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Exercises

Taylor Series of a Rational Function

Questions

1. Show that the function

f : x ∈ R 7→ 1
1 + x2

is analytic.

2. Determine for any x0 ∈ R the open interval of convergence of its Taylor
series expansion at x0.
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Answers

1. The function f is the restriction of the holomorphic function

f∗ : z ∈ C \ {i,−i} 7→ 1
1 + z2 .

2. For any x0 ∈ R, the disk

D(x0) = D(x0,
√

1 + x2
0)

is included in C \ {i,−i}. The radius of the disk of convergence of the
Taylor expansion of f∗ at x0 is therefore at least

√
1 + x2

0; it cannot exceed
this threshold: otherwise, the sum g(z) of its Taylor series would be defined
and holomorphic in an open set that contains D0 and therefore bounded
on D0; but g and f∗ are identical on D0 where f∗ is unbounded. Finally,
as the Taylor expansion of f at x0 has the same coefficient as the Taylor
expansion of f∗ at x0, the open interval of convergence of f∗ at x0 is]

x0 −
√

1 + x2
0, x0 +

√
1 + x2

0

[
.

Analytic Functions of a Real Variable

Questions

1. Show that the function f : R→ C defined by

f(x) =
∣∣∣∣ e−1/x if x > 0

0 otherwise.

is smooth but is not analytic.
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Figure 1: The graph of a function which is smooth, but not analytic.
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2. Let K be an compact interval of R and f : K → C be a smooth function.
Show that f is analytic if and only if there are positive constants α > 0
and r > 0 such that

∀x ∈ K,∀n ∈ N, |f (n)(x)| ≤ α rnn!

Answers

1. By induction, for any x > 0, f (n)(x) = gn(x)e−1/x where gn is a rational
function, defined for x > 0 by

g0(x) = 1 ∧ ∀n ∈ N, gn+1(x) = g′n(x) + gn(x)
x2 .

On the other hand, for x ≤ 0, the n-th order derivative (left-derivative at
x = 0) of f at x is defined and equal to 0. To prove that f is smooth, we
now have to prove that the right, n-th order derivative of f at 0 exists and
is equal to its left derivative, that is zero. We may proceed by induction:
suppose that f (n)(0) exists and is zero; then

f (n)(h)− f (n)(0)
h

= 1
h

∫ h

0
f (n+1)(x)dx.

But for any n, we have

lim
x→0+

f (n+1)(x) = lim
x→0+

gn+1(x)e−1/x = 0,

hence the right-hand side of the equation tends to zero when h→ 0+: the
n+ 1-th order right derivative of f exists at x = 0 and is equal to zero.

Now, the function f cannot be analytic: given that its derivatives at
x = 0 are zero at all order, its Taylor series expansion at the origin is zero.
The function f would be zero in a neighbourhood of the origin, and this
property does not hold.

2. If the function f is smooth, for any real numbers c and y in K, the Taylor
formula with integral remainder is applicable at any order n:

f(y) =
n∑
p=0

f (p)(c)
p! (y − c)p +

∫ y

c

f (n+1)(x)
n! (x− c)ndx.

If there exist α > 0 and r > 0 such that the inequality

∀x ∈ K, |f (n)(x)| ≤ α rnn!

holds, the remainder satisfies∣∣∣∣∫ y

c

f (n+1)(x)
n! (x− c)ndx

∣∣∣∣ ≤ α rn+1 (n+ 1)!
n!

∣∣∣∣∫ y

c

(x− c)n dx
∣∣∣∣

= α (r|y − c|)n+1
.
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Thus, if |y − c| < 1/r, the Taylor expansion of f at y centered on c is
convergent. As c is an arbitrary point of I, the function f is analytic.

Conversely, if f is analytic, it has a holomorphic extension – that we may
still denote f – to some open neighbourhood U of K. The distance d
between K and C\U is positive: for any c ∈ K, the disk D(c, d) is included
in U . Let r be a positive radius smaller than d and α be an upper bound
of |f | on K +D(0, r); for any natural number n, we have∣∣∣∣f (n)(c)

n!

∣∣∣∣ =

∣∣∣∣∣ 1
i2π

∫
r[	]+c

f(z)
(z − c)n+1 dz

∣∣∣∣∣ ≤ α (r−1)n
which concludes the proof.

Periodic Analytic Functions

Notations. In this exercise, U is the unit circle centered at the origin:

U = {z ∈ C | |z| = 1}.

For any radius 0 ≤ r < 1, we define the annulus

Ar = A(0, r, 1/r) = {z ∈ C | r < |z| < 1/r}

(with the convention that A0 = C∗). For any 0 < ε ≤ +∞, the notation Ωε

refers to the horizontal strip

Ωε = {z ∈ C | |Im z| < ε}.

Questions

Let f : U→ C be a function with an analytic extension in some open neighbour-
hood U of U.

1. Prove that there is an annulus Ar such that Ar ⊂ U .

2. Let g : t ∈ R 7→ f(eit); show that g is a 2π-periodic analytic function.

Conversely, let g : t ∈ R→ C be a 2π-periodic analytic function.

3. Show there is an analytic extension g∗ of g on some strip Ωε, such that

∀ z ∈ Ωε, g∗(z + 2π) = g∗(z).

4. Show that there exist a function f : U→ C with an analytic extension in
some open neighbourhood of U such that

∀ t ∈ R, g(t) = f(eit).
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Answers

1. The set U is compact and the set C\U is closed; their intersection is empty,
thus the distance d = d(U,C \ U) is positive (it may be +∞ if U = C).
On the other hand, for any r < 1,

d(U,C \Ar) = min(1− r, 1/r − 1) = 1− r.

Thus, for any r such that 1− r < d, the annulus Ar is a subset of U .

2. The 2π-periodicity of g is clear: for any t ∈ R,

g(t+ 2π) = f(ei(t+2π)) = f(eitei2π) = f(eit) = g(t).

The assumption on f and the result of the previous question provide a
holomorphic extension f∗ : Ar → C to f : U→ C for some r < 1. Now,

|eiz| = eRe iz = e−Im z,

thus if |Im z| < ln 1/r, then ln r < −Im z < ln 1/r which yields r < |eiz| <
1/r. Therefore, if we set ε = ln 1/r > 0, we have

∀ z ∈ C, (z ∈ Ωε ⇒ eiz ∈ Ar).

Consequently, setting g∗(z) = f∗(eiz) defines a function g∗ on Ωε; it is
an extension of g : R → C and it is holomorphic as the composition of
holomorphic functions. Therefore, the function g : R→ C is analytic.

Alternate proof. Consider the Laurent series expansion of f∗ in Ar:

f∗(z) =
+∞∑

n=−∞
anz

n.

For any real numbers t0 and t, we have

(eit)n = eint = eint0ein(t−t0) = eint0
+∞∑
m=0

1
m! i

mnm(t− t0)m,

therefore

g(t) = f(eit) =
+∞∑

n=−∞
ane

int0

[+∞∑
m=0

1
m! i

mnm(t− t0)m
]
.

We can change the order of the summation in this double series if∑
(m,n)∈N×Z

∣∣∣∣aneint0 1
m! i

mnm(t− t0)m
∣∣∣∣ < +∞
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The general term of this double series satisfies∣∣∣∣aneint0 1
m! i

mnm(t− t0)m
∣∣∣∣ ≤ |an| 1

m! |n|
m|t− t0|m

hence the sum is bounded by

+∞∑
n=−∞

|an|(e|t−t0|)|n| ≤
+∞∑

n=−∞
|an|(et−t0)n +

+∞∑
n=−∞

|an|(e−(t−t0))n.

The Laurent series expansion of f∗ is absolutely convergent in Ar, hence
the sums in the right-hand side of this inequality are finite if

r < et−t0 < 1/r and r < e−(t−t0) < 1/r

that is if |t − t0| < ε = ln 1/r. After the change in the order of the
summation, we end up with:

∀ t ∈ R, |t− t0| < ε ⇒ g(t) =
+∞∑
m=0

bm(t− t0)m

where

bm =
[ +∞∑
n=−∞

ane
int0

1
m! i

mnm

]
,

hence the function g is analytic.

3. The function g is analytic; let g0 be an analytic extension of g in some open
neighbourhood Ω of R. However, if the distance between R and C \ Ω is
equal to zero – it may happen as both sets but neither of them is compact
– then Ω contains no strip Ωε.

Let’s build a new analytic extension g∗ on such a strip from g0. First, the
set Ω contains some open tubular neighbourhood Vε of [0, 2π] for any ε > 0
small enough:

Vε = {z ∈ C | d(z, [0, 2π]) < ε} ⊂ Ω.

Indeed, [0, 2π] is compact, C \ Ω is closed and their intersection is empty,
hence d(C \ Ω, [0, 2π]) > 0; any ε smaller than (or equal to) this distance
is admissible.

Consider the function g∗ defined on Ωε by

g∗(z) = g0(z + 2πk) if k ∈ Z and z + 2πk ∈ Vε.

It is plain that g∗ is analytic and extends g to Ωε; by construction it also
satisfies the property

∀ z ∈ Ωε, g∗(z + 2π) = g∗(z).
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The only point to check is that this definition is unambiguous, as we may
have for some z several integers k and ` such that zk = z + 2πk ∈ Vε and
z` = z+ 2π` ∈ Vε. Assume for example that k < `; in this case zk ∈ D(0, ε)
and ` = k + 1, i.e. z` = zk + 2π. The functions

w ∈ D(0, ε) 7→ g0(w) and w ∈ D(0, ε) 7→ g0(w + 2π)

are holomorphic and identical on ]−ε, ε[; by the isolated zeros theorem, they
are identical on D(0, ε) (which is connected) and in particular g(zk) = g(z`).
The definition of g∗ is actually unambiguous.

4. To answer the question, we exhibit an analytic function f∗ : Ar → C with
ε = ln 1/r (or equivalently r = e−ε) such that

∀ z ∈ Ar, f∗(eiz) = g∗(z).

For any w ∈ C∗, there is a solution z0 to the equation

eiz = w, z ∈ C

and the other solutionss are z0 + 2πk, for k ∈ Z. Additionally, if w ∈ Ar,
then z ∈ Ωε with ε = ln 1/r. We may define f∗ : Ar → C by

f∗(w) = g∗(z), eiz = w.

This definition is unambiguous: two z that correspond to the same w differ
from a multiple of 2π, but g∗ is 2π-periodic hence the right-hand sides of
this definition are equal.

Let’s prove that f∗ is analytic. Let w0 in Ar and z0 such that eiz0 = w0,
the expression

φ(w) = −i log w

w0
+ z0

defines an analytic function φ in an neighbourhood of w0. It satisfies
ei(φ(w)−z0) = w/w0, thus

eiφ(w) = w.

Consequently, in a neighbourhood of w0,

f∗(w) = g∗(φ(w))

and f∗ is holomorphic – locally everywhere – as a composition of holomor-
phic functions.
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