 1. �

Example – Constant Frequency-Domain Representation. The ordinary
function x(f) = 1 has a temporal representation given by

x(t) =
∫ +∆f/2

−∆f/2
ei2πft df.

If t = 0, x(t) = ∆f ; otherwise, t = n∆t for some n 6= 0 and

x(t) =
[
ei2πfn∆t

i2πn∆t

]+∆f/2

−∆f/2
= (−1)n − (−1)−n

i2πn∆t = 0.

Hence, x(t) = 1(t): the signal is the unit impulse. At this stage, it is easy to use
the definition of the standard defining function to derive that x±(z) = {|z| < 1}.
With the above theorem, we can also compute x±(z) directly from the definition
x(f) = 1. Indeed, we have

x±(z) =
∫ +∆f/2

−∆f/2

∆t
1− ze−i2πf∆t df =

∫ +∆f/2

−∆f/2

∆t
1− ze−i2πf∆t

dei2πf∆t

i2π∆tei2πf∆t ,

hence
x±(z) = 1

i2π

∫
[	]

ξ−1

1− zξ−1 dξ = 1
i2π

∫
[	]

1
ξ − z

dξ,

which yields x±(z) = {|z| < 1} as expected.

Example – Defining Function of a Low-Pass Filter. The impulse response
x(t) of a perfect low-pass filter whose cutoff frequency is fc = ∆f/4 – a filter
whose passband and stopband have equal size – is defined in the frequency
domain by

x(f) = {|f | < ∆f/4}, f ∈ [−∆f/2,∆f/2[ .

The same kind of computations that we have made when we had x(f) = 1 yield

x±(z) = 1
i2π

∫
γ

1
ξ − z

dξ

where γ : f ∈ [−1/4, 1/4] → ei2πf . Inside or outside of the unit circle, if we
differentiate under the integral sign and an integrate by parts the result, we end
up with:

dx±(z)
dz

= 1
i2π

[
1

z − i
− 1
z + i

]
.

Let log denote the principal value of the logarithm. Inside the unit circle, the
function [

z 7→ 1
i2π [log(z − i)− log(z + i)]

]
.

is defined and holomorphic and its derivative matches the derivative of x±(z).
As a direct computation shows that x±(z = 0) = 1/2, but −1/2 for this function,
we have

x+(z) = 1
i2π [log(z − i)− log(z + i)] + 1.
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Outside the unit circle, the function[
z 7→ 1

i2π log z − i
z + i

]
is defined, holomorphic, and has the same derivative as x±(z). Moreover, it has
the same limit when |z| → +∞, hence

x−(z) = 1
i2π log z − i

z + i
.
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The time-domain representation of this filter is easy to determine: we have

x(t) =
∫ +∆f/2

−∆f/2
x(f)ei2πft df =

∫ +∆f/4

−∆f/4
ei2πft df

hence

x(t = n∆t) =
[
ei2πfn∆t

i2πn∆t

]+∆f/4

−∆f/4
= sinc πn2 .

Calculus

The representation of signals in the frequency domain as hyperfunctions allows
us to consider a large class of signals – the slowly increasing ones – but we
now have to get familiar with the operations that we can perform with these
mathematical objects. Some operations that are straightforward with functions
cannot be carried to hyperfunctions – for example we cannot in general define
the value of a hyperfunction x(f) at a given frequency f – some will be equally
easy to perform and finally some – such as derivation with respect to f – will be
much easier to deal with in this new setting.
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Linear Combination

As the Fourier transform and the z-transforms are linear operators, the multipli-
cation of signals by a complex scalar and sum of signals can be defined in the
time domain, by

(λx)(t) = λx(t), (x+ y)(t) = x(t) + y(t),

or equivalently in the frequency domain

(λx)r(f) = λxr(f), (x+ y)r(f) = xr(f) + yr(f),

as well as in the complex domain

(λx)±(z) = λx±(z), (x+ y)±(z) = x±(z) + y±(z).

Modulation

Let x(t) be a signal, f0 ∈ R and

y(t) = x(t)ei2πf0t.

Straighforward computations show that

yr(f) = xr(f − f0)

and
y±(z) = x±(ze−i2πf0∆t)

Example – Fourier Transform of Sine & Cosine. Let a > 0, φ ∈ R, f0 > 0
and let x(t) be the signal defined by

x(t) = a cos(2πf0t+ φ).

We can decompose x(t) using complex exponentials:

x(t) = ae+iφ

2 ei2πf0t × 1 + ae−iφ

2 e−i2πf0t × 1

As we know the standard defining function of t 7→ 1 is ∆t/(1 − z), given the
properties of linear combination and modulation in the complex domain, we
have

x±(z) = ae+iφ

2
∆t

1− ze−i2πf0∆t + ae−iφ

2
∆t

1− ze+i2πf0∆t .

Integration (Frequency Domain)

Let x(f) be a ∆f -periodic hyperfunction. It would be natural to define the
integral of x(f) over one period as the limit when r ↑ 1 of∫ +∆f/2

−∆f/2
x(f) df = lim

r↑1

∫ +∆f/2

−∆f/2
xr(f) df
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but does this definition make sense? Are we sure that the limit always exists to
begin with? Actually, it does and in a quite spectacular way: the integral under
limit is eventually independent of r:

Definition & Theorem – Integration in the Frequency Domain. The
integral over one period of a ∆f -periodic hyperfunction x(f) with defining
function x±(z) is defined as∫ +∆f/2

−∆f/2
x(f) df =

∫ +∆f/2

−∆f/2
xr(f) df = 1

i2π

[∫
r[	]
−
∫
r−1[	]

]
x±(z)
z∆t dz

for any r ∈ ]ρ, 1[ if the domain of definition of x±(z) contains Aρ \ U. This
definition is sound: the right-hand sides of this formula are independent of the
choice of r; they are also independent of the choice of the defining function.

Proof. Let x±(z) be the standard defining function of x(f). For any r ∈ ]0, 1[ ,
we have∫ +∆f/2

−∆f/2
xr(f) df =

∫ +∆f/2

−∆f/2

[
x±(z = rei2πf∆t)− x±(z = r−1ei2πf∆t)

]
df.

If we rewrite the first term in the right-hand side as∫ +∆f/2

−∆f/2
x±(z = rei2πf∆t) df = 1

i2π

∫ +∆f/2

−∆f/2

x±(z = rei2πf∆t)
rei2πf∆t∆t d(rei2πf∆t),

we see that it can be computed as a line integral:∫ +∆f/2

−∆f/2
x±(z = rei2πf∆t) df = 1

i2π

∫
r[	]

x±(z)
z∆t dz.

The second integral can be computed similarly; we end up with∫ ∆f/2

−∆f/2
xr(f) df = 1

i2π

[∫
r[	]
−
∫
r−1[	]

]
x±(z)
z∆t dz

By the Cauchy integral theorem, each integral in the right-hand side is indepen-
dent of the choice of r ∈ ]0, 1[ .

Now, if x±(z) is any defining function whose domain contains Aρ \ U and if
r ∈ ]ρ, 1[ , let φ(z) be the extension to Aρ of the difference between x±(z) and
the standard defining function. The difference of the integral formula based on
x±(z) and the one based on the standard defining function is equal to

1
i2π

[∫
r[	]
−
∫
r−1[	]

]
φ(z)
z∆t dz.

The Cauchy integral theorem implies that this integral is equal to zero. �

Example – Constant Signal. Let x(t) = 1 for every t ∈ Z∆t. As the
standard definition function of x(f) is x±(z) = ∆t/(1− z),∫ ∆f/2

−∆f/2
x(f) df = 1

i2π

∫
r[	]

1
z(1− z) dz −

1
i2π

∫
r−1[	]

1
z(1− z) dz.
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The pair of paths γ made of rU (oriented counter-clockwise) and r−1U (oriented
clockwise) satisfies ind(γ, 0) = 0 and ind(γ, 1) = −1, hence∫ ∆f/2

−∆f/2
x(f) df = (−1)× res

[
1

z(1− z) , z = 1
]

= 1.

Differentiation (Frequency Domain)

Let x(f) be a ∆f -periodic hyperfunction. For every r ∈ [0, 1[ , the function xr(f)
is differentiable with respect to f. It would be natural to define the derivative of
x(f) with respect to f by

dx(f)
df

= ∂xr(f)
∂f

.

and then every periodic hyperfunction would be differentiable. But does this
definition make sense? Is dx(f)/df well-defined as a hyperfunction?

Definition & Theorem – Differentiation in the Frequency Domain. Let
x(f) be a ∆f -periodic hyperfunction with standard defining function x±(z). The
derivative of x(f) with respect to f is the ∆f -hyperfunction defined as

dx(f)
df

= ∂xr(f)
∂f

and its standard defining function is

(i2π∆t)z dx±(z)
dz

.

Proof. We start from the equation

xr(f) = x±(z = rei2πf∆t)− x±(z = r−1ei2πf∆t).

The application of the chain rule to the right-hand side yields

∂

∂f
x±(z = rei2πf∆t) = (i2π∆t)(rei2πf∆t)dx±

dz
(z = rei2πf∆t)

and

∂

∂f
x±(z = r−1ei2πf∆t) = (i2π∆t)(r−1ei2πf∆t)dx±

dz
(z = r−1ei2πf∆t).

If we define
y±(z) = (i2π∆t)z dx±(z)

dz
,

we clearly have

dxr(f)
df

= y±(rei2πf∆t)− y±(r−1ei2πf∆t).

The function y±(z) is defined and holomorphic on C \ U. Moreover, as x±(z =
∞) = 0, the Laurent series expansion of x±(z) in a neighbourhood of∞ has only
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negative powers of z ; hence the expansion for dx±(z)/dz has only powers of z
less than −2, and the one of y±(z) = (i2π∆t)zdx±(z)/dz only negative powers
of z. Therefore, y±(z = ∞) = 0 and y±(z) is an admissible standard defining
function. �

Example – Integral of a Derivative. Let x(f) be a periodic hyperfunction.
We know that the standard defining function of dx(f)/df is (i2π∆t)zdx±(z)/dz.
Hence, the integral ∫ +∆f/2

−∆f/2

dx(f)
df

df,

is equal to
1
i2π

[∫
r[	]
−
∫
r−1[	]

]
(i2π∆t)zdx±(z)/dz

z∆t dz

and after obvious simplifications, to∫ +∆f/2

−∆f/2

dx(f)
df

df =
[∫

r[	]
−
∫
r−1[	]

]
dx±(z)
dz

dz = 0.

Convolution (Time Domain), Product (Frequency Domain)

Theorem – Convolution. The convolution (x ∗ y)(t) between a slowly in-
creasing signal x(t) and a quickly decreasing signal y(t) is a slowly increasing
signal.

Proof – Convolution. Assume that κ > 0, κ′ > 0, σ > 0 and σ′ > 0 are such
that

|x(t)| ≤ κeσ|t|

and
|y(t)| ≤ κ′e−σ

′|t|.

We have

|(x ∗ y)(t)| ≤ ∆t
∑
τ∈Z∆t

|x(τ)||y(t− τ)| ≤ ∆tκκ′
∑
τ∈Z∆t

eσ|τ |e−σ
′|t−τ |.

Using |τ | ≤ |t|+ |t− τ |, we get

eσ|τ |eσ
′|t−τ | ≤ eσ|t|e−(σ′−σ)|t−τ |.

As long as σ < σ′,

κ′′ =
∑
τ∈Z∆t

e−(σ′−σ)|t−τ |

is finite and independent of t, hence

|(x ∗ y)(t)| ≤ ∆tκκ′κ′′eσ|t|.

and x ∗ y is a slowly increasing signal. �
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Definition – Product. The product w(f) = x(f) × y(f) of a ∆f -periodic
hyperfunction x(f) and a ∆f -periodic analytic function y(f) is the hyperfunction
defined by

w±(z) = x±(z)× y(z).

Remark. The product between arbitrary hyperfunctions is not defined in
general.

Remark – Product Soundness. The definition of the product above is
independent of the choice of the defining function for x(f).

Theorem. The convolution (x ∗ y)(t) of a slowly increasing signal x(t) and a
quickly decreasing signal y(t) is represented in the frequency domain as

(x ∗ y)(f) = x(f)× y(f).

Proof. Let w(t) = (x∗y)(t). For some ρ ∈ ]0, 1[ and any z such that ρ < |z| < 1,
we have

w+(z) = ∆t
∑
n≤0

[
∆
∑
m∈Z

x(t = m∆t)y(t = (n−m)∆t)
]
z−n,

hence
w+(z) =

∑
n≤0

∑
m∈Z

amnz
−n

with
amn = (∆t)2x(t = m∆t)y(t = (n−m)∆t),

and on the other hand

x+(z)y(z) =

∆t
∑
m≤0

x(t = m∆t)z−n
∆t

∑
`∈Z

y(t = `∆t)z−`
 ,

hence
x+(z)y(z) =

∑
m≤0

∑
`∈Z

am(m+`)z
−m−` =

∑
m≤0

∑
n∈Z

amnz
−n.

Consequently,

φ(z) = w+(z)− x+(z)y(z) =
∑
n∈Z

[∑
m∈Z

({n ≤ 0} − {m ≤ 0})amn

]
z−n.

Similarly, for some ρ ∈ ]0, 1[ and any z such that 1 < |z| < 1/ρ, we have

w−(z) = −
∑
n>0

∑
m∈Z

amnz
−n

and
x−(z)y(z) = −

∑
m>0

∑
`∈Z

am(m+`)z
−m−` = −

∑
m>0

∑
n∈Z

amnz
−n,
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hence

ψ(z) = w−(z)− x−(z)y(z) =
∑
n∈Z

[∑
m∈Z

(−{n > 0}+ {m > 0})amn

]
z−n.

As {n > 0}+ {n ≤ 0} = 1 and {m > 0}+ {m ≤ 0} = 1, this expression can be
rewritten as

ψ(z) = w−(z)− x−(z)y(z) =
∑
n∈Z

[∑
m∈Z

({n ≤ 0} − {m ≤ 0})amn

]
z−n.

The functions φ(z) and ψ(z) are defined in an non-empty annulus centered on
the origin, inside and outside U respectively, and have the same Laurent series
expansion. Consequently, they share a common holomorphic extension in a
neighbourhood of U. Hence, x±(z)y(z) is a defining function of (x ∗ y)(f). �

Example – Filtering a Pure Frequency. Let h(t) be a quickly decreasing
signal and consider the filter that associates to the slowly increasing input u(t)
the slowly increasing output y(t) = (h ∗ u)(t). The transfer function h(z) of this
filter is holomorphic in a neighbourghood of U. Let f0 > 0; if u(t) = ei2πf0t, we
have

y±(z) = h(z)× ∆t
1− ze−i2πf0∆t .

It is clear that the difference between this defining function and

φ(z) = h(z = ei2πf0t)× ∆t
1− ze−i2πf0∆t

can be extended to a holomorphic function in a neighbourghood of U. Hence,
φ(z) is also defining function for y(f) (moreover, it is standard). From this
defining function, the results of section Modulation show that

y(t) = h(f = f0)× ei2πf0t.

Fourier Inversion Formula

We already know enough about operational calculus of hyperfunctions to prove
some interesting results. For example, we may now deal with the extension of
the Fourier Inversion Formula to slowly increasing signals (in the time domain)
or hyperfunctions (in the frequency domain).

Theorem – Fourier Inversion Formula. Let x(t) be a slowly increasing
signal and x(f) its Fourier transform. We have

x(t) =
∫ +∆f/2

−∆f/2
x(f)ei2πft df.

Remark. The first step is obviously to check that the right-hand side means
something, before that we prove that its is equal to x(t). The Fourier transform
x(f) is defined as a ∆f -periodic hyperfunction. For any time t ∈ Z∆t, the
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function f 7→ ei2πft is analytic and ∆f -periodic, hence x(f)ei2πft is defined as a
∆f -periodic hyperfunction. Therefore its integral over one period is well defined.

Proof. If t = n∆t, ei2πft = (ei2πf∆t)n, hence the product y(f) = x(f)ei2πft is
defined by y±(z) = x±(z)zn. The integral with respect to f of y(f) is then given
for any r ∈ ]0, 1[ by

1
i2π

[∫
r[	]
−
∫
r−1[	]

]
y±(z)
z∆t dz

or after obvious simplifications

1
i2π

[∫
r[	]
−
∫
r−1[	]

]
x±(z)

∆t zn−1 dz

and we have already established in the “Inversion Formula” theorem of the
Standard Defining Function section that this expression is equal to x(t). �
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Chapter 13

Exercises Answers

Complex-Differentiability

Antiholomorphic Functions

1. For any λ ∈ R and w, z ∈ C, we have

w + z = w + z ∧ λz = λz,

therefore the function c is real-linear. However, it is not complex-linear:
for example i = −i 6= i× 1. The function c is real-linear and continuous,
hence it is real-differentiable and for any z ∈ C, dcz = c. This differential is
not complex-linear, therefore the function is not complex-differentiable (or
holomorphic). On the other hand, c(z) = z, therefore it is antiholomorphic.

2. If the function f : Ω→ R is holomorphic, it is real-differentiable everywhere
on its domain of definition. Hence f = c ◦ f is real-differentiable as the
composition of real-differentiable functions and

dfz = d(c ◦ f)z = c ◦ dfz.

3. The complex-valued Cauchy-Riemann equation for f is

∂f

∂x
(z) = 1

i

∂f

∂y
(z), or dfz(i) = i× dfz(1)

On the other hand, we have

∂f

∂x
(z) = d(c ◦ f)z(1) = (c ◦ dfz)(1) = ∂f

∂x

and
∂f

∂y
(z) = d(c ◦ f)z(i) = (c ◦ dfz)(i) = ∂f

∂y
,

hence we can rewrite the Cauchy-Riemann equation for f as
∂f

∂x
(z) = −1

i

∂f

∂y
(z), or dfz(i) = −i× dfz(1).

155
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4. The composition of antiholomorphic functions is holomorphic. Indeed, if f
and g are antiholomorphic, they are real-differentiable; their composition –
assuming that it is defined – is f ◦ g = (c ◦ f) ◦ (c ◦ g); it satisfies

d(f ◦ g)z = d(c ◦ f)c(g(z)) ◦ d(c ◦ g)z = c ◦ df c(g(z)) ◦ c ◦ dgz.

Since for any h,w ∈ C,

c(hw) = hc(w), dgz(hw) = hdg(w), df c(g(z))(hw) = hdf c(g(z))(w),

we have
d(f ◦ g)z(h) = hd(f ◦ g)z(1).

The differential of f ◦ g is complex-linear: the function is holomorphic.

5. If the point w belongs to Ω, then w = z for some z ∈ Ω, thus the complex
number f(z) is defined. Additionally, the set

Ω = {z | z ∈ Ω} = {w ∈ C | w ∈ Ω}

is an open set, as the inverse image of the open set Ω by the continous
function c. The function g satisfies

g = c ◦ f ◦ c = (c ◦ f) ◦ c

which is holomorphic as the composition of two antiholomorphic functions.
We have

dgz(h) = (c ◦ dfc(z) ◦ c)(h) = dfz(h) = f ′(z)h = f ′(z)h,

hence g′(z) = f ′(z).

Principal Value of the Logarithm

1. Note that the definition of arg is non-ambiguous: for any nonzero real
number ε,

arctan ε+ arctan 1/ε = sgn(ε)× π/2,
so if x+ iy belongs to two of the half-planes x > 0, y < 0 and y > 0, the
two relevant expressions which may define arg(x+ iy) are equal.

As arctan(R) = ]−π/2, π/2[, the three expressions that define arg have
values in ]−π, π[. Then, if for example x > 0, with θ = arg(x + iy), we
have

sin θ
cos θ = tan θ = tan(arctan y/x) = y

x
.

Since cos θ > 0 and x > 0, there is a λ > 0 such that

x+ iy = λ(sin θ + i cos θ) = λeiθ;

this equation yields
ei arg(x+iy) = x+ iy

|x+ iy|
.

The proof for the half-planes y > 0 and y < 0 is similar.
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2. The functions arg, ln and therefore log are continuously real-differentiable.
If x > 0, for example, we have

∂ arg(x+ iy)
∂x

= 1
1 + (y/x)2

(
− y

x2

)
= − y

x2 + y2 .

and
∂ arg(x+ iy)

∂y
= 1

1 + (y/x)2

(
1
x

)
= x

x2 + y2 .

On the other hand,

∂

∂x
ln
√
x2 + y2 = 1√

x2 + y2

2x√
x2 + y2

= x

x2 + y2

and
∂

∂y
ln
√
x2 + y2 = 1√

x2 + y2

2y√
x2 + y2

= y

x2 + y2

Finally
∂ log
∂x

(x+ iy) = x

x2 + y2 − i
y

x2 + y2 = 1
x+ iy

and
∂ log
∂y

(x+ iy) = y

x2 + y2 + i
x

x2 + y2 = 1
i

1
x+ iy

.

The computations for y > 0 and y < 0 are similar. Conclusion: the
function log is complex-differentiable and log′(z) = 1/z.

Conformal Mappings

1. If L is C-linear, then for any θ ∈ R, L(eiθ) = eiθL(1), hence it is angle-
preserving. Reciprocally, if L is angle-preserving, we have on one hand

L(eiθ) = αθ × eiθL(1)

and on the other hand, as eiθ = cos θ + i sin θ,

L(eiθ) = cos θ × L(1) + sin θ × L(i) = (cos θ + sin θ × απ
2
i)L(1).

We know that L(1) 6= 0, hence these equations provide

αθ = cos θe−iθ + sin θe−iθ × απ
2
i =

1 + απ
2

2 +
1− απ

2

2 e−i2θ.

As αθ is real-valued, απ
2

= 1. Consequently αθ = 1 and L is C-linear.

2. A mapping f : Ω → C is conformal if it is R-differentiable, dfz is invert-
ible everywhere and is C-linear: this is exactly the class of holomorphic
mappings f on Ω such that f ′(z) 6= 0 everywhere.
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Directional Derivative

1. The real-differentiability of f at z0 provides

f(z0 + reiα) = f(z0) + dfz0(reiα) + εz0(reiα)|r|

where limh→0 εz0(h) = 0. Therefore,

f(zr,α)− f(z0)
zr,α − z0

= (reiα)−1(dfz0(reiα) + εz0(reiα)|r|).

Using the R-linearity of dfz0 , we get

f(zr,α)− f(z0)
zr,α − z0

= e−iαdfz0(eiα) + εz0,α(r)

for some function εz0,α such that limr→0 εz0,α(r) = 0. Hence, the limit
that defines `α exists and

`α = e−iαdfz0(eiα).

2. For every real number α, we have

`α = e−iα
(
∂f

∂x
(z0) cosα+ ∂f

∂y
(z0) sinα

)
.

Hence, if we use the equations

cosα = eiα + e−iα

2 , sinα = eiα − e−iα

2i ,

we obtain

`α = 1
2

(
∂f

∂x
(z0) + 1

i

∂f

∂y
(z0)

)
+ 1

2

(
∂f

∂x
(z0)− 1

i

∂f

∂y
(z0)

)
e−i2α.

Therefore, the set A = {`α | α ∈ R} is a circle centered on

c = ∂f

∂x
(z0) + 1

i

∂f

∂y
(z0)

whose radius is
r =

∣∣∣∣∂f∂x (z0)− 1
i

∂f

∂y
(z0)

∣∣∣∣ .
3. The function f is complex-differentiable at z0 if and only if the Cauchy-

Riemann equation
∂f

∂x
(z0) = 1

i

∂f

∂y
(z0)

is met, which happens exactly when the radius of the circle A is zero, that
is, when A is a single point in the complex plane.
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Line Integrals & Primitives

Primitives of Power Functions

If n 6= −1, the function z 7→ zn+1/(n+ 1) is a primitive of z 7→ zn. As C and
C∗ are path-connected, the other primitives differ from this one by a constant.

If n = −1, no primitive exist: the function γ : t ∈ [0, 1] → ei2πt is a closed
rectifiable path of C∗ and∫

γ

dz

z
=
∫ 1

0

ei2πti2π
ei2πt

dt = i2π,

which is nonzero.

Primitive of a Rational Function

We have
f(z) = −1

z
+ 1
z − 1 .

The function z 7→ −1/z has no primitive on D(0, 1) \ {0}: indeed if γ(t) =
1/2× ei2πt, we have ∫

γ

dz

z
= i2π 6= 0.

On the other hand, on the same set, z 7→ log(z−1) is a primitive of z 7→ 1/(z−1).
Hence f(z) has no primitive.

The function
g(z) = log z − 1

z
= log

(
1− 1

z

)
is defined on C \ [0, 1] and is a primitive of f . Indeed g(z) is defined as long as
neither of the conditions z = 0 and 1− 1/z ∈ R− are met; they are equivalent
to the condition z ∈ [0, 1], which is excluded. Moreover, g satisfies

g′(z) = 1/z2

1− 1/z = 1
z(z − 1)

hence it is a primitive of f .

Reparametrization of Paths

1. The statement about the initial and terminal points is obvious. The one
relative to the image holds because, under the assumptions that were made,
the function φ is a bijection from [0, 1] on itself (and its inverse is also
continuously differentiable).
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2. We have∫
β

f(z) dz =
∫ 1

0
(f ◦ β)(t)β′(t) dt =

∫ 1

0
(f ◦ α)(φ(t))α′(φ(t)) (φ′(t)dt).

The change of variable s = φ(t) leads to∫
β

f(z) dz =
∫ 1

0
(f ◦ α)(s)α′(s) ds =

∫
α

f(z) dz.

3. We have∫ 1

0
|β′(t)| dt =

∫ 1

0
|α′(φ(t))φ′(t)| dt =

∫ 1

0
|α′(φ(t))|φ′(t)dt

The change of variable s = φ(t) leads to∫ 1

0
|β′(t)| dt =

∫ 1

0
|α′(s)| ds,

hence the lengths of α and β are equal.

The Logarithm: Alternate Choices

Let γ be a closed rectifiable path of Cα. The path µ : [0, 1] 7→ ei(π−α)γ(t) is
closed, rectifiable and its image is included in C \ R−. Additionally∫

γ

dz

z
=
∫
γ

d(ei(π−α)z)
ei(π−α)z

=
∫
µ

dz

z
.

Since the principal value of the logarithm is a primitive if z 7→ 1/z on C \ R−,
the integral of z 7→ 1/z on µ is equal to zero. Therefore, there are primitives of
z 7→ 1/z on Cα; since Cα is connected, they all differ from an arbitrary constant.

Alternatively, we can build explicitly such a primitive: the function

f : z 7→ log(zei(π−α));

it is defined and holomorphic on Cα and for any z ∈ Cα,

f ′(z) = 1
zei(π−α) × e

i(π−α) = 1
z
.

Connected Sets

Image of Path-Connected/Connected Sets

Suppose that A is path-connected. Let a, b ∈ f(A); there are some c, d ∈ A such
that f(c) = a and f(d) = b. As A is path-connected, there is a path γ that joins
c and d in A. By continuity of f , it is plain that its image f ◦ γ is a path of f(A)
that joins a and b. Consequently, f(A) is path-connected.
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Now suppose that A is connected. Let g be a locally constant function defined
on f(A). The function g ◦ f is locally constant on A: if a ∈ A, there is a radius
r > 0 such that g is constant on D(f(a), r)∩ f(A); by continuity of f , there is a
ε > 0 such that if b ∈ D(a, ε)∩A, f(b) ∈ D(f(a), ε)∩ f(A), thus g ◦ f is constant
on D(a, ε) ∩A and finally, g ◦ f is locally constant. Since A is connected, g ◦ f
is actually constant and g itself is constant: f(A) is connected.

Complement of a Compact Set

The compact set K is closed, hence its complement is open. Therefore, the
connected and path-connected components of C \K are the same. The compact
set K is also bounded, hence there is a r > 0 such that the annulus

A = {z ∈ C | |z| > r}

is included in C \ K. The annulus A is path-connected: if z1 = r1e
iθ1 and

z2 = r2e
iθ2 are in A, the path γ = [r1 → r2]ei[θ1→θ2], which is defined by

γ(t) = ((1− t)r1 + tr2)ei((1−t)θ1+tθ2)

belongs to A and joins z1 and z2. Hence, A is included in some path-connected
component of C \K. The collection of these path-connected components are a
partition of C\K, hence every other component C is a subset of C\A = D(0, r):
it is bounded.

Union of Separated Sets

1. No. For example, the sets A = {z ∈ C | <(z) < 0} and B = C \ A are
disjoints, but their union is C, which is connected.

2. Let r = d(A,B)/2. Under the assumption, the sets

A′ = ∪a∈AD(a, r), B′ = ∪b∈BD(b, r),

which are both open sets, are disjoints, hence their union is not path-
connected. However A′ ∪ B′ is a dilation of A ∪ B, hence A ∪ B is not
connected.

Alternatively, consider the function f equal to 1 on A and 0 on B. It is
locally constant – if z ∈ A ∪ B, f is constant on (A ∪ B) ∩ D(z, r) with
r = d(A,B) for example – but not constant, hence A∪B is not connected.

3. Consider again the function f introduced in the previous answer. The
assumption yields A∩B = ∅; as A and B are non-empty, f is not constant.
If this function was not locally constant around some a ∈ A, we could find
a sequence of bn ∈ (A ∪ B) \ A = B such that bn → a. But that would
imply that a ∈ A∩B and would lead to a contradiction. Similarly, if it was
not constant around some b ∈ B, that would lead to b ∈ A ∩B, another
contradiction. Hence, it is locally constant and A ∪B is not connected.
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Anchor Set

1. Let A′ be the collection of all the sets A∗ ∪ A for A ∈ A. For any A ∈
A, the collection {A,A∗} is composed of two path-connected/connected
sets with a non-empty intersection; hence all the sets of A′ in path-
connected/connected. Moreover, the unions ∪A and ∪A′ are identical.
By assumption, unless A is empty, A∗ is not empty; hence the inter-
section ∩A′ that contains A∗ is not empty. Therefore, ∪A = ∪A′ is
path-connected/connected.

2. For any a ∈ A, γa(0) = a and γa([0, 1]) ⊂ A, hence

A =
⋃
a∈A

γa([0, 1]).

For any a ∈ A, the set γa([0, 1]) is path-connected (as the image of a path-
connected set by a continuous function), and γa([0, 1]) ∩B is non-empty
(it contains γa(1)). Consequently, the collection

A = {B} ∪ {γa([0, 1]) | a ∈ A}

satisfies the assumption of the previous question with A∗ = B. Conse-
quently, A = ∪A is path-connected/connected.

Cauchy’s Integral Theorem – Local Version

A Fourier Transform

1. We may denote x the extension to the complex plane of the original
Gaussian function x, defined by:

∀ z ∈ C, x(z) = e−z
2/2.

It is holomorphic as a composition of holomorphic functions. Let γ =
[−τ → τ ] + iω. The line integral of x along γ satisfies∫

γ

x(z) dz =
∫ 1

0
x(−τ(1− s) + τs+ iω) (2τds)

or, using the change of variable t = −τ(1− s) + τs,∫
γ

x(z) dz =
∫ τ

−τ
x(t+ iω) dt.

Since
x(t+ iω) = e−(t+iω)2/2 = e−t

2/2e−iωteω
2/2,

we end up with ∫
γ

x(z) dz = eω
2/2
∫ τ

−τ
x(t)e−i2πft dt
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2. Let ν = τ + [0→ iω]; on the image of this path, we have

∀ s ∈ [0, 1], |x(ν(s))| =
∣∣∣e−(τ+iωs)2/2

∣∣∣ = e−τ
2/2e(ωs)2/2 ≤ e−τ

2/2eω
2/2,

hence the M-L inequality provides∣∣∣∣∫
µ

x(z) dz
∣∣∣∣ ≤ (|ω|eω

2/2)e−τ
2/2

and thus,
∀ω ∈ R, lim

|τ |→+∞

∫
µ

x(z) dz = 0.

We may apply Cauchy’s integral theorem to the function x on the closed
polyline

[−τ + iω → τ + iω → τ → −τ → −τ + iω].
It is the concatenation of γ = [−τ → τ ] + iω, the reverse of µ+ = τ + [0→
iω], the reverse of γ0 = [−τ → τ ] and finally µ− = −τ + [0→ iω].

0

0

γ←0

γ

µ←+µ−

Figure 13.1: The closed path used in the application of Cauchy’s integral theorem

The theorem provides

eω
2/2
∫ τ

−τ
x(t)e−iωt dt−

∫
µ+

x(z) dz

−
∫ τ

−τ
x(t) dt+

∫
µ−

x(z) dz = 0.

When τ → +∞, this equality yields∫ ∞
−∞

x(t)e−i2πft dt =
√

2πe−ω
2/2.
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Cauchy’s Integral Formula for Disks

1. If |z − c| > r, the function w 7→ f(w)/(w − z) is defined and holomorphic
in Ω\{z}. Let ρ be the minimum between |z− c| and the distance between
c and C \Ω. By construction, the open disk D(c, ρ) is a star-shaped subset
of Ω \ {z} and it contains the image of γ. Thus, Cauchy’s integral theorem
provides

1
i2π

∫
γ

f(w)
w − z

dw = 0.

2. When z = c, we have

1
i2π

∫
γ

f(w)
w − z

dw = 1
i2π

∫ 1

0

f(c+ rei2πt)
c+ rei2πt − c

(i2πrei2πtdt)

=
∫ 1

0
f(c+ rei2πt)dt.

By continuity of f at c, the limit of this integral when r → 0 is f(c).

3. Assume for the sake of simplicity that z = c + x for some real number
x ∈ [0, r[. Let α = arccosx/r; define µ as the concatenation

µ = c+ [x+ iε→ reiα] |
c+ rei[α→2π−α] |
c+ [re−iα → x− iε] |
c+ x+ εei[−π/2→−3π/2] .

and ν as the concatenation

ν = c+ [x− iε→ re−iα] |
c+ rei[−α→α] |
c+ [reiα → x+ iε] |
c+ x+ εei[π/2→−π/2] .

Since the closure of D(c, r) is included in Ω, there is a ρ > r such that
D(c, ρ) ⊂ Ω. The image of µ belongs to the set

D(c, ρ) \ {z + t | t ≥ 0}

while the image of ν belongs to the set

D(c, ρ) \ {z + t | t ≤ 0}.

Both sets are star-shaped and included in Ω.

Additionally, for any continuous function g : Ω \ {z} → C

• the integral of g on c + [x + iε → reiα] and its reverse path on one
hand, the integral of g on c+ [re−iα → x− iε] and its reverse path
on the other hand are opposite numbers.

• the sum of the integral of g on c+ rei[α→2π−α] and c+ rei[−α→α] is
equal to its integral on γ = c+ r[	].
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c z
µ ν

Figure 13.2: Cauchy’s Integral Formula for Disks

• the sum of the integral of g on c + x + εei[−π/2→−3π/2] and c + x +
εei[π/2→−π/2] is equal to the opposite of its integral on λ = c+x+ε[	].

Therefore, the equality∫
γ

g(w) dw =
∫
λ

g(w)dw +
∫
µ

g(w) dw +
∫
ν

g(w)dw.

holds.

4. We may apply the result of the previous question to the function w 7→
f(w)/(w − z). As it is holomorphic on Ω \ {z}, the star-shaped version of
Cauchy’s integral theorem provides∫

µ

f(w)
w − z

dw =
∫
ν

f(w)
w − z

dw = 0,

hence
1
i2π

∫
γ

f(w)
w − z

dw = 1
i2π

∫
λ

f(w)
w − z

dw.

We proved in question 2. that the right-hand side of this equation tends
to f(z) when ε→ 0, thus

1
i2π

∫
γ

f(w)
w − z

dw = f(z),

which is Cauchy’s integral formula for disks.

5. Let z ∈ Ω. There are some c ∈ Ω and r > 0 such that z ∈ D(c, r) and
D(z, r) ⊂ Ω; let γ = c + r[	]. For any complex number h such that
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|z + h− c| < r, we have by Cauchy’s formula

f(z + h)− f(z)
h

= 1
i2π

∫
γ

1
h

(
1

w − z − h
− 1
w − z

)
f(w) dw

= 1
i2π

∫
γ

f(w)
(w − z − h)(w − z) dw

To met the condition on h, assume that |h| ≤ ε where

0 < ε < min
t∈[0,1]

|z − γ(t)|.

Write the line integral above as an integral with respect to the real param-
eter t ∈ [0, 1]; its integrand is dominated by a constant:

∀ t ∈ [0, 1],
∣∣∣∣ 1
i2π

f(γ(t))
(γ(t)− z − h)(γ(t)− z)γ

′(t)
∣∣∣∣ ≤ 1

ε2
max
t∈[0,1]

|f(γ(t))|.

Thus, Lebesgue’s dominated convergence theorem provides the existence
of the derivative of f at z as well at its value:

f ′(z) = lim
h→0

f(z + h)− f(z)
h

= 1
i2π

∫
γ

f(w)
(w − z)2 dw.

Now it’s pretty clear that we can iterate the previous argument: consider
the right-hand side of the above equations as a function of z, build its
difference quotient and pass to the limit. The process provides

f ′′(z) = lim
h→0

f ′(z + h)− f ′(z)
h

= 1
i2π

∫
γ

2f(w)
(w − z)3 dw.

The argument is valid for any z ∈ Ω: the function f ′ is also holomorphic.

The Fundamental Theorem of Algebra

Let p : C→ C be a polynomial with no complex root. The function f = 1/p is
defined and holomorphic on C. Additionally, as |p(z)| → +∞ when |z| → +∞,
the modulus of f is bounded. By Liouville’s theorem, f is constant, hence p is
constant too.

Image of Entire Functions

Assume that the image of f is not dense in C: there is a w ∈ C and a ε > 0 such
that for any z ∈ C, |f(z)−w| ≥ ε. Now consider the function z 7→ 1/(f(z)−w);
it is defined and holomorphic in C. Additionally,

∀ z ∈ C,
∣∣∣∣ 1
f(z)− w

∣∣∣∣ ≤ 1
ε
.

By Liouville’s theorem, this function is constant, hence f is constant too.
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The Winding Number

Star-Shaped Sets

Let Ω be an open star-shaped subset of C with a center c.

For any z ∈ C \ Ω and any s ≥ 0, the point w = z + s(z − c) belongs to C \ Ω.
The ray of all such points w is unbounded and connected, thus it is included
in an unbounded component of C \ Ω. All components of C \ Ω are therefore
unbounded: Ω is simply connected.

Alternatively, let γ be a closed path of Ω and let z = c + reiα ∈ C \ Ω. Since
the ray {z + seiα | s ≥ 0} does not intersect Ω, for any t ∈ [0, 1] and any s ≥ 0,
γ(t)− z 6= seiα. Thus e−i(π+α)(γ(t)− z) ∈ C \ R− and the function

φ : t ∈ [0, 1] 7→ ei(π+α) arg(e−i(π+α)(γ(t)− z))

is defined; since it is a continuous choice of the argument w 7→ Arg(w− z) along
γ,

ind(γ, z) = 1
2π [φ(1)− φ(0)] = 0.

Therefore, Ω is simply connected.

The Argument Principle for Polynomials

1. Let γ : t ∈ [0, 1] 7→ ei2πt; we have (p ◦ γ)(t) = (ei2πt)3 + (ei2πt) + 1. The
second figure shows that the graph of t 7→ |(p ◦ γ)(t)| does not vanish on
[0, 1], hence the image of γ contains no root of p. The second figure shows
that the variation of the argument of z on the path p ◦ γ is 2π (a variation
of π between t = 0 and t = 0.5 and also a variation of π between t = 0.5
and t = 1.0). Accordingly, we have

ind(p ◦ γ, 0) = 1.

On the other hand, every zero z of p such that |z| < 1 satisfies ind(γ, z) = 1
and every zero z of p such that |z| > 1 satisfies ind(γ, z) = 0. Consequently,
the expression

m∑
k=1

ind(γ, ak)× nk

provides the number of roots of p – counted with their multiplicity – within
the unit circle. By the argument principle, there is a unique root of p
within the unit circle.

2. If θ0 is an argument of λ, the sum

θ : t ∈ [0, 1] 7→ θ0 + n1θ1(t)× · · ·+ nmθm(t)
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is continuous and

eiθ(t) = eiθ0 × ein1θ1(t) × · · · × einmθm(t)

= λ

|λ|
× (γ(t)− a1)n1

|γ(t)− a1|n1
× · · · × (γ(t)− am)nm

|γ(t)− am|nm

= (p ◦ γ)(t)
|(p ◦ γ)(t)| ,

therefore θ is a choice of the argument of z 7→ z on p ◦ γ. Consequently,

[z 7→ Arg z]p◦γ = θ(1)− θ(0)

= θ0 − θ0 +
m∑
k=1

nk(θk(1)− θk(0))

=
m∑
k=1

nk × [z 7→ Arg(z − ak)]γ .

A division of both sides of this equation by 2π concludes the proof.

3. The integral expression of the winding number is

ind(p ◦ γ, 0) = 1
i2π

∫
p◦γ

dz

z
.

The polynomial p is holomorphic on C, hence we can perform the change
of variable z = p(w), which yields

ind(p ◦ γ, 0) = 1
i2π

∫
γ

p′(w)
p(w) dw.

If we factor p(w) as (w − ak)nkq(w), we see that

p′(w)
p(w) = nk

w − ak
+ q′(w)
q(w) ;

applying this process repeatedly for every k ∈ {1, . . . ,m}, until q is a
constant, provides

p′(w)
p(w) =

m∑
k=1

nk
w − ak

and consequently

ind(p ◦ γ, 0) = 1
i2π

∫
γ

[
m∑
k=1

nk
w − ak

]
dw

=
m∑
k=1

[
1
i2π

∫
γ

dw

w − ak

]
× nk

=
m∑
k=1

ind(γ, ak)× nk.
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Set Operations & Simply Connected Sets

1. Intersection. The statement holds true. Indeed, let γ be a closed path
of A ∩ B; it is a path of A and a path of B. As both sets are simply
connected, the interior of γ is included in A and in B, that is in A ∩ B:
this intersection is simply connected.

Alternatively, let C be a component of

C \ (A ∩B) = (C \A) ∪ (C \B),

and let z ∈ C; we have z ∈ C\A or z ∈ C\B. If z ∈ C\A, the component
of C \A that contains z is unbounded; it is a connected set that contains z
and is included in C\ (A∩B), hence, it is also included in C. Consequently,
C is unbounded. If instead z ∈ C \ B, a similar argument provides the
same result. Consequently, all components of C \ (A ∩B) are unbounded:
A ∩B is simply connected.

2. Complement. The statement does not hold: consider A = D(0, 3) and
C = D(0, 1). The set A is open and simply connected and the set C is
closed and connected. The set C is actually a component of A \ C: it is
included in A \ C, connected and maximal.

However, the statement holds if additionally the set C \ A is not empty.
Let γ be a closed path of A \C and let z ∈ C \ (A \C). If z ∈ C \A, as A
is simply connected, z belongs to the exterior of γ. Otherwise, z ∈ A ∩ C;
as C is a connected subset that does not intersect the image of γ, the
function w ∈ C 7→ ind(γ,w) is constant. There is a w ∈ C \ A and
ind(γ, z) = ind(γ,w) = 0. Therefore z also belongs to the exterior of γ:
A \ C is simply connected.

Alternatively, let D be a component of

C \ (A \ C) = (C \A) ∪ C.

Some of its elements are in C \ A: otherwise, C would be a connected
superset of D that is included in C \ (A \ C); we would have C = D and
therefore C \A would be empty. Now, as D contains at least a point z of
C \A, it contains the component of C \A that contains z; therefore D is
unbounded. Consequently, A \ C is simply connected.

3. Union. The statement doesn’t hold: consider

As = {ei2πt | t ∈ [0, 1/2]}, Bs = {ei2πt | t ∈ [1/2, 1]}.

and the associated dilations

A = {z ∈ C | d(z,As) < 1}, B = {z ∈ C | d(z,Bs) < 1}.

They are both open, connected and simply connected (their complement in
the plane has a single path-connected component and it is unbounded) but
their union A ∪B is the annulus D(0, 3) \D(0, 1). We already considered
this set in question 2: it is not simply connected.
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However, the statement holds if additionally, the intersection A ∩ B is
connected. Let γ be a closed path of A ∪B and let z ∈ C \ (A ∩B). We
have to prove that ind(γ, z) = 0.

There exist1 a sequence (γ1, . . . , γn) of consecutive paths of A ∪B whose
concatenation is γ and such that for any k ∈ {1, . . . , n}, γk([0, 1]) ⊂ A or
γk([0, 1]) ⊂ B.

Let ak be the initial point of γk and let w ∈ A ∩B. As A, B and A ∩B
are connected, for any k ∈ {1, . . . , n}, there is a path βk from w to ak
such that βk([0, 1]) ⊂ A if ak ∈ A and βk([0, 1]) ⊂ B if ak ∈ B. We denote
βn+1 = β1 for convenience; define the paths αk as the concatenations

αk = βk | γk |βk+1.

By construction

[x 7→ Arg(x− z)]γ =
n∑
k=1

[x 7→ Arg(x− z)]αk .

Every path αk is closed, hence this is equivalent to

ind(γ, z) =
n∑
k=1

ind(αk, z),

but every αk belongs either to A or B, which are simply connected, hence
the right-hand-side is equal to zero. (This proof was adapted from Ronnie
Brown’s argument on Math Stack Exchange)

Cauchy’s Integral Theorem – Global Version

Cauchy’s Converse Integral Theorem

For any w ∈ C\Ω, the function f : z ∈ Ω 7→ 1/(z−w) is defined and holomorphic,
thus

ind(γ,w) = 1
i2π

∫
γ

dz

z − w
= 0

and therefore Int γ ⊂ Ω. Now, suppose that this conclusion holds for any
sequence γ of closed rectifiable paths of Ω. Since the winding number is locally
constant and since for any closed path µ of Ω and any ε > 0, there is a closed
rectifiable path γ of Ω such that

∀ t ∈ [0, 1], |γ(t)− µ(t)| < ε,

we also have ind(µ,w) = ind(γ,w) = 0. Therefore Intµ ⊂ Ω: the set Ω is simply
connected.

1The collection {A,B} is an open cover of γ([0, 1]) which is compact. Now, for any positive
integer n, consider the sequence (γn1 , . . . , γnn) where

γnk (t) = γ((k − 1 + t)/n).

By uniform continuity of γ, the diameters of the γnk tends uniformly to zero when n tends to
+∞. The conclusion follows from Lebesgue’s Number Lemma.

http://math.stackexchange.com/a/208817
http://math.stackexchange.com/a/208817
https://en.wikipedia.org/wiki/Lebesgue's_number_lemma
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Cauchy Transform of Power Functions

For any z ∈ C such that |z| 6= 1, the function

ψz : w 7→ wn

w − z

is defined and holomorphic on Ω = C\{z} if n ≥ 0; it is defined and holomorphic
on Ω = C \ {0, z} if n < 0. The interior of [	] is the open unit disk.

We now study separately four configurations.

1. Assume that n ≥ 0 and |z| > 1. The interior of [	] is included in Ω, hence
by Cauchy’s integral theorem, φ(z) = 0.

Alternatively, Cauchy’s formula was also applicable.

2. Assume that n ≥ 0 and |z| < 1. The unique singularity of ψz is w = z; it
satisfies ind([	], z) = 1. Let γ(r) = z + r[	]; we have

res(ψz, z) = lim
r→0

1
i2π

∫
γ(r)

wn

w − z
dw = lim

r→0

∫ 1

0
(z + rei2πt)ndt = zn,

hence by the residues theorem, φ(z) = zn.

Alternatively, Cauchy’s formula was also applicable.

3. Assume that n < 0 and |z| > 1. We have

φ(z) = 1
i2π

∫
[	]

1
w|n|(w − z) dw.

If n = −1, Cauchy’s formula provides the answer:

φ(z) = 1
0− z = −z−1.

Otherwise n < −1, we may use integration by parts (several times):

φ(z) = 1
i2π

∫
[	]

1
w|n|(w − z) dw

= − 1
i2π

∫
[	]

−1
|n| − 1

1
w|n|−1

−1
(w − z)2 dw

= . . .

= (−1)|n|−1 1
i2π

∫
[	]

1
(|n| − 1)!

1
w

(|n| − 1)!
(w − z)|n| dw

= − 1
i2π

∫
[	]

1
w

1
(z − w)|n| dw.

At this point, Cauchy’s formula may be used again and we obtain

φ(z) = −zn.
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Alternatively, we may perform the change of variable w = 1/ξ :

φ(z) = 1
i2π

∫
[	]

wn

w − z
dw

= − 1
i2π

∫
[	]

ξ−n

ξ−1 − z

(
−dξ
ξ2

)
= − 1

z

1
i2π

∫
[	]

ξ−n−1

ξ − z−1 dξ.

As −n− 1 ≥ 0 and |z−1| < 1, we may invoke the result obtained for the
first configuration: it provides φ(z) = −zn.

Alternatively, we may perform a partial fraction decomposition of w 7→
1/(w|n|(w − z)). Since

1−
(w
z

)|n|
=
(

1− w

z

)(
1 + w

z
+ · · ·+

(w
z

)|n|−1
)
,

we have

1
w − z

= −1
z

(
1 + w

z
+ · · ·+

(w
z

)|n|−1
)

+ w|n|/z|n|

w − z

and therefore

1
w|n|(w − z) = −

(
z

w|n|
+ 1/z2

w|n|−1 + · · ·+ 1/z|n|
w−1

)
+ 1/z|n|
w − z

.

The integral along γ of w ∈ C 7→ 1/wp is zero for p > 1 since this function
has a primitive. The integral of w 7→ 1/(w − z) is also zero since |z| > 1.
Finally,

φ(z) = 1
i2π

∫
γ

−1/z|n|
w−1 dw = −zn.

4. Assume that n < 0 and |z| < 1. There are two singularities of ψz in the
interior of [	], w = 0 and w = z, unless of course if z = 0.

If z = 0, we have
φ(z) = 1

i2π

∫
[	]
wn−1dw = 0

because w ∈ C∗ 7→ wn/n is a primitive of w ∈ C∗ 7→ wn−1.

We now assume that z 6= 0. The residue associated to w = z can be
computed directly with Cauchy’s formula; with γ(r) = z + r[	], we have

res(ψz, z) = lim
r→0

1
i2π

∫
γ(r)

wn

(w − z)dw = zn.

On the other hand, using computations similar to those of the previous
question, we can derive

res(ψz, 0) = lim
r→0

1
i2π

∫
r[	]

wn

(w − z)dw = −zn.
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Consequently, φ(z) = 0.

In the case z 6= 0, we may perform again the change of variable w = 1/ξ
that provides

φ(z) = −1
z

1
i2π

∫
[	]

ξ−n−1

ξ − z−1 dξ.

As −n− 1 ≥ 0 and |z−1| > 1, we may invoke the result obtained for the
first configuration: it yields φ(z) = 0.

There is yet another method: we can notice that for r > 1, the interior of
the path sequence (r[	], [	]←), which is the annulus {z ∈ C | 1 < |z| < r},
is included in Ω. Cauchy’s integral theorem provides

∀ r > 1, φ(z) = 1
i2π

∫
r[	]

wn

w − z
dw.

and the M-L estimation lemma

∀ r > 1, |φ(z)| ≤ 1
r|n|−1(r − |z|) .

The limit of the right-hand side when r → +∞ yields φ(z) = 0.

Finally, we may use again the partial fraction decomposition of w 7→
1/(w|n|(w − z)):

1
w|n|(w − z) = −

(
z

w|n|
+ 1/z2

w|n|−1 + · · ·+ 1/z|n|
w−1

)
+ 1/z|n|
w − z

.

The integral along γ of w ∈ C 7→ 1/wp is zero for p > 1 since this function
has a primitive. Therefore

φ(z) = 1
i2π

∫
γ

−1/z|n|
w−1 dw + 1

i2π

∫
γ

1/z|n|
w − z

dw = 0.

Power Series

The Fibonacci Sequence

1. The discriminant ∆ of the quadratic equation x2 − x− 1 = 0 is

∆ = (−1)2 − 4× 1× (−1) = 5,

therefore the solutions are

x = 1±
√

5
2 .

The golden ratio φ, equal to (1 +
√

5)/2, is the largest of the two. The fact
that the other root ψ of the equation is equal to −1/φ can be demonstrated
directly; we have indeed

ψ = 1−
√

5
2 = 1 +

√
5

1 +
√

5
1−
√

5
2 = 12 −

√
52

2(1 +
√

5)
= − 2

1 +
√

5
.
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Alternatively, we know that

x2 − x− 1 = (x− φ)(x− ψ) = x2 − (φ+ ψ)x+ φψ,

hence φψ = −1.

2. It is clear that a0 = 0 ≤ 1 = φ0 and a1 = 1 ≤ φ = φ1. If we assume
that the inequality an ≤ φn holds for n = 0, 1, . . . ,m + 1, the recursive
definition of the Fibonacci sequence yields

am+2 = am + am+1 ≤ φm + φm+1 = φm(1 + φ) = φm+2.

Hence, by induction, the inequality holds for every n ∈ N.

3. The inequality an ≤ φn provides

lim sup
n→+∞

n
√
|an| ≤ φ,

and hence, by the Cauchy-Hadamard formula, the radius of convergence of
the series

∑
n≥0 anz

n is at least 1/φ.

4. If |z| < 1/φ, we can write the expansion of f(z) as

f(z) =
+∞∑
n=0

anz
n = a0 + a1z +

+∞∑
n=0

an+2z
n+2 = z +

+∞∑
n=0

an+2z
n+2.

Using an+2 = an + an+1, we deduce that

f(z) = z + z2
+∞∑
n=0

anz
n + z

+∞∑
n=0

an+1z
n+1 = z + z2f(z) + zf(z),

hence
f(z) = z

1− z − z2 .

5. The roots of the polynomial 1− z − z2 are −φ and −ψ, hence

−z2 − z + 1 = −(z + φ)(z + ψ).

Thus, for any |z| < 1/φ, we have

f(z) = −z
(z + φ)(z + ψ) = 1

φ− ψ

[
−φ
z + φ

+ ψ

z + ψ

]
,

or equivalently, using ψ = −1/φ,

f(z) = 1
φ− ψ

[
−1

1− ψz + 1
1− φz

]
.

If |z| < 1/φ, then |φz| < 1 and |ψz| < 1 and consequently

1
1− φz =

+∞∑
n=0

φnzn,
1

1− ψz =
+∞∑
n=0

ψnzn.
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Thus, f(z) can be expanded as

f(z) =
+∞∑
n=0

1
φ− ψ

[φn − ψn] zn.

The power series expansion of f(z) in the disk centered on the origin with
radius 1/φ is unique, therefore

an = 1
φ− ψ

[φn − ψn] = 1√
5

[(
1 +
√

5
2

)n
−
(

1−
√

5
2

)n]
for every n ∈ N.

Entire Functions Dominated By Polynomials

Let
∑+∞
n=0 anz

n be the power series expansion of f in C. For any r > 0, we have

an = 1
i2π

∫
r[	]

f(z)
zn+1 dz,

hence by the M-L estimation lemma,

|an| ≤
sup {|P (rei2πt)| | t ∈ [0, 1]}

rn
.

For any n > p, letting r → +∞ provides an = 0. Hence, the function f is a
polynomial of degree at most p.

Existence of Primitives

The function f is defined and holomorphic in C \ [−1, 1] (the zeros of sin π/z
are z = 1/k for k ∈ N∗).

We first consider the restriction of f to the annulus A(0, 1,+∞). For any z in
this annulus, −z also belong to it and f(−z) = f(z). Hence, if

∑+∞
n=−∞ anz

n is
a Laurent series expansion of f ,

∑+∞
n=−∞(−1)nanzn is another valid one. The

uniqueness of the expansion yields that an = 0 if n is odd; in particular, a−1 = 0
and the sum

+∞∑
p=−∞

a2p

2p+ 1z
2p+1

provide a primitive of f on the annulus.

Now, let γ be an arbitrary closed rectifiable path of C\ [−1, 1]. Let n = ind(γ, 0);
define the path µ : t ∈ [0, 1] 7→ 2ei2πnt and the sequence of paths ν = (γ, µ←).
As [−1, 1] is a connected subset of C \ ν([0, 1]), for any z ∈ [−1, 1], ind(ν, z) =
ind(ν, 0) = 0. Consequently, Int ν ⊂ C \ [−1, 1] and Cauchy’s integral theorem
provides ∫

γ

f(z) dz =
∫
µ

f(z) dz.

As f has a primitive on the annulus A(0, 1,+∞), the integral in the right-hand
side of this equation is equal to zero. The classic criteria therefore proves that
primitives of f exist in C \ [−1, 1].
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A Removable Set

Let
∑+∞
n=0 anz

n be the Taylor series expansion of f in D(0, 1); we are going to
prove that this expansion is actually a valid expansion of f in C. Consider the
Laurent expansion

∑+∞
n=−∞ bnz

n of f in A(0, 1,+∞). For any n ∈ Z and any
r > 1, we have

bn = 1
i2π

∫
r[	]

f(z)
zn+1 dz,

thus, by continuity of f

bn = lim
r→1+

1
i2π

∫
r[	]

f(z)
zn+1 dz

= lim
r→1−

1
i2π

∫
r[	]

f(z)
zn+1 dz

and consequently, bn = an if n is non-negative and zero otherwise. The sum∑+∞
n=0 anz

n is defined for any |z| > 1, thus its open disk of convergence is the
full complex plane. It is equal to f on C \ U and both functions are continuous
on C, hence they are equal on C: the function f is entire.

Derivative of Power Series

Let fm(z) =
∑m
n=0 an(z − c)n. Every polynomial fm is holomorphic and the

sequence converges locally uniformly to f(z) =
∑+∞
n=0 an(z − c)n in the open

disk of convergence D(c, r) of the series, thus f is holomorphic.

For any holomorphic function φ in D(c, r) and any ρ ∈ ]0, r[

φ′(z) = 1
i2π

∫
c+ρ[	]

φ(w)
(w − z)2 .

Thus, for any m ∈ N,

f ′m(z) =
m∑
n=1

nan(z − c)n−1 = 1
i2π

∫
c+ρ[	]

fm(w)
(w − z)2 .

The integrand above converges locally uniformly in D(c, r), hence

lim
m→+∞

1
i2π

∫
c+ρ[	]

fm(w)
(w − z)2 = 1

i2π

∫
c+ρ[	]

f(w)
(w − z)2 = f ′(z).

Finally,
+∞∑
n=1

nan(z − c)n−1 = lim
m→+∞

m∑
n=1

nan(z − c)n−1 = f ′(z).
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Zeros & Poles

The Weierstrass-Casorati Theorem

Assume that the image of f is not dense in C; let then w ∈ C be such that

∃ ε > 0, ∀ z ∈ Ω, |f(z)− w| ≥ ε.

The function z ∈ Ω 7→ 1/(f(z)− w) is defined and holomorphic. As it satisfies

∀ z ∈ Ω,
∣∣∣∣ 1
f(z)− w

∣∣∣∣ ≤ 1
ε
,

it is also bounded. Thus, the point a is a removable singularity of the function,
that can be extended as a holomorphic function g on Ω ∪ {a}:

∀ z ∈ Ω, g(z) = 1
f(z)− w

By construction, g has no zero in Ω, thus a is either not a zero of g, or a zero of
finite multiplicity. Since

∀ z ∈ Ω, f(z) = w + 1
g(z)

in the first case f(z)→ w+ 1/g(a) when z → a thus a is a removable singularity
of a; in the second one, |f(z)| → +∞ when z → a thus a is a pole of f .

Note that either way, there is a non-negative integer p and a holomorphic function
h : Ω ∪ {a} → C such that h(a) 6= 0 and

∀ z ∈ Ω ∪ {a}, g(z) = h(z)(z − a)p.

As the function g has no zero on Ω, the function h has no zero on Ω ∪ {a}; the
function 1/h is defined and holomorphic on Ω ∪ {a}, 1/h(a) 6= 0 and

∀ z ∈ Ω, f(z) = w + 1
g(z) = w + 1

h(z)
1

(z − a)p .

Therefore, the point a is either a removable singularity of f (if p = 0), or a pole
of order p (if p ≥ 1).

The Maximum Principle

For any holomorphic function f : Ω→ C and a ∈ Ω, the point a is a zero of the
holomorphic function z 7→ f(z)− f(a). We will prove shortly that if a is a zero
of finite multiplicity of this function, |f | does not have a local maximum at a.
The conclusion of the proof follows by the Isolated Zeros Theorem.

Suppose that there is a positive integer p such that

f(z) = f(a) + g(z)(z − a)p
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for some holomorphic function g : Ω→ C such that g(a) 6= 0; there is a function
εa : Ω→ C such that εa(z)→ 0 when z → a and

f(z) = f(a) + g(a)(z − a)p + εa(z)(z − a)p

Assume that f(a) 6= 0 (if f(a) = 0, it is plain that |f(a)| = 0 cannot be a local
maximum of |f | at a). Let α, β and γ be some real numbers such that

f(a) = |f(a)|eiα, g(a) = |g(a)|eiβ , γ = θ − α
p

.

For small enough values r > 0, we have

|f(a+ reiγ)− (|f(a)|+ |g(a)|rp)eiα| ≤ |εa(a+ reiγ)|rp ≤ |g(a)|
2 rp,

which yields

|f(a+ reiγ)| ≥ |f(a)|+ |g(a)|rp − |g(a)|
2 rp > |f(a)|.

Therefore f has no maximum at a.

The Π Function

1. The function t ∈ R∗+ 7→ tze−t is continuous and thus measurable. Addi-
tionally, for any t > 0,

|tze−t| = |ez ln te−t| = e(Re z) ln te−t = tRe ze−t,

hence it is integrable if and only if Re z > −1: the domain of Π is

{z ∈ C | Re z > −1}

and it is open. Now, let z and h be complex numbers in this domain; the
associated difference quotient satisfies

Π(z + h)−Π(z)
h

=
∫ +∞

0

tz+h − tz

h
e−tdt

=
∫ +∞

0

th − 1
h

tze−tdt

=
∫ +∞

0

eh ln t − 1
h

tze−tdt

=
∫ +∞

0

[
eh ln t − 1
h ln t

]
tz ln t e−tdt

The integrand converges pointwise when h→ 0:

∀ t > 0, lim
h→0

[
eh ln t − 1
h ln t

]
tz ln t e−t = tz ln t e−t.
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Additionally, we have

∀ z ∈ C∗,
∣∣∣∣ez − 1

z

∣∣∣∣ ≤ e|z|;
indeed, for any nonzero complex number z, the Taylor expansion of ez at
the origin provides∣∣∣∣ez − 1

z

∣∣∣∣ =
∣∣∣∣∣
+∞∑
n=0

1
(n+ 1)!z

n

∣∣∣∣∣ =
+∞∑
n=0

1
(n+ 1)! |z|

n ≤
+∞∑
n=0

1
n! |z|

n.

Hence, ∣∣∣∣eh ln t − 1
h ln t

∣∣∣∣ ≤ e|h|| ln t| ≤ max(t|h|, t−|h|)

and our integrand is dominated by

max(tz+|h|, tz−|h|) ln t e−t

which is integrable whenever Re(z − |h|) > −1. Finally, Lebesgue’s domi-
nated convergence theorem applies and Π is holomorphic.

2. If Re z > −1, then Re(z + 1) > −1 and

Π(z + 1) =
∫ +∞

0
tz+1e−t dt.

By integration by parts,

Π(z + 1) = [tz+1(−e−t)]+∞0 −
∫ +∞

0
(z + 1)tz(−e−t) dt

= (z + 1)Π(z).

We have
Π(0) =

∫ +∞

0
e−t dt = [−e−t]+∞0 = 1

and hence, by induction, Π(n) = n! for any n ∈ N.

3. There is at most one holomorphic extension Π of the original function to
the connected open set Ω by the isolated zeros theorem (two extensions
would be identical on the original domain of Π, which is a non-empty open
set: the set of zeros of their difference would not be isolated).

It is plain that the function z 7→ Π(z + 1) − (z + 1)Π(z) is defined and
holomorphic on Ω, a connected open set of the plane. Similarly, by the
isolated zeros theorem, it is identically zero and hence the functional
equation Π(z + 1) = (z + 1)Π(z) holds on Ω.

4. We may define the extension Π(z) as

Π(z) = Π(z + n)
(z + 1)(z + 2) · · · (z + n)
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for any natural number n such Re(z + n) > −1. This definition does not
depend on the choice of n: if m > n, we have Re(z +m) > −1 and

Π(z +m) = Π(z + n)× (z + n+ 1) · · · (z +m),

hence

Π(z +m)
(z + 1)(z + 2) · · · (z +m) = Π(z + n)

(z + 1)(z + 2) · · · (z + n) .

It is plain that this extension of the original function Π is holomorphic.

5. Let n be a positive integer. Let z be a complex number such that |z −
(−n)| < 1; it satisfies Re(z + n) > −1 and thus

Π(z) = Π(z + n)
(z + 1)(z + 2) · · · (z + n) .

Consequently,

(z − (−n))Π(z) = Π(z + n)
(z + 1)(z + 2) · · · (z + n− 1)

and

lim
z→−n

(z − (−n))Π(z) = Π(0)
(−n− 1)(−n− 2) · · · (−1) = (−1)n−1

(n− 1)! .

As this number differ from zero, z = −n is a simple pole of Π and

res(Π,−n) = (−1)n−1

(n− 1)! .

Singularities and Residues

The function z 7→ sin πz is defined and holomorphic in C. Its Taylor expansion,
valid for any z ∈ C, is

sin πz =
+∞∑
n=0

(−1)nπ2n+1

(2n+ 1)! z2n+1.

The function z 7→ sinπz
πz is therefore defined and holomorphic in C∗ where its

Laurent expansion is
sin πz
πz

=
+∞∑
n=0

(−1)nπ2n

(2n+ 1)! z
2n.

The series on the right-hand side of this equation has no negative power of z: it
is a power series that converges for any z ∈ C∗, thus its open disk of convergence
is actually C. Its limit is a holomorphic function that extends z 7→ sinπz

πz to C,
hence 0 is a removable singularity of this function (and its residue is 0).
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The singularities of z 7→ 1/(sin πz)2 are the zeros of z ∈ C 7→ sin πz: the integers.
The function is invariant if we substitute z+ k to z for any k ∈ Z, hence we may
limit our analysis of the singularities to the origin. If z is not an integer, we have

1
(sin πz)2 = 1

π2z2

( πz

sin πz

)2
.

The function z 7→ (πz/sin πz)2 has a removable singularity at the origin and the
value of its holomorphic extension at the origin is nonzero (it is 1), thus the
origin is a double pole of the function. We have therefore

res
(
z 7→ 1

(sin πz)2 , 0
)

= lim
z→0

[
z2

2
1

(sin πz)2

]′
.

We have [
z2

2
1

(sin πz)2

]′
= 1
π

(
(πz) sin πz − (πz)2 cosπz

(sin πz)3

)
.

The Taylor expansions of the functions sin and cos on C provide

sinw = w

(+∞∑
n=0

(−1)n
(2n+ 1)!w

2n

)
= w − w3

6 + w5

(+∞∑
n=2

(−1)n
(2n+ 1)!w

2n−4

)
and

cosw = 1− w2

2 + w4

(+∞∑
n=2

(−1)n
(2n)! w

2n−4

)
,

thus there are entire functions f and g such that

w sinw − w2 cosw =
(
w2 − 1

6w
4
)
−
(
w2 − 1

2w
4
)

+ w6f(w)

and
(sinw)3 = w3g(w), g(0) = 1.

Consequently,

res
(
z 7→ 1

(sin πz)2 , 0
)

= lim
w→0

1
π

w/3 + w3f(w)
g(w) = 0.

Alternatively, to compute the residue, we may notice that if z is not an integer
1

(sin πz)2 = 1
(sin π(−z))2 ,

thus if
∑+∞
n=−∞ anz

n is the Laurent expansion of the right-hand side in D(0, 1) \
{0}, the Laurent expansion

∑+∞
n=−∞(−1)nanzn is also valid in the same annulus.

The uniqueness of the Laurent expansion yields an = 0 for every odd n, thus
the residue of the function at the origin – which is a−1 – is zero.

The function z 7→ sin π
z is defined and holomorphic on C∗. It has a Laurent

expansion in this annulus, which is

sin π
z

=
+∞∑
n=0

(−1)nπ2n+1

(2n+ 1)! z−(2n+1).
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There are an infinite number of nonzero coefficients associated with negative
powers of z, thus 0 is an essential singularity of this function. Its residue at 0 is
the coefficient of z−1, which is π.

The zeros of z ∈ C 7→ sin πz are the integers, thus z 7→ 1/sin π
z is defined and

holomorphic on the open set Ω = C∗ \ {1/k | k ∈ Z∗}. We can write the function
as the quotient of f(z) = 1 and g(z) = sin π

z . The functions f and g are defined
and holomorphic in C∗ and

g′(z) =
(

cos π
z

)(
− π

z2

)
.

Thus, for any k ∈ Z∗, 1/k is a simple pole of z 7→ 1/sin π
z and

res
(
z 7→ 1

sin π
z

,
1
k

)
= 1

(cos π
k−1 )(− π

(k−1)2 ) = (−1)k+1

πk2 .

The origin z = 0 is also singularity of z 7→ 1/sin π
z , but it is not isolated, thus

its residue is not defined.

Integrals of Functions of a Real Variable

1. Let f be the function z 7→ 1/(1 + zn), defined and holomorphic on

Ω = C \
{
e
i(2k+1)π

n

∣∣∣ k ∈ {0, . . . , n− 1}
}
.

Let r > 1 and define the rectifiable paths γ1, γ2 and γ3 as

γ1 = [0→ r], γ2 = rei[0→2π/n], γ3 = [rei2π/n → 0],

then set γ = γ1 | γ2 | γ3. It is plain that

lim
r→0

∫
γ1

dz

1 + zn
=
∫ +∞

0

dx

1 + xn
.

Similarly, ∫
←−γ3

dz

1 + zn
=
∫ 1

0

rei
2π
n dt

1 + (rt)n(ei 2π
n )n

= ei
2π
n

∫ r

0

dx

1 + xn
,

thus
lim
r→0

∫
γ3

dz

1 + zn
= −ei 2π

n

∫ +∞

0

dx

1 + xn
.

Finally, by the M-L inequality,∣∣∣∣∫
γ2

dz

1 + zn

∣∣∣∣ ≤ 1
rn − 1 ×

(
2π
n
r

)
,

hence
lim

r→+∞

∫
γ2

dz

1 + zn
= 0.
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On the other hand, the complex number eiπn is the unique singularity
of f in the interior of γ; more precisely, we have ind(γ, eiπn ) = 1. The
function f is the quotient of the holomorphic functions p : z ∈ C 7→ 1 and
q : z ∈ C 7→ 1 + zn; the derivative of q at this singularity is

q′(eiπn ) = n(eiπn )n−1 = n(eiπn )ne−iπn = −ne−iπn ,

thus
res(f, eiπn ) = p(eiπn )

q′(eiπn )
= −e

iπn

n

Given these results, the residue theorem provides(
1− ei 2π

n

)∫ +∞

0

dx

1 + xn
= (i2π)×

(
−e

iπn

n

)
or equivalently, ∫ +∞

0

dx

1 + xn
= π

n

2i
ei
π
n − e−iπn

=
π
n

sin π
n

.

2. Let log0 be the function defined on C \ R+ by

log0 z = log(−z) + iπ.

This function is an analytic choice of the logarithm on C \ R+: it is
holomorphic and exp ◦ log0 is the identity. It also satisfies

log0 re
iθ = (ln r) + iθ, r > 0, θ ∈ ]0, 2π[ .

We use this function to define

f : z 7→ e
1
2 log0 z

1 + z + z2 .

The roots of the polynomial z 7→ 1 + z + z2 are j and j2, where j = ei
2π
3 ,

thus f is defined and holomorphic in Ω = C \ R+ \ {j, j2}.

Now, let r > 1 and 0 < α < 2π/3; we define four rectifiable paths that
depend on r and α:

γ1 = [r−1eiα → reiα],
γ2 = rei[α→2π−α],

γ3 = [rei(2π−α) → r−1ei(2π−α)],
γ4 = r−1ei[2π−α→α].

We also consider their concatenation

γ = γ1 | γ2 | γ3 | γ4.

We have ∫
γ1

f(z) dz =
∫ r

r−1

e
1
2 ((ln x)+iα)

1 + xeiα + x2ei2α
eiαdx

= ei3α/2
∫ r

r−1

√
x

1 + xeiα + x2ei2α
dx
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and thus by the dominated convergence theorem2

lim
α→0

∫
γ1

f(z) dz =
∫ r

r−1

√
x

1 + x+ x2 dx.

Similarly, ∫
γ←3

f(z) dz =
∫ r

r−1

e
1
2 ((ln x)+i(2π−α))

1 + xe−iα + x2e−i2α
e−iαdx

= −e−i3α/2
∫ r

r−1

√
x

1 + xe−iα + x2e−i2α
dx

and thus by the dominated convergence theorem

lim
α→0

∫
γ3

f(z) dz =
∫ r

r−1

√
x

1 + x+ x2 dx

On the other hand,∣∣∣e 1
2 log0 z

∣∣∣ = eRe( 1
2 log0 z) = e

1
2 ln |z| = |z|

1
2 ;

by the M-L inequality, this equality provides∣∣∣∣∫
γ2

f(z) dz
∣∣∣∣ ≤ r

1
2

−1− r + r2 × 2(π − α)r

and ∣∣∣∣∫
γ4

f(z) dz
∣∣∣∣ ≤ r−

1
2

1− r−1 − r−2 × 2(π − α)r−1,

hence

lim
r→+∞

(
lim
α→0

∫
γ2

f(z) dz
)

= lim
r→+∞

(
lim
α→0

∫
γ4

f(z) dz
)

= 0.

Now the function f is the quotient of the two functions z 7→ e
1
2 log0 z

and z 7→ 1 + z + z2, defined and holomorphic in a neighbourhood of the
singularities j and j2. The derivative of z 7→ 1 + z + z2 is z 7→ 1 + 2z, it is
nonzero at j and j2. Thus,

res(f, j) = e
1
2 log0 j

1 + 2j = ei
π
3

i
√

3
and

res(f, j2) = e
1
2 log0 j

2

1 + 2j2 = ei
2π
3

−i
√

3
.

The winding number of γ around j and j2 is 1; by the residue theorem,

2
∫ +∞

0

√
x

1 + x+ x2 dx = (i2π)(res(f, j) + res(f, j2))

or equivalently∫ +∞

0

√
x

1 + x+ x2 dx = π√
3

(eiπ3 − ei 2π
3 ) = π√

3
.

2the function (α, x) 7→
∣∣√x/(1 + xeiα + x2ei2α)

∣∣ is defined and continuous in the compact
set [0, π/2]× [r−1, r], thus it has a finite upper bound.
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Integral Representations

Functions of Several Complex Variables

We may define the embedding functions ek,z : C→ Cn by

ek,z(w) = (z1, . . . , zk−1, w, zk+1, . . . , zn).

It is plain that the ek,z are continuous. A function fk,z is defined on the preimage
of the open set Ω by ek,z which is therefore an open set.

Assume that f is complex-differentiable; it is continuous. Additionally, fk,z =
f ◦ ek,z; as the function ek,z is complex-linear, it is complex-differentiable and
fk,z is complex-differentiable (or holomorphic) as the composition of complex-
differentiable functions.

Conversely, if f if continuous and every partial function fk,z is complex-
differentiable, the function f itself is complex-differentiable as every partial
derivative z ∈ Ω 7→ (∂f/∂zk)(z) is continuous – not merely as a function of its
k-th variable which is plain, but as a function of all its variables.

Let z = (z1, . . . , zn) ∈ Ω, let c ∈ C and r > 0 such that

∀w ∈ C, |w − c| ≤ r → (z1, . . . , zk−1, w, zk, . . . , zn) ∈ Ω.

Cauchy’s formula, applied to the partial function fk,z for the path γ = c+ r[	],
provides

f(z1, . . . , zn) = 1
i2π

∫
γ

f(z1, . . . , zk−1, w, zk+1, . . . , zn)
w − zk

dw

The integrand is continuous with respect to the pair (z1, w1) and complex-
differentiable with respect to z1, thus we may compute the partial derivative of
f with respect to zk satisfies by differentiation under the integral sign:

∂f

∂zk
(z1, . . . , zn) = 1

i2π

∫
γ

f(z1, . . . , zk−1, w, zk+1, . . . , zn)
(w − zk)2 dw.

As the function f is continuous, the partial derivative is also continous.


	Preface
	Complex-Differentiability
	Core Definitions
	Derivative and Complex-Differential
	Calculus
	Cauchy-Riemann Equations
	Appendix – Terminology and Notation
	References
	Exercises

	Line Integrals & Primitives
	Introduction
	Paths
	Line Integrals
	Primitives
	Appendix – A Better Theory of Rectifiability
	References
	Exercises

	Connected Sets
	Introduction
	Path-Connected/Connected Sets
	Set Operations
	Components
	Locally Constant Functions
	Exercises

	Cauchy's Integral Theorem – Local Version
	Introduction
	Integral Lemma for Polylines
	Approximations of Rectifiable Paths by Polylines
	Cauchy's Integral Theorem
	Consequences
	Exercises

	The Winding Number
	Definitions
	Properties
	Simply Connected Sets
	A Complex Analytic Approach
	References
	Exercises

	Cauchy's Integral Theorem – Global Version
	Path Sequences
	Cauchy's Theorem & Corollaries
	The Proof
	Exercises

	Power Series
	Convergence of Power Series
	Power Series and Holomorphic Functions
	Laurent Series
	Exercises

	Zeros & Poles
	Preamble
	Zeros of Holomorphic Functions
	Isolated Singularities of Holomorphic Functions
	Computation of Residues
	Appendix – Local Behavior of Holomorphic Functions
	Exercises

	Integral Representations
	Complex Differentiation of Integrals
	The Laplace Transform
	Cauchy's Integral Theorem – Dixon's Proof
	The \Pi Function
	References
	Exercises

	Complex-Step Differentiation
	Introduction
	Computer Arithmetic
	Complex Step Differentiation
	Spectral Method
	Appendix
	Bibliography

	Poisson Image Editing
	Introduction
	Modelling the Problem
	Harmonic Functions
	The Dirichlet Problem
	Appendix
	References

	Discrete-Time Signals in the Frequency Domain
	Introduction
	Terminology & Notation
	Finite Signals
	Quickly Decreasing Signals
	Slowly Increasing Signals
	Ordinary Functions as Hyperfunctions
	Calculus
	Bibliography

	Exercises Answers
	Complex-Differentiability
	Line Integrals & Primitives
	Connected Sets
	Cauchy's Integral Theorem – Local Version
	The Winding Number
	Cauchy's Integral Theorem – Global Version
	Power Series
	Zeros & Poles
	Integral Representations


