Cauchy's Integral Theorem – Global Version

Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0

November 28, 2017

Contents

Exercises	ŀ
Cauchy's Converse Integral Theorem	
Question	
Answer	
Cauchy Transform of Power Functions	
Question	
Answer	

Exercises

Cauchy's Converse Integral Theorem

Question

Let Ω be an open subset of \mathbb{C} .

Suppose that for every holomorphic function $f: \Omega \to \mathbb{C}$,

$$\int_{\gamma} f(z) \, dz = 0$$

for some sequence γ of closed rectifiable paths of Ω . What conclusion can we draw? What if the property holds for every sequence γ of closed rectifiable paths of Ω ?

Answer

For any $w \in \mathbb{C} \setminus \Omega$, the function $f : z \in \Omega \mapsto 1/(z-w)$ is defined and holomorphic, thus

$$\operatorname{ind}(\gamma, w) = \frac{1}{i2\pi} \int_{\gamma} \frac{dz}{z - w} = 0$$

and therefore $\operatorname{Int} \gamma \subset \Omega$. Now, suppose that this conclusion holds for any sequence γ of closed rectifiable paths of Ω . Since the winding number is locally constant and since for any closed path μ of Ω and any $\epsilon > 0$, there is a closed rectifiable path γ of Ω such that

$$\forall t \in [0,1], |\gamma(t) - \mu(t)| < \epsilon,$$

we also have $\operatorname{ind}(\mu, w) = \operatorname{ind}(\gamma, w) = 0$. Therefore $\operatorname{Int} \mu \subset \Omega$: the set Ω is simply connected.

Cauchy Transform of Power Functions

Question

Compute for any $n \in \mathbb{Z}$ and any $z \in \mathbb{C}$ such that $|z| \neq 1$ the line integral

$$\phi(z) = \frac{1}{i2\pi} \int_{[\circlearrowleft]} \frac{w^n}{w - z} dw.$$

Answer

For any $z \in \mathbb{C}$ such that $|z| \neq 1$, the function

$$\psi_z: w \mapsto \frac{w^n}{w-z}$$

is defined and holomorphic on $\Omega = \mathbb{C} \setminus \{z\}$ if $n \ge 0$; it is defined and holomorphic on $\Omega = \mathbb{C} \setminus \{0, z\}$ if n < 0. The interior of $[\circlearrowright]$ is the open unit disk.

We now study separately four configurations.

1. Assume that $n \ge 0$ and |z| > 1. The interior of [O] is included in Ω , hence by Cauchy's integral theorem, $\phi(z) = 0$.

Alternatively, Cauchy's formula was also applicable.

2. Assume that $n \ge 0$ and |z| < 1. The unique singularity of ψ_z is w = z; it satisfies $\operatorname{ind}([\circlearrowleft], z) = 1$. Let $\gamma(r) = z + r[\circlearrowright]$; we have

$$\operatorname{res}(\psi_z, z) = \lim_{r \to 0} \frac{1}{i2\pi} \int_{\gamma(r)} \frac{w^n}{w - z} dw = \lim_{r \to 0} \int_0^1 (z + re^{i2\pi t})^n dt = z^n,$$

hence by the residues theorem, $\phi(z) = z^n$.

Alternatively, Cauchy's formula was also applicable.

3. Assume that n < 0 and |z| > 1. We have

$$\phi(z) = \frac{1}{i2\pi} \int_{[\mathcal{O}]} \frac{1}{w^{|n|}(w-z)} \, dw.$$

If n = -1, Cauchy's formula provides the answer:

$$\phi(z) = \frac{1}{0-z} = -z^{-1}.$$

Otherwise n < -1, we may use integration by parts (several times):

$$\begin{split} \phi(z) &= \frac{1}{i2\pi} \int_{[\circlearrowleft]} \frac{1}{w^{|n|}(w-z)} \, dw \\ &= -\frac{1}{i2\pi} \int_{[\circlearrowright]} \frac{-1}{|n|-1} \frac{1}{w^{|n|-1}} \frac{-1}{(w-z)^2} \, dw \\ &= \dots \\ &= (-1)^{|n|-1} \frac{1}{i2\pi} \int_{[\circlearrowright]} \frac{1}{(|n|-1)!} \frac{1}{w} \frac{(|n|-1)!}{(w-z)^{|n|}} \, dw \\ &= -\frac{1}{i2\pi} \int_{[\circlearrowright]} \frac{1}{w} \frac{1}{(z-w)^{|n|}} \, dw. \end{split}$$

At this point, Cauchy's formula may be used again and we obtain

 $\phi(z) = -z^n.$

Alternatively, we may perform the change of variable $w = 1/\xi$:

$$\begin{split} \phi(z) &= \frac{1}{i2\pi} \int_{[\circlearrowleft]} \frac{w^n}{w - z} dw \\ &= -\frac{1}{i2\pi} \int_{[\circlearrowright]} \frac{\xi^{-n}}{\xi^{-1} - z} \left(-\frac{d\xi}{\xi^2} \right) \\ &= -\frac{1}{z} \frac{1}{i2\pi} \int_{[\circlearrowright]} \frac{\xi^{-n-1}}{\xi - z^{-1}} d\xi. \end{split}$$

As $-n-1 \ge 0$ and $|z^{-1}| < 1$, we may invoke the result obtained for the first configuration: it provides $\phi(z) = -z^n$.

Alternatively, we may perform a partial fraction decomposition of $w \mapsto 1/(w^{|n|}(w-z))$. Since

$$1 - \left(\frac{w}{z}\right)^{|n|} = \left(1 - \frac{w}{z}\right) \left(1 + \frac{w}{z} + \dots + \left(\frac{w}{z}\right)^{|n|-1}\right),$$

we have

$$\frac{1}{w-z} = -\frac{1}{z} \left(1 + \frac{w}{z} + \dots + \left(\frac{w}{z}\right)^{|n|-1} \right) + \frac{w^{|n|}/z^{|n|}}{w-z}$$

and therefore

$$\frac{1}{w^{|n|}(w-z)} = -\left(\frac{z}{w^{|n|}} + \frac{1/z^2}{w^{|n|-1}} + \dots + \frac{1/z^{|n|}}{w^{-1}}\right) + \frac{1/z^{|n|}}{w-z}.$$

The integral along γ of $w \in \mathbb{C} \mapsto 1/w^p$ is zero for p > 1 since this function has a primitive. The integral of $w \mapsto 1/(w-z)$ is also zero since |z| > 1. Finally,

$$\phi(z) = \frac{1}{i2\pi} \int_{\gamma} -\frac{1/z^{|n|}}{w^{-1}} dw = -z^n.$$

4. Assume that n < 0 and |z| < 1. There are two singularities of ψ_z in the interior of [\circlearrowright], w = 0 and w = z, unless of course if z = 0.

If z = 0, we have

$$\phi(z) = \frac{1}{i2\pi} \int_{[\circlearrowleft]} w^{n-1} dw = 0$$

because $w \in \mathbb{C}^* \mapsto w^n/n$ is a primitive of $w \in \mathbb{C}^* \mapsto w^{n-1}$.

We now assume that $z \neq 0$. The residue associated to w = z can be computed directly with Cauchy's formula; with $\gamma(r) = z + r[\heartsuit]$, we have

$$\operatorname{res}(\psi_z, z) = \lim_{r \to 0} \frac{1}{i2\pi} \int_{\gamma(r)} \frac{w^n}{(w-z)} dw = z^n.$$

On the other hand, using computations similar to those of the previous question, we can derive

$$\operatorname{res}(\psi_z, 0) = \lim_{r \to 0} \frac{1}{i2\pi} \int_{r[\mathcal{O}]} \frac{w^n}{(w-z)} dw = -z^n.$$

Consequently, $\phi(z) = 0$.

In the case $z \neq 0$, we may perform again the change of variable $w = 1/\xi$ that provides

$$\phi(z) = -\frac{1}{z} \frac{1}{i2\pi} \int_{[\circlearrowleft]} \frac{\xi^{-n-1}}{\xi - z^{-1}} d\xi.$$

As $-n-1 \ge 0$ and $|z^{-1}| > 1$, we may invoke the result obtained for the first configuration: it yields $\phi(z) = 0$.

There is yet another method: we can notice that for r > 1, the interior of the path sequence $(r[\circlearrowright], [\circlearrowright]^{\leftarrow})$, which is the annulus $\{z \in \mathbb{C} \mid 1 < |z| < r\}$, is included in Ω . Cauchy's integral theorem provides

$$\forall\,r>1,\;\phi(z)=\frac{1}{i2\pi}\int_{r[\circlearrowleft]}\frac{w^n}{w-z}dw.$$

and the M-L estimation lemma

$$\forall r > 1, \ |\phi(z)| \le \frac{1}{r^{|n|-1}(r-|z|)}.$$

The limit of the right-hand side when $r \to +\infty$ yields $\phi(z) = 0$.

Finally, we may use again the partial fraction decomposition of $w\mapsto 1/(w^{|n|}(w-z))$:

$$\frac{1}{w^{|n|}(w-z)} = -\left(\frac{z}{w^{|n|}} + \frac{1/z^2}{w^{|n|-1}} + \dots + \frac{1/z^{|n|}}{w^{-1}}\right) + \frac{1/z^{|n|}}{w-z}.$$

The integral along γ of $w \in \mathbb{C} \mapsto 1/w^p$ is zero for p > 1 since this function has a primitive. Therefore

$$\phi(z) = \frac{1}{i2\pi} \int_{\gamma} -\frac{1/z^{|n|}}{w^{-1}} dw + \frac{1}{i2\pi} \int_{\gamma} \frac{1/z^{|n|}}{w-z} dw = 0.$$