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Introduction

We derive in this document a first version of Cauchy’s integral theorem:

Theorem – Cauchy’s Integral Theorem (Local Version). Let f : Ω→ C
be a holomorphic function. For any a ∈ Ω, there is a radius r > 0 such that
the open disk D(a, r) is included in Ω and for any rectifiable closed path γ of
D(a, r), ∫

γ

f(z) dz = 0.

We will actually state and prove a slightly stronger version – one that does not
require the restriction to small disks if Ω is star-shaped.

In a subsequent document, we will prove an even more general result, the global
version of Cauchy’s integral theorem. It will be applicable if Ω is merely simply
connected (that is “without holes”).

1

mailto:Sebastien.Boisgerault@mines-paristech.fr
https://creativecommons.org/licenses/by-nc-sa/4.0


Integral Lemma for Polylines

Lemma – Integral Lemma for Triangles. Let f : Ω→ C be a holomorphic
function. If ∆ is a triangle with vertices a, b and c which is included in Ω

∆ = {λa+ µb+ νc | λ ≥ 0, µ ≥ 0, ν ≥ 0 and λ+ µ+ ν = 1} ⊂ Ω

and if γ = [a→ b→ c→ a] is an oriented boundary of ∆ then∫
γ

f(z) dz = 0.

Proof. Let a0 = a, b0 = b, c0 = c; consider the midpoints of the triangle edges:

d0 = b0 + c0

2 , e0 = a0 + c0

2 , f0 = a0 + b0

2 .

The sum of the integrals of f along the four paths [a0 → f0 → e0 → a0],
[f0 → b0 → d0 → f0], [e0 → d0 → c0 → e0], [d0 → e0 → f0 → d0] is equal to the
integral of f along γ. By the triangular inequality, there is at least one path in
this set, that we denote γ1, such that∣∣∣∣∫

γ1

f(z) dz
∣∣∣∣ ≥ 1

4

∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ .

We can iterate this process and come up with a sequence of paths γn such that∣∣∣∣∫
γn

f(z) dz
∣∣∣∣ ≥ 1

4n

∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ .

Denote ∆n the triangles associated to the γn; they form a sequence of non-empty
and nested compact sets. By Cantor’s intersection theorem, there is a point w
such that w ∈ ∆n for every natural number n. The differentiability of f at w
provides a complex-valued function εw, defined in a neighbourhood of 0, such
that limh→0 εw(h) = εw(0) = 0 and

f(z) = f(w) + f ′(w)(z − w) + εw(z − w)|z − w|

Consequently, for any ε > 0 and for any number n large enough,∣∣∣∣∫
γn

[f(z)− f(w)− f ′(w)(z − w)] dz
∣∣∣∣ ≤ εdiam ∆n × `(γn),

where the diameter of a subset A of the complex plane is defined as

diamA = sup {|z − w| | z ∈ A, w ∈ A}.

We have `(γn) = `(γ)/2n and diam ∆n = diam ∆0/2n. Additionally,∫
γn

f(w) dz =
∫
γn

f ′(w)(z − w) dz = 0
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since the functions z ∈ C 7→ f(w) and z ∈ C 7→ f ′(w)(z − w) have primitives.
Consequently, for any ε > 0, for n large enough,

1
4n

∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ ≤ ∣∣∣∣∫

γn

f(z) dz
∣∣∣∣ ≤ 1

4n εdiam ∆0 × `(γ),

which is only possible if the integral of f along γ is zero. �

Definition – Star-Shaped Set. A subset A of the complex plane is star-shaped
if it contains at least one point c – a (star-)center, the set of which is called the
kernel of A – such that for any z in A, the segment [c, z] is included in A.

Lemma – Integral Lemma for Polylines. Let f : Ω→ C be a holomorphic
function where Ω is an open star-shaped subset of C. For any closed path
γ = [a0 → · · · → an−1 → a0] of Ω,∫

γ

f(z) dz = 0.

Proof. Let c be a star-center of Ω and define an = a0; for any k ∈ {0, . . . , n−1},
the triangle with vertices c, ak and ak+1 is included in Ω. Hence, by the integral
lemma for triangles, the integral along the path γk = [c→ ak → ak+1 → c] of f
is zero. Now, as ∫

γ

f(z) dz =
n−1∑
k=0

∫
γk

f(z) dz,

the integral of f along γ is zero as well. �

Approximations of Rectifiable Paths by Polylines

To extend the integral lemma beyond closed polylines, we prove that polylines
provide appropriate approximations of rectifiable paths:

Lemma – Polyline Approximations of Rectifiable Paths. Let γ be a
rectifiable path. For any ε` > 0 and ε∞ > 0, there is an oriented polyline µ, with
the same endpoints as γ, such that

`(µ− γ) ≤ ε` and ∀ t ∈ [0, 1], |(µ− γ)(t)| ≤ ε∞.

Proof – Polyline Approximations of Rectifiable Paths. Suppose that
the path γ is continuously differentiable. Let (t0, . . . , tn) be a partition of the
interval [0, 1] and let µ be the associated polyline:

µ = [γ(t0)→ γ(t1)] |t1 · · · |tn−1 [γ(tn−1)→ γ(tn)]

The path γ and µ have the same endpoints. The path γ may be considered as
the concatenation γ = γ1 |t1 . . . |tn−1 γn with the paths γk defined by

∀ k ∈ {1, . . . , n}, ∀t ∈ [0, 1], γk(t) = γ (tk−1 + t(tk − tk−1)) ,
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Figure 1: A 3-line approximation of the oriented unit circle.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0 γ

µ

µ − γ

Figure 2: A 4-line approximation of the oriented unit circle.
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Figure 3: A 5-line approximation of the oriented unit circle.

hence we have

`(µ− γ) =
n∑
k=1

∫ 1

0
|γ(tk)− γ(tk−1)− γ′k(t)| dt.

As
γ(tk)− γ(tk−1) =

∫ tk

tk−1

γ′(s) ds

and
γ′k(t) = (tk − tk−1)γ′ (tk−1 + t(tk − tk−1))

=
∫ tk

tk−1

γ′ (tk−1 + t(tk − tk−1)) ds,

we have the inequality

`(µ− γ) ≤
∫ 1

0

[
n∑
k=1

∫ tk

tk−1

|γ′(s)− γ′(tk−1 + t(tk − tk−1))| ds
]
dt

The function γ′ is by assumption continuous, and hence uniformly continuous,
on [0, 1], therefore for any ε > 0, there is a δ(ε) > 0 such that, |γ′(s)− γ′(t)| < ε
whenever |s− t| < δ(ε). For any ε` > 0, for any partition (t0, . . . , tn) such that
|tk − tk−1| < δ(ε`) for any k ∈ {1, . . . , n}, we have

`(µ− γ) ≤
∫ 1

0

[
n∑
k=1

∫ tk

tk−1

ε` ds

]
dt = ε`.
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For any ε∞ > 0, as

∀ t ∈ [0, 1], |µ(t)− γ(t)| ≤ |µ(0)− γ(0)|+ `(µ− γ) = `(µ− γ),

any partition (t0, . . . , tn) such that |tk − tk−1| < δ(ε∞) ensures that

∀ t ∈ [0, 1], |(µ− γ)(t)| ≤ ε∞.

If γ is merely rectifiable, the same approximation process, applied to each of its
continuously differentiable components provides the result. �

Cauchy’s Integral Theorem

We finally get rid of the polyline assumption:

Theorem – Cauchy’s Integral Theorem (Star-Shaped Version). Let
f : Ω→ C be a holomorphic function where Ω is an open star-shaped subset of
C. For any rectifiable closed path γ of Ω,∫

γ

f(z) dz = 0.

Proof. Let ε > 0. Let r > 0 be smaller than the distance between γ([0, 1]) and
C \ Ω. The set

K = {z ∈ C | d(z, γ([0, 1])) ≤ r},
is compact and included in Ω. Consequently, the restriction of f to K is bounded
and uniformly continuous: there is a M > 0 such that

∀ z ∈ K, |f(z)| ≤M,

and a there is a ηε > 0 – smaller than or equal to r – such that

∀ z ∈ K, ∀w ∈ γ([0, 1]), |z − w| ≤ ηε ⇒ |f(z)− f(w)| ≤ ε

2(`(γ) + 1) .

Now, let γε be a closed polyline approximation of γ such that

`(γε − γ) ≤ ε

2M and ∀ t ∈ [0, 1], |(γε − γ)(t)| ≤ ηε.

By construction, γε belongs to K, hence it is a closed path of Ω. Therefore, the
integral lemma for polylines provides∫

γε

f(z) dz = 0.

The rectifiable γ and γε have a decomposition into continuously differentiable
paths associated to a common partition (t0, . . . , tn) of the interval [0, 1]:

γ = γ1 |t1 · · · |tn γn and γε = γ1ε |t1 · · · |tn γnε
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The difference between the integral of f along γ and γε satisfies∣∣∣∣∫
γ

f(z) dz −
∫
γε

f(z) dz
∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

∫ 1

0
[(f ◦ γk)γ′k − (f ◦ γεk)γ′εk](t) dt

∣∣∣∣∣
Since for any k ∈ {1, . . . , n}

(f ◦ γk)γ′k − (f ◦ γεk)γ′εk = (f ◦ γk − f ◦ γεk)γ′k − (f ◦ γεk)(γ′k − γ′εk),

we have ∣∣∣∣∫
γ

f(z) dz −
∫
γε

f(z) dz
∣∣∣∣

≤

∣∣∣∣∣
n∑
k=1

∫ 1

0
[(f ◦ γk − f ◦ γεk)γ′k](t) dt

∣∣∣∣∣
+

∣∣∣∣∣
n∑
k=1

∫ 1

0
[(f ◦ γεk)(γ′k − γ′εk)](t) dt

∣∣∣∣∣
and thus ∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ ≤ max

t∈[0,1]
|f(γ(t))− f(γε(t))| × `(γ)

+ max
t∈[0,1]

|f(γε(t))| × `(γε − γ)

≤ ε

2(`(γ) + 1) × `(γ) +M × ε

2M
≤ ε.

As ε > 0 is arbitrary, the integral of f along γ is zero. �

Consequences

Theorem – Cauchy’s Integral Formula for Disks. Let Ω be an open subset
of the complex plane and γ = c+ r[	] be an oriented circle such that the closed
disk D(c, r) is included in Ω. For any holomorphic function f : Ω→ C,

∀ z ∈ D(c, r), f(z) = 1
i2π

∫
γ

f(w)
w − z

dw.

Proof. Refer to the answers of exercise “Cauchy’s Integral Formula for Disks”
�

Corollary – Derivatives are Complex-Differentiable. The derivative of
any holomorphic function is holomorphic.
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Proof. Refer to the answers of exercise “Cauchy’s Integral Formula for Disks”
�

Theorem – Morera’s Theorem. Let Ω be an open subset of C. A function
f : Ω → C is holomorphic if and only if it is continuous and locally, its line
integrals along rectifiable closed paths are zero: for any c ∈ Ω, there is a r > 0
such that D(c, r) ⊂ Ω and for any rectifiable closed path γ of D(c, r),∫

γ

f(z) dz = 0.

Proof. If f is holomorphic, then it is continuous and by Cauchy’s integral
theorem, its line integrals along rectifiable closed paths are locally zero. Con-
versely, if f is continuous and all its line integrals along closed rectifiable paths
are zero in some non-empty open disk D(c, r) of Ω, f satisfies the condition for
the existence of primitives in D(c, r). Any such primitive is holomorphic; since
derivatives are complex-differentiable its derivative is holomorphic too and f is
holomorphic in some neighbourhood of c. Since the initial assumption holds for
any c ∈ Ω, we can conclude that f is holomorphic on Ω. �

Theorem – Limit of Holomorphic Functions. Let Ω be an open subset of
C. If a sequence of holomorphic functions fn : Ω→ C converges locally uniformly
to a function f : Ω → C, that is if for any c ∈ Ω, there is a r > 0 such that
D(c, r) ⊂ Ω and

lim
n→+∞

sup
z∈D(c,r)

|fn(z)− f(z)| = 0,

then f is holomorphic.

Proof. The function f is continuous as a locally uniform limit of continuous
functions. Now, let c ∈ Ω and let r > 0 be such that D(c, r) ⊂ Ω and the
functions fn converge uniformly to f in D(c, r). By Cauchy’s integral theorem,
for any rectifiable closed path γ of D(c, r), the integral of fn along γ is zero.
Thus ∫

γ

f(z) dz = lim
n→+∞

∫
γn

f(z) dz = 0.

By Morera’s theorem, f is holomorphic. �

Theorem – Liouville’s Theorem. Any holomorphic function defined on C
(any entire function) which is bounded is constant.

Proof. Let f : C → C be a holomorphic function such that |f(z)| ≤ κ for
any z ∈ C. Since derivatives are complex-differentiable, we may apply Cauchy’s
integral formula for disks to the function f ′ and to the oriented circle γ = z+r[	]
for r > 0 and z ∈ C. We have

f ′(z) = 1
i2π

∫
γ

f ′(w)
w − z

dw
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and by integration by parts,

f ′(z) = 1
i2π

∫
γ

f(w)
(w − z)2 dw,

which yields by the M-L inequality

|f ′(z)| ≤ κ

r
.

This inequality holds for any r > 0, thus f ′(z) = 0. Consequently, the zero
function and f are both primitives of f ′; since the domain of f ′ is connected,
these two primitives differ by a constant and thus f is constant. �
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