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Introduction

We derive in this document a first version of Cauchy’s integral theorem:

Theorem — Cauchy’s Integral Theorem (Local Version). Let f: Q — C
be a holomorphic function. For any a € €2, there is a radius » > 0 such that
the open disk D(a,r) is included in 2 and for any rectifiable closed path - of

D(a,r),
/7 £(=)dz = 0.

We will actually state and prove a slightly stronger version — one that does not
require the restriction to small disks if 2 is star-shaped.

In a subsequent document, we will prove an even more general result, the global
version of Cauchy’s integral theorem. It will be applicable if €2 is merely simply
connected (that is “without holes”).
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Integral Lemma for Polylines

Lemma — Integral Lemma for Triangles. Let f : ) — C be a holomorphic
function. If A is a triangle with vertices a, b and ¢ which is included in Q

A={da+pb+ve|A>0,u>0,v>0and A\ +pu+rv=1}CQ

and if v = [a = b — ¢ — ] is an oriented boundary of A then

/Wf(z) dz = 0.

Proof. Let ag = a, by = b, ¢y = ¢; consider the midpoints of the triangle edges:

do — bo + o _ap+tco _ag +bo
e

The sum of the integrals of f along the four paths [ag — fo — eo — ao],
[fo — by — dy — fo]7 [60 —dy = cg — 60], [do —eqg— fo— d()] is equal to the
integral of f along «. By the triangular inequality, there is at least one path in
this set, that we denote 1, such that
/ f(z)dz
ol

[{1 f(z)dz

We can iterate this process and come up with a sequence of paths -, such that

/ F(2)dz Lf(z) dz

Denote A, the triangles associated to the =, ; they form a sequence of non-empty
and nested compact sets. By Cantor’s intersection theorem, there is a point w
such that w € A,, for every natural number n. The differentiability of f at w
provides a complex-valued function €,,, defined in a neighbourhood of 0, such
that limp_,0 €, (h) = €,(0) = 0 and

fz) = f(w) + f'(w)(z = w) + ew(z — w)|z — w|

Consequently, for any € > 0 and for any number n large enough,

1
>
— 4

1
>
=

< ediam A, x £(v,),

[ 1#6) = #w) = £w)(z - w)ds

where the diameter of a subset A of the complex plane is defined as
diam A =sup{|z —w| |z € A, w e A}.

We have £(v,) = £(v)/2"™ and diam A,, = diam Aq/2". Additionally,

(w)ydz= [ f'(w)(z—w)dz=0

Tn Tn



since the functions z € C — f(w) and z € C +— f'(w)(z — w) have primitives.
Consequently, for any € > 0, for n large enough,

1 1
— /f(z) dz| < (2) dz| < —ediam Ag x £(y),
4m 1y Yn 4
which is only possible if the integral of f along « is zero. ]

Definition — Star-Shaped Set. A subset A of the complex plane is star-shaped
if it contains at least one point ¢ — a (star-)center, the set of which is called the
kernel of A —such that for any z in A, the segment [c, z] is included in A.

Lemma — Integral Lemma for Polylines. Let f: Q — C be a holomorphic
function where €) is an open star-shaped subset of C. For any closed path
v=lag =+ = an—1 — ag] of Q,

L F(2)dz = 0.

Proof. Let ¢ be a star-center of Q and define a,, = ao; for any k € {0,...,n—1},
the triangle with vertices ¢, ay and a4 is included in §2. Hence, by the integral
lemma for triangles, the integral along the path v, = [¢ = ar — ag41 — ¢ of f

is zero. Now, as
n—1
[1@a=Y [ 1@
~

k=0" "k
the integral of f along ~ is zero as well. |

Approximations of Rectifiable Paths by Polylines

To extend the integral lemma beyond closed polylines, we prove that polylines
provide appropriate approximations of rectifiable paths:

Lemma — Polyline Approximations of Rectifiable Paths. Let « be a
rectifiable path. For any ¢, > 0 and e, > 0, there is an oriented polyline p, with
the same endpoints as v, such that

fp—7) < e and V€01, |(1—7)#) < .

Proof — Polyline Approximations of Rectifiable Paths. Suppose that
the path ~ is continuously differentiable. Let (o, ...,t,) be a partition of the
interval [0, 1] and let u be the associated polyline:

= [y(to) = ()] ey -+ ens [Y(Enm1) = (E0)]

The path v and p have the same endpoints. The path v may be considered as
the concatenation v =1 |¢, ... |t,_, Yo With the paths v, defined by

Vke{l,...,n}, Vt € [0,1], v (t) = v (th—1 + t(tx — tr—1)),
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Figure 1: A 3-line approximation of the oriented unit circle.
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Figure 2: A 4-line approximation of the oriented unit circle.
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Figure 3: A 5-line approximation of the oriented unit circle.

hence we have
n 1
W)=Y / () = A(tee) — 74 (8)] dt.
k=1

As
Y(tk) — (k1) = / ~'(s)ds

th—1

and

V() = (t — toe1) (tr—1 + t(tr — tr—1))
ty
= / 'y’ (tk71 + t(tk — tkfl)) ds,
th—1
we have the inequality

n

1 ty
(=) < /0 [Z/ 7/ (8) =/ (tr—1 + t(tk — ta-1))| ds] dt
k=1"tk—1

The function 4 is by assumption continuous, and hence uniformly continuous,
on [0, 1], therefore for any € > 0, there is a §(e) > 0 such that, |7'(s) —v'(t)] < €
whenever |s — t| < d(¢). For any ¢, > 0, for any partition (to,...,¢,) such that
[t —tp—1] < d(eg) for any k € {1,...,n}, we have

é(uv)é/ol [i:/tt EzdS] dt = c;.

k=1"1tk—1



For any e, > 0, as
vt € [0,1], [p(t) = (O] < [1(0) =7 (0)] + £l =) = £l =),
any partition (to,...,t,) such that |ty — tx_1| < d(€x) ensures that
Vie [O> 1]7 |(M - 7)(t)| < €oo-

If v is merely rectifiable, the same approximation process, applied to each of its
continuously differentiable components provides the result. |

Cauchy’s Integral Theorem

We finally get rid of the polyline assumption:

Theorem — Cauchy’s Integral Theorem (Star-Shaped Version). Let
f 2 — C be a holomorphic function where €2 is an open star-shaped subset of
C. For any rectifiable closed path v of €2,

/Wf(z) dz = 0.

Proof. Let € > 0. Let > 0 be smaller than the distance between «([0, 1]) and
C\ Q. The set
K ={zeCld(z~(0,1))) <7},

is compact and included in 2. Consequently, the restriction of f to K is bounded
and uniformly continuous: there is a M > 0 such that

Vze K, |f(2)] <M,

and a there is a 7. > 0 — smaller than or equal to r» — such that

Vze K, Vw € y([0,1]), |z —w[ <ne = [f(2) — f(w)] < W +1)

Now, let . be a closed polyline approximation of v such that

€
_ < — — < 7.
(ve =) < onf ond Vie 0, 1], [(ve =)@ < 7e

By construction, 7. belongs to K, hence it is a closed path of 2. Therefore, the
integral lemma for polylines provides

f(z)dz=0.

Ye

The rectifiable v and 7. have a decomposition into continuously differentiable
paths associated to a common partition (to,...,t,) of the interval [0, 1]:

Y=t - len Y and Ye =Yielt, - Jtn Vne



The difference between the integral of f along v and -, satisfies

z)dz — f(z)dz

Ye

Fove)me — (f o ver)var ) (t) dt

Since for any k € {1,...,n}

(fove)ve — (Fover) Ve = (f o vk — F o ver) Ve — (f © Ye) (Vi — Vi)

we have
dz — d
e [ see
(f oy — fover)vil(t) dt
Fover) (v —v)I(t) dt
and thus
/f( )dz| < nax, Lf(v (@) = f(re(®))] x £(v)
"
+ max |f(re(@)] x €(ve =)
< saey e XM o
<e.
As € > 0 is arbitrary, the integral of f along -y is zero. |
Consequences

Theorem — Cauchy’s Integral Formula for Disks. Let {2 be an open subset
of the complex plane and v = ¢ + r[0] be an oriented circle such that the closed
disk D(e,r) is included in §2. For any holomorphic function f: Q — C,

fw
D .
Vz € D(c,r), 2271'/ —z

Proof. Refer to the answers of exercise “Cauchy’s Integral Formula for Disks”
|

Corollary — Derivatives are Complex-Differentiable. The derivative of
any holomorphic function is holomorphic.
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Proof. Refer to the answers of exercise “Cauchy’s Integral Formula for Disks
[ |

Theorem — Morera’s Theorem. Let {2 be an open subset of C. A function
f : © — C is holomorphic if and only if it is continuous and locally, its line
integrals along rectifiable closed paths are zero: for any ¢ € Q, there is a r > 0
such that D(c,r) C Q and for any rectifiable closed path v of D(e, r),

L F(2)dz = 0.

Proof. If f is holomorphic, then it is continuous and by Cauchy’s integral
theorem, its line integrals along rectifiable closed paths are locally zero. Con-
versely, if f is continuous and all its line integrals along closed rectifiable paths
are zero in some non-empty open disk D(c,r) of Q, f satisfies the condition for
the existence of primitives in D(c,r). Any such primitive is holomorphic; since
derivatives are complex-differentiable its derivative is holomorphic too and f is
holomorphic in some neighbourhood of ¢. Since the initial assumption holds for
any ¢ € ), we can conclude that f is holomorphic on €. |

Theorem — Limit of Holomorphic Functions. Let {2 be an open subset of
C. If a sequence of holomorphic functions f, : & — C converges locally uniformly
to a function f : Q — C, that is if for any ¢ € €, there is a » > 0 such that
D(c,r) C Q and
lim  sup |fale) = £(2)] =0,
n—+oo z€D(c,r)
then f is holomorphic.

Proof. The function f is continuous as a locally uniform limit of continuous
functions. Now, let ¢ € Q and let » > 0 be such that D(c,r) C Q and the
functions f,, converge uniformly to f in D(c,r). By Cauchy’s integral theorem,
for any rectifiable closed path v of D(e,r), the integral of f, along v is zero.
Thus

/f(z) dz = lim f(z)dz=0.

noteo foy

By Morera’s theorem, f is holomorphic. |

Theorem — Liouville’s Theorem. Any holomorphic function defined on C
(any entire function) which is bounded is constant.

Proof. Let f : C — C be a holomorphic function such that |f(z)| < & for
any z € C. Since derivatives are complex-differentiable, we may apply Cauchy’s
integral formula for disks to the function f’ and to the oriented circle v = z+r[0)]
for r > 0 and z € C. We have

(L[ Fw)
£C) =g | o
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and by integration by parts,

f(z) = L/ ( f(w) ~dw,

127
which yields by the M-L inequality

If'(2) <

S| =

This inequality holds for any r > 0, thus f’(z) = 0. Consequently, the zero
function and f are both primitives of f’; since the domain of f’ is connected,
these two primitives differ by a constant and thus f is constant. |
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