
Analytic Functions

Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0

November 28, 2017

Contents
Analytic Functions 1

Real Analytic Functions 4

Analytic Continuation 5

Analytic Functions

Definition – Analytic Function. A function f : A ⊂ C→ C is analytic if it
is locally the sum of a (convergent) power series: for any c ∈ A, there is a r > 0
and a sequence of complex numbers an such that

∀ z ∈ A ∩D(c, r), f(z) =
+∞∑
n=0

an(z − c)n.

The characterization of analytic functions defined on open sets is simple: we
know that the sum of every power series is holomorphic in its open disk of
convergence and conversely that every holomorphic function defined on an open
set is locally the sum of a power series. Hence, we have the:

Theorem – Analyticity & Holomorphicity in Open Sets. A function
defined in an open set is analytic if and only if it is holomorphic.

The definition of analytic function is not limited to open sets; we may also extend
the definition of holomorphic function to sets that may not be open:

Definition – Holomorphic Function (Non-Open Sets). A function f :
A ⊂ C→ C is holomorphic if there is an open subset Ω of C such that A ⊂ Ω
and a holomorphic function g : Ω→ C that extends f .

This definition is appropriate because – at least on “well-behaved” sets – the
classes of analytic and holomorphic functions are identical, as they are on open
sets. For example, convex sets are well-behaved:
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Theorem – Analyticity & Holomorphicity in Convex Sets. A function
f : A ⊂ C → C defined in a convex set A is analytic if and only if it is
holomorphic.

Proof. It is clear that such restrictions of holomorphic functions are analytic
(the convexity assumption is not needed here).

Conversely, let A be a convex subset of C and let f : A → C be an analytic
function. There is a positive function a ∈ A 7→ ra and a family a ∈ A 7→ fa
of holomorphic functions defined on D(a, ra) such that f and fa are equal on
A ∩D(a, ra). Let φ be the complex-valued function defined on the union Ω of
all disks D(a, ra) by

φ(z) = fa(z) if a ∈ A and z ∈ D(a, ra).

This definition is non-ambiguous: if a ∈ A, b ∈ A and z belongs to D(a, ra)
and D(b, rb), then by convexity of A, the domain of f contains the set L =
[a, b] ∩D(a, ra) ∩D(b, rb). By the isolated zeros theorem, the functions fa and
fb, equal on L, are also equal on D(a, ra) ∩ D(b, rb), therefore fa(z) = fb(z).
The function φ is by construction an extension of f which is holomorphic. �

Example – Closed Unit Disk. If the function f is analytic on the closed unit
disk

D(0, 1) = {z ∈ C | |z| ≤ 1},

there is a holomorphic extension of f on an open superset Ω of the closed unit
disk. This function may be restricted to an open disk D(0, r) for some radius
r > 1 and expanded into a Taylor series: there are complex coefficients an such
that

∑+∞
n=0 anz

n is convergent in D(0, r) and

∀ z ∈ D(0, 1), f(z) =
+∞∑
n=0

anz
n.

Conversely it is plain that such a function is holomorphic – and thus analytic –
in the closed unit disk.

Definition – Projection. A projection onto a non-empty closed subset A of C
of a point z ∈ C is a minimizer of the distance between z and A. In other words,
the set of all projections of z onto A is

Π(z) = {a ∈ A | |z − a| = inf
w∈A
|z − w|}.

Theorem – Analyticity & Holomorphicity in Regular Compact Sets.
Let A be a compact subset of the complex plane with no isolated point and such
that the projection onto A is unique in some neighbourhood of A. A function
f : A→ C is analytic if and only if it is holomorphic.

Proof. It is plain that restrictions to A of holomorphic functions defined in a
open neighbourhood of A are analytic on A : holomorphic functions are analytic.
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Conversely, assume that f : A→ C is analytic. Let rz be a collection of positive
radii indexed by z ∈ A and fz : D(z, rz) → C the corresponding collection of
holomorphic functions such that

∀ z ∈ A, ∀w ∈ A ∩D(z, rz), fz(w) = f(w).

There is another collection with the same property, but associated with a constant
and positive radius r. It is easy to build this collection – by a simple restriction
of the fz – if we can first extend the functions of the original collection to make
sure that z ∈ A 7→ rz has a positive lower bound. To do so, we may consider for
any z ∈ A the set of holomorphic functions defined on open disks centered on z
with the same values as f on the points that also belong to A. This set is not
empty, as it contains fz. Additionally, if two functions belong to this set, as z is
not isolated in A, they are equal on the intersection of their domain of definition.
Hence, we may select as a new fz the function in the set whose domain of
definition has the largest radius. Now, if we assume that the infimum of the
rz is 0, there is a sequence zn in A such that rzn

→ 0 and thus a subsequence
wn that converges to some z ∈ A. But for any w ∈ D(z, rz), the radius of the
largest disk at w satisfies

rw + |w − z| ≥ rz,

thus we have a contradiction eventually when |wn − z| < rz/2 and rwn < rz/2.

Let V be an open neighbourhood of A where the projection onto A is unique.
We may assume that r is smaller than the distance between A and C \ V. For
any z ∈ Ω = A + D(0, r), denote π(z) the projection of z onto A and define
g(z) = fπ(z)(z); the function g : Ω 7→ C obviously extends f. Additionally, it is
holomorphic, because it satisfies

∀ z ∈ Ω, ∃ ε > 0, ∀w ∈ D(z, ε), g(w) = fπ(z)(w).

Indeed, if |w − z| < ε = r − |z − π(z)|, then

|w − π(z)| ≤ |w − z|+ |z − π(z)| < r,

so w that belongs to D(π(w), r) by construction also belongs to D(π(z), r). By
construction, the functions fπ(z) and fπ(w) have the same values on every point
of A that belongs to both of their domains of definition. Naturally, π(z) belongs
to the domain of fπ(z); since

|π(w)− π(z)| ≤ |w − z| < r

it also belongs to the domain of fπ(w). As none of the points of A is isolated,
by the isolated zeros theorem, the functions fπ(w) and fπ(z) are identical on
D(π(z), r) ∩D(π(w), r), which leads to g(w) = fπ(w)(w) = fπ(z)(w). �

Example – Unit Circle. The unit circle

U = {z ∈ C | |z| = 1}
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is not convex, but it is compact and has no isolated point. Additionally, unless
z = 0, the point z/|z| is the unique projection of z onto C; the set C∗ is a
neighbourhood of U. Thus, the classes of analytic and holomorphic functions
defined on U are identical. Any holomorphic extension of a holomorphic function
defined on U has a restriction to A(0, r, 1/r) for some radius r ∈ ]0, 1[, thus a
function f is analytic on U if and only if there are some coefficients an such that∑+∞
n=−∞ anz

n is convergent on some annulus A(0, r, 1/r) and

∀ z ∈ U, f(z) =
+∞∑

n=−∞
anz

n.

Real Analytic Functions

Definition – Interval. In the sequel, an interval may be open, closed or half-
open, bounded or unbounded; in other words, it is a synonym for “convex subset
of the real line”.

Definition – Real Analytic Function. A real-valued function defined on an
interval of the real line which is analytic is real analytic.

The characterization of analytic functions on convex sets provides:

Theorem – Characterization of Real Analytic Functions. A real-valued
function defined on an interval of the real line is real analytic if and only if it has
a holomorphic extension on some open neighbourhood of its domain of definition
in the complex plane.

We also have:

Theorem – (Real) Taylor Series Expansion. A function f : I → R defined
on an interval I of R is real analytic if and only it is smooth – the n-th order
(real) derivative defined by f (0) = f and

f (n+1)(x) = lim
y∈I→x

f (n)(y)− f (n)(x)
y − x

exists at every order – and for any a ∈ I, there is a r > 0 such that

∀x ∈ I ∩ ]a− r, a+ r[ , f(x) =
+∞∑
n=0

f (n)(a)
n! (x− a)n.

Proof. Assume that the function f is smooth and that for any a in I, it is equal
to the sum of its (convergent) Taylor expansion on ]a− r, a+ r[ for some r > 0.
Then, the power series

z 7→
+∞∑
n=0

f (n)(a)
n! (z − a)n
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is convergent on D(a, r) and its restriction to

I ∩D(a, r) = I ∩ ]a− r, a+ r[

is equal to f. Hence, f is real analytic.

Conversely, if f is real analytic, let g be one of its holomorphic extensions. At
every x in I,

f ′(x) = lim
y∈I→x

f(y)− f(x)
y − x

= lim
y∈I→x

g(y)− g(x)
y − x

= g′(x);

the real derivative of f exists and is equal to the complex derivative of g, hence
g′ is a holomorphic extension of f ′. By induction, at every order n, f (n) exists
and accepts g(n) as a holomorphic extension. Consequently, the local expansion
of g as a Taylor series provides a local expansion of f as a (real) Taylor series. �

Analytic Continuation

The term “analytic continuation” refers to two related concepts; the first one
is straightforward: “continuation” is simply used as a synonym of “function
extension”.

Definition – Analytic Continuation to a Set. Let Ω be an non-empty open
subset of C, f : Ω→ C be a holomorphic function. An analytic continuation of
f on a superset Σ of Ω which is open and connected is a holomorphic function
g : Σ→ C such that the restriction of g to Ω is f.

We define the continuation for open and connected sets only so that:

Theorem – Uniqueness of Analytic Continuation to Sets. There is at
most one analytic continuation of an analytic function to a given set.

Proof. It is a consequence of the isolated zeros theorem. Indeed, if there are two
holomorphic extensions, they are identical on Ω which is open and non-empty.
Every point of Ω is a limit point of the zeros of their difference; this difference is
holomorphic and defined on a connected set, thus it is identically zero and the
two holomorphic extensions are equal. �

The second concept of continuation applies to holomorphic functions along
paths. Although the concept may be defined for arbitrary paths, for the sake of
simplicity we will only consider the case of regular analytic paths.

Definition – Regular Analytic Path. A path γ : [0, 1] 7→ C is analytic if it
is an analytic function. It is regular if γ′ has no zero on [0, 1].

Definition – Analytic Continuation Along a Path. Let Ω be an open
subset of C, f : Ω→ C be a holomorphic function and γ : [0, 1] 7→ C be a regular
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analytic path such that γ(0) ∈ Ω. An analytic continuation of f along γ is an
analytic function φ : [0, 1] 7→ C such that for some 0 < ε ≤ 1,

∀ t ∈ [0, ε[ , γ(t) ∈ Ω and φ(t) = f(γ(t)).

Example – Analytic Continuations of the Logarithm. The principal
value of the logarithm

log : C \ R− → C

is an analytic continuation of the function f : D(1, 1) 7→ C defined by

f(z) =
+∞∑
n=1

(−1)n+1

n
(z − 1)n.

On the other hand, the function

φ : t ∈ [0, 1] 7→ i2πt

is an analytic continuation of log along the regular analytic path

[	] : t ∈ [0, 1] 7→ ei2πt.

Indeed, the function φ is analytic – the holomorphic function z ∈ C 7→ i2πz is
an extension of it – and

∀ t ∈ [0, 1/2[ , [	](t) = ei2πt ∈ C \ R− and φ(t) = log ei2πt = log([	](t)).

Like analytic continuations to sets, analytic continuations along paths are also
unique whenever they exist:

Theorem – Uniqueness of Analytic Continuation along Paths. There
is at most one analytic continuation of an analytic function along a given regular
analytic path.

Proof. If φ1 : [0, 1]→ C and φ2 : [0, 1]→ C are two analytic continuations of
the same holomorphic function along the same path, they have holomorphic
extensions – still denoted φ1 and φ2 – defined on some shared open tubular
neighbourhood of [0, 1]

{z ∈ C | d(z, [0, 1]) < ε},

which is connected. The point 0 is a limit point of the zeros of the holomorphic
function φ1 − φ2. By the isolated zeros theorem, φ1 and φ2 are identical. �

Remark – Comparison of Analytic Continuations Concepts. Continua-
tion along paths is a more flexible tool than continuation to sets: if φ : Σ 7→ C
is an analytic continuation of f : Ω 7→ C to the open connected set Σ and γ is
a regular analytic path of Σ whose initial point is in Ω, then φ ◦ γ is always
an analytic continuation of f along γ. However, on the other hand, there may
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exist an analytic continuation of f along a path γ but no analytic continuation
φ : Σ 7→ C such that γ([0, 1]) ⊂ Σ (refer e.g. to the logarithm example).

Remark – Values of Analytic Continuations. The analytic continuation
of a function f to an open connected set Σ provides a unique “natural” value of
the function f associated to a point z ∈ Σ that may be outside of the original
function domain. An analytic continuation along a path φ also provides a new
value associated to the terminal point z = γ(1): the terminal value φ(1) of the
continuation φ. However, several analytic continuations of f along paths with
the same initial and terminal points may have different terminal values; thus,
analytic continuations along paths may define multi-valued functions.

Example – Values of the Logarithm. The analytic continuation of log
along the path [	] – whose initial and terminal point is z = 1 – is the function
t ∈ [0, 1] 7→ i2πt; its terminal value is i2π. On the other hand, the path γ = 2−[	]
has the same endpoints as [	], but its image is included in C \ R−. Thus, the
function t ∈ [0, 1] 7→ log γ(t) is the analytic continuation of log along γ and its
terminal value is log 1 = 0. Both paths have the same initial and terminal points
but the terminal values of the corresponding continuations are different.

Actually, an analytic continuation along a path carries more information than a
simple value from the initial point to the terminal point of the path: it defines
a new holomorphic function in the some open neighbourhood of the terminal
point. To formalize this, we introduce a new definition.

Definition – Germ of Holomorphic Function. Two holomorphic functions
f : Ω 7→ C and g : Σ→ C define the same germ at z ∈ Ω∩Σ if the functions are
identical in some neighbourghood of z. We denote this relation

f ∼z g

A germ of holomorphic function at z is an equivalence class for this relation
between holomorphic functions:

[f ]z = {g | f ∼z g}.

Theorem – Analytic Continuation of Germs. The existence and definition
of an analytic continuation of a holomorphic function f : Ω → C along the
regular analytic path γ depends only on the germ of f at γ(0).

Proof. Assume that g : Σ→ C defines the same germ as f at γ(0); let Γ ⊂ Ω∩Σ
be some open set that contains γ(0) and where both functions are identical. Let
ε > 0 be such that

∀ t ∈ [0, ε[ , γ(t) ∈ Ω and φ(t) = f(γ(t)).

and η be some positive number, smaller than ε, such that

∀ t ∈ [0, η[ , γ(t) ∈ Γ.
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Then, by construction of Γ, it is plain that

∀ t ∈ [0, η[ , γ(t) ∈ Σ and φ(t) = g(γ(t)),

thus φ is also a continuation of g. �

There is a converse statement that holds true: a candidate continuation function
does determine uniquely the germ that it continues. We encapsulate that result
in a definition:

Definition – Initial Germ. If γ : [0, 1] 7→ C is a regular analytic path and
φ : [0, 1] 7→ C is an analytic function, there is a unique germ of holomorphic
function at γ(0) of which φ is an analytic continuation: the initial germ of the
continuation.

Proof. A function f : Ω 7→ is an element of the germ of which φ is an analytic
continuation along γ if there is a ε ∈ ]0, 1] such that

∀ t ∈ [0, ε[ , γ(t) ∈ Ω and φ(t) = f(γ(t)).

The uniqueness of such a germ is a consequence of the isolated zeros theorem;
let’s prove its existence. The functions φ and γ are analytic, therefore there are
holomorphic functions, still denoted by the symbols φ and γ, that extend the
original functions to some non-empty open tubular neighbourhood Σ of [0, 1]:

Σ = {z ∈ C | d(z, [0, 1]) < r}.

Since the path γ is regular and analytic, the function γ : D(0, r) 7→ C is
continuously real-differentiable and its real-differential dγ is invertible on some
non-empty neighbourhood of 0. By the inverse function theorem, there is an
open neighbourhood U of 0 included in D(0, r) and an open neighbourhood V of
γ(0) such that the restriction γ|U of γ to U is a C1-diffeomorphism. Its inverse
satisfies d(γ|−1

U )γ(z) = (dγz)−1; this differential is complex-linear, therefore γ|−1
U

is holomorphic. Thus we may define a holomorphic function f on V by

∀w ∈ V, f(w) = φ(γ|−1
U (w))

Now let ε ∈ ]0, 1] be such that [0, ε[ ⊂ U. For any value of t ∈ [0, ε[ , the point
w = γ(t) belongs to V and f(γ(t)) = φ(t). �

Definition – Terminal Germ. Let γ be a regular analytic path and let
φ : [0, 1] 7→ C be an analytic continuation of a germ of holomorphic function
at γ(0). The terminal germ of the continuation φ is the initial germ of the
continuation φ← : t ∈ [0, 1] 7→ φ(1− t) along γ←; in other words, an holomorphic
function f : Ω 7→ C belongs to the terminal germ if and only if, there is a
ε ∈ [0, 1] such that

∀ t ∈ ]1− ε, 1] , γ(t) ∈ Ω and φ(t) = f(γ(t)).

Theorem – Monodromy Theorem (Local). Let Ω be an open star-shaped
subset of C that contains the non-empty open disk D(z0, r) and let f : D(z0, r)→

8



C be a holomorphic function. If for any regular analytic path γ of Ω whose
initial point is z0 an analytic continuation of f along γ exists, then there is an
analytic continuation of f on Ω.

Proof. We will assume in the sequel that z0 is a center c of the star-shaped set
Ω: if this is not true, consider a center c of Ω and the germ fc of the holomorphic
function defined at c by the analytic continuation of f along [z0, c]. A function
defined on Ω is an analytic continuation of fc if and only if it is an analytic
continuation of the original germ f.

Let z ∈ Ω and let φz be the analytic continuation of f along [c → z]. By
construction, there is a ε ∈ ]0, 1] such that φz(t) = f((1 − t)c + tz) for any
0 ≤ t < ε. If we still denote φz the holomorphic extension of φz to some open
neighbourghood {w ∈ C | d(w, [0, 1]) < r} of [0, 1], then for any complex number
w in some non-empty open disk centered at 0, we have

φz(w) = f((1− w)c+ wz).

Now, for any z ∈ Ω\D(z0, r) and any complex number h such that |h| < r|z−c|,
the function

ψz,h : t ∈ [0, 1] 7→ φz(w) with w = t
z + h− c
z − c

is defined, analytic and as w satisfies

(1− t)c+ t(z + h) = (1− w)c+ wz,

for small values of t, we have

ψz,h(t) = φz(w) = f((1− w)c+ wz) = f((1− t)c+ t(z + h)),

therefore ψz,h is the analytic continuation of fc along [c→ z + h]:

ψz,h = φz+h.

This leads for small values of h to the equality

φz+h(1) = ψz,h(1) = φz

(
z + h− c
z − c

)
.

The function z ∈ Ω 7→ φz(1) is an extension of f to Ω; by the above equality it
is also holomorphic, thus it is the analytic extension of f to Ω. �
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