Introduction to Delay Systems

Sébastien Boisgérault <Sebastien.Boisgerault@mines-paristech.fr>

Centre de Robotique / CAOR, Math. et Systèmes, Mines ParisTech

Prerequisites

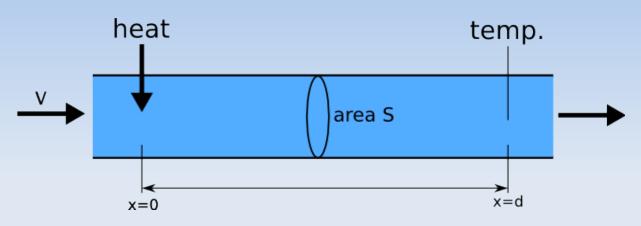
Control Theory:

- Finite-Dim. Linear Time-Invariant Systems,
- State-Space and Input/Output settings.
- Mathematics:
 - Measure Theory,
 - Linear Operators,
 - Complex Analysis,
 - Semigroup Theory.

Introduction

- Sometimes ordinary differential equations
 (ODEs) are not the proper model for a system:
 - delays are necessary \rightarrow **FDE**s (Functional)
- hopefully such models are:
 - linear and time-invariant (LTI),
- but their state space is infinite-dimensional :
 - new modelling, analysis and control methods are required.

Example: Control of a Thermic Loop



System properties:

- volumic heat capacity: c,
- thermal conductivity: κ .

Thermic Loop: Analytic Model I

Let the reference temperature be 0,

Inject Q joules at t = 0, x = 0

$$T(t=0^+,x)=rac{Q}{cS}\delta_0(x)$$

$$\left(\int_{-\infty}^{+\infty} c \cdot T(t=0^+,x)\,Sdx=Q
ight)$$

Thermic Loop: Analytic Model II

Heat Diffusion

$$j = -\kappa \nabla T$$
 $\frac{\partial T}{\partial t} - \alpha \Delta T = 0, \ \alpha = \frac{\kappa}{c}$

Impulse response (1 joule injected)

$$T(t,x) = rac{1}{cS\sqrt{4\pilpha t}}\exp\left(-rac{x^2}{4lpha t}
ight)$$

Thermic Model: Analytic Model III

Take into account the transport

$$T(t,d) = rac{1}{cS\sqrt{4\pilpha t}}\exp\left(-rac{(d-vt)^2}{4lpha t}
ight)$$

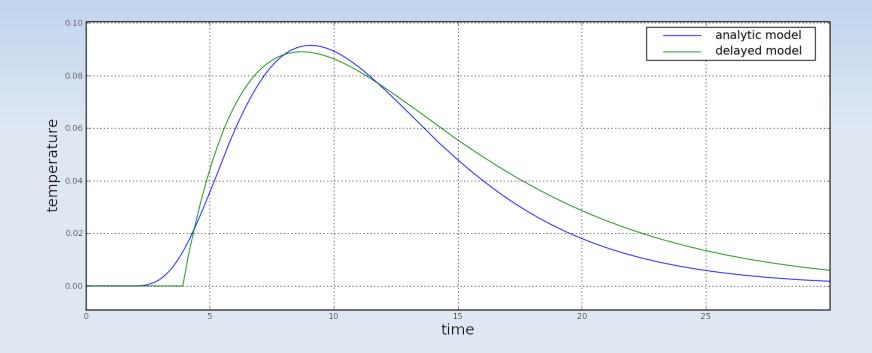
Identification: System Structure

Delay: T

Two time scales: $\tau_1 > \tau_2$

$$h(t) = egin{bmatrix} 0 & ext{for } t < T \ A\left(\exp\left(-rac{t-T}{ au_1}
ight) - \exp\left(-rac{t-T}{ au_2}
ight)
ight) & ext{otherwise} \ H(s) = rac{a}{s^2 + bs + c}\exp(-sT) \end{cases}$$

Identification: 2nd-order + delay



3rd-order linear model improves accuracy

Identification: State-Space Model

State-space model for this dead-time system:

 $egin{array}{c|c} \dot{x}(t) = Ax(t) + Bq(t) \ T(t) = Cx(t-T) \end{array} x(t) \in \mathbb{R}^2 \end{array}$

• Control: try a linear feedback: q(t) = -KT(t)

$$ightarrow \dot{x}(t) = Ax(t) - BKCx(t-T)$$

What are the properties of this system ?

Delay-Differential Systems: Examples

$$\dot{x}(t)=rac{1}{2}x(t)+rac{1}{2}x(t-T)$$

$$\dot{x}(t) = rac{1}{T} \int_{[-T,0]} x(t+ heta) \, d heta$$

$$\dot{x}(t) = rac{1}{T}(x(t) - 2x(t - T/2) + x(t - T))$$

$$\left[egin{array}{c} \dot{x}_1(t) \ \dot{x}_2(t) \end{array}
ight] = \left[egin{array}{c} x_2(t-T) \ x_1(t-T) \end{array}
ight]$$

State-Space Model: Concrete Framework

Concrete Framework (Retarded Equation)

 \mathcal{M} : set of signed Borel measures on [-T, 0] $x \in \mathbb{R}^n, \ A \in \mathcal{M}^{n \times n}$

$$\dot{x}(t) = \int_{[-T,0]}^{\cdot} dA(heta) x(t+ heta)
onumber \ \downarrow$$

 $\dot{x}_i(t) = \sum_{j=1}^n \int_{[-T,0]} x_j(t+ heta) \, dA_{ij}(heta), \; i \in \{1,\cdots,n\}$

System State Space

- State for t = 0: $x|_{[-T;0]} : [-T,0] \rightarrow \mathbb{R}^n$
- For $t \geq 0$ define $x_t: [-T, 0] \rightarrow \mathbb{R}^n$ by: $x_t(heta) = x(t+ heta)$

$$X=C^0([-T,0];\mathbb{R}^n)$$
 $\|x\|_X=\sup_{ heta\in [-T,0]}\|x(heta)\|_{\mathbb{R}^n}$

State-Space Model: Abstract Framework

$$egin{array}{rcl} \dot{x}(t)&=&Ax_t,\ t>0\ x_0&=&\phi\in X \end{array}$$

with $A \in \mathcal{L}(X, \mathbb{R}^n)$: delay operator.

 $\mathcal{L}(X,\mathbb{R}^n)$: linear continous operators $X o \mathbb{R}^n$

State-Space Model Unified Framework

 \mathcal{M} : set of signed Borel measures on [-T, 0]

Riesz Representation Theorem:

 $A\in\mathcal{L}\left(X,\mathbb{R}^{n}
ight)$

if and only iff there is $A \in \mathcal{M}^{n \times n}$ such that

$$A\phi = \int_{[-T,0]} dA(heta) \phi(heta)$$

Ordinary Differential Equations: Initial Value (Cauchy) Problem

 $egin{aligned} \dot{x}(t) &= f(t,x(t)), \ t > 0, \quad f: \mathbb{R}_+ imes \mathbb{R}^n \ x(0) &= \phi \in \mathbb{R}^n \end{aligned}$

$$x(t)=\phi+\int_0^t f(au,x(au))\,d au$$

Caratheodory - Existence + Uniqueness:

- $orall x \in \mathbb{R}^n, \ t \mapsto f(t,x) ext{ measurable}$
- $\exists \alpha \in L^1_{\mathrm{loc}}(\mathbb{R}_+;\mathbb{R}), \ \|f(t,0)\|_{\mathbb{R}^n} \leq \alpha(t)$
- $\exists eta \in L^1_{ ext{loc}}(\cdots), \ \|f(t,x) f(t,y)\|_{\mathbb{R}^n} \leq eta(t)\|x y\|_{\mathbb{R}^n}$

Differential-Delay Systems Initial Value (Cauchy) Problem

$$f: \mathbb{R}_+ \times X \to \mathbb{R}^n$$

$$egin{array}{rll} \dot{x}(t)&=&f(t,x_t),\;t>0,\ x_0&=&\phi\in X \end{array}$$

Caratheodory - Existence + Uniqueness:

- $\forall x \in X, t \mapsto f(t,x)$ measurable
- $\exists \alpha \in L^1_{\mathrm{loc}}(\mathbb{R}_+;\mathbb{R}), \ \|f(t,0)\|_{\mathbb{R}^n} \leq \alpha(t)$

 $\exists eta \in L^1_{ ext{loc}}(\cdots), \ \|f(t,x) - f(t,y)\|_{\mathbb{R}^n} \leq eta(t)\|x - y\|_X$

Linear DDS

$$\dot{x}(t)=Ax_t,\;t>0,\ x_0=\phi\in X$$

 $A \in \mathcal{L}\left(X, \mathbb{R}^n\right)$

- Solution existence and uniqueness:
 - in general, check Caratheodory solutions (fixed-point argument behind the scenes),
 - in simple cases « method of steps » works.

Linear Delay-Differential Algebraic System

 $\begin{vmatrix} \dot{x}(t) = Ax_t + By_t \\ y(t) = Cx_t + Dy_t \end{vmatrix}$

delay operators: $A, B, C, D \in \mathcal{L}(C^0([-T, 0]; \mathbb{R}^m); \mathbb{R}^m))$ $x_0 \in C^0([-T, 0]; \mathbb{R}^n), y_0 \in C^0([-T, 0]; \mathbb{R}^m)$

Existence and uniqueness if:

no algebraic loop: $I - D(\{0\})$ invertible consistency: $y_0(0) = Cx_0 + Dy_0$

Delay Systems – Stability

Internal/External Stability

Internal Stability

$$\dot{x}(t)=Ax_t,\;t>0\ x_0=\phi$$

stable:

 $\begin{aligned} \forall \varepsilon > 0, \ \exists \delta > 0, \|\phi\|_X < \delta \implies \sup_{t>0} \|x(t)\|_{\mathbb{R}^n} < \varepsilon \\ \text{or } \forall \varepsilon > 0, \ \exists \delta > 0, \|\phi\|_X < \delta \implies \sup_{t>0} \|x_t\|_X < \varepsilon \end{aligned}$ $\bullet \text{ asympt. stable: stable and}$

 $x(t) ext{ (or } ||x_t||_X) o 0 ext{ when } t o +\infty$

• exp. stable: $\exists K > 0, \alpha > 0$ such that $|x(t)| \text{ (or } ||x_t||_X) \leq K ||\phi||_X \exp(-\alpha t)$

External (I/O) Stability

L^2 stability:

$$egin{array}{rcl} \dot{x}(t)&=&Ax_t+Bu_t\ y(t)&=&Cx_t+Du_t \end{array} x_0=0$$

$$\exists \, K, \; orall u \in L^2(\mathbb{R}_+), \int |y(t)|^2 \, dt \leq K^2 \int |u(t)|^2 \, dt$$

Delays as a Convolutions

• Consider the delay operator $u \rightarrow y$ with:

$$y(t) = Au_t = \int_{[-T,0]} dA(heta) \, u(t+ heta)$$

• Let *B* be a compact Borel subset of \mathbb{R} .

$$A^*(B)=A(-B)=\int_{[-T,0]}\chi_B(- heta)\,dA(heta)$$

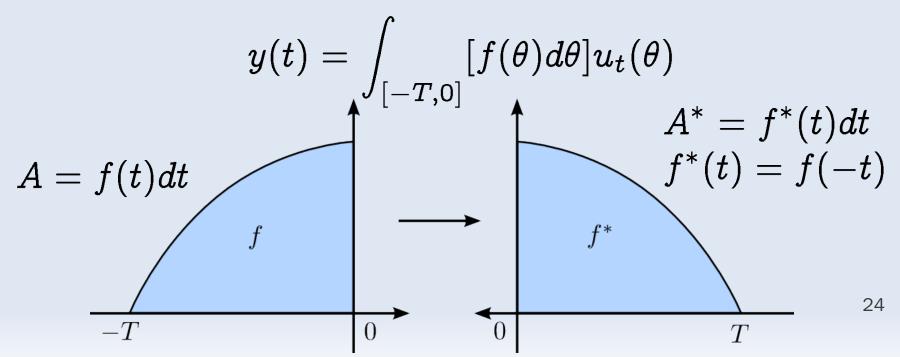
defines a matrix-valued measure A^* on [0, T].

Examples

• Pointwise delay: y(t) = u(t - T)

$$A = \delta(t+T) \rightarrow A^* = \delta(t-T)$$

• Distributed delay: $f \in L^1(-T, 0; \mathbb{R})$



Every delay operator is a convolution:

$$egin{aligned} y(t) &= A u_t \implies \ y(t) &= (A^* * u)(t) = \int_{-\infty}^{+\infty} dA^*(heta) u(t- heta) \end{aligned}$$

- This convolution form :
 - enables a definition of the output y for irregular inputs (such as $u(t) = \delta(t)$),
 - is handy for Laplace analysis.

Laplace Transform Analysis

Consider $u \to y$ with $y(t) = Au_t$

- The **impulse response** (matrix) is A^* ,
- Its **transfer function** A(s) is given by:

$$A(s) riangleq \mathscr{L}(A^*)(s) = \int_{[-T,0]} \exp(s heta) \, dA(heta)$$

• For suitable inputs and values of $s \in \mathbb{C}$:

$$\mathscr{L}(y)(s) = A(s) \times \mathscr{L}(u)(s)$$

External Stability: Transfer Functions

The transfer function of the I/O system is:

$$H(s) = C(s)(sI - A(s))^{-1}B(s) + D(s)$$

Search for exponential solutions:

if
$$u(t) = u(s)e^{st}$$
, $y(t) = y(s)e^{st}$, $y(s) = H(s)u(s)$

- Its singularities are the I/O poles
- External stability:

iff all I/O poles s satisfy $\Re(s) < -\varepsilon < 0$.

Transfer Functions Examples

$$\dot{x}(t) = x(t-T) + u(t)$$

 $y(t) = x(t)$

$$\dot{x}(t)=x(t)+u(t-T/2)$$

 $y(t)=x(t-T/2)$

$$egin{aligned} \dot{x}(t) &= \int_{[-T,0]} x(t+ heta) \, d heta + u(t) \ y(t) &= x(t) \end{aligned}$$

From External Stability to Internal Stability

Take a FINITE-DIMENSIONAL linear system

- 1- get rid of all inputs and outputs,
- 2- add a new input in front of any integrator,
- 3- observe every state variable.
- The new system is observable + commandable

External Stability iff Internal Stability

Finite-Dimensional Systems Internal Stability

- Apply the process to a finite-dim. system:
- $egin{aligned} \dot{x}(t) &= Ax(t) + Bu(t) \ y(t) &= Cx(t) + Du(t) \end{aligned} egin{aligned} \dot{x}(t) &= Ax(t) + u(t) \ y(t) &= Cx(t) \end{aligned} H(s) &= (sI A)^{-1} \ s \in \mathbb{C} ext{ pole of } H(s) & \iff sI A ext{ not invertible} \ & \iff s \in \sigma(A) \end{aligned}$

Conclusion - Internal Stability:

 $orall s \in \sigma(A), \ \Re(s) < -arepsilon < 0$

Differential-Delay Systems Internal Stability

- Apply formally the process to a DDS:
- $egin{aligned} \dot{x}(t) &= Ax_t + Bu_t & \longrightarrow & \dot{x}(t) &= Ax_t + u(t) \ y(t) &= Cx_t + Du_t & & y(t) &= x(t) \ & & & H(s) &= (sI A(s))^{-1} \end{aligned}$
- $egin{aligned} s \in \mathbb{C} \ ext{pole of} \ H(s) & \iff \ sI A(s) \ ext{not invertible} \ & \iff \ \det(sI A(s)) = 0 \end{aligned}$

Conclusion (valid !) - Internal Stability:

 $orall s \in \mathbb{C}, \; \det(sI - A(s)) = 0 \implies \Re(s) < -arepsilon < 0$

Differential-Delay Systems Internal Stability

Characteristic Matrix

$$\Delta(s) = sI - A(s) = sI - \int_{[-T \ 0]} e^{\theta s} dA(\theta)$$

Characteristic Function / Equation:

$$f(s) = \det \Delta(s) / f(s) = 0$$

- The roots of f(s) are the **system poles**,
- Spectral Exponential Stability Criterion:

 $\sup \left\{ \Re(s) \mid f(s) = 0 \right\} < 0$

Delay-Differential Algebraic Sys. Internal Stability

For the class of delay systems:

$$\dot{x}(t) = Ax_t + By_t$$

 $y(t) = Cx_t + Dy_t$

the characteristic matrix is:

$$\Delta(s) = \left[egin{array}{cc} sI - A(s) & -B(s) \ -C(s) & I - D(s) \end{array}
ight]$$

The spectral stability criterion still works : the spectral determined growth condition holds.

Delay-Differential Systems External/Internal Poles

• $\Delta(s)$ is holomorphic, $\Delta(s)^{-1}$ merophormic :

- finite or infinite number of poles,
- but they are all isolated.
- There is a finite number of them such that $\Re(s) \ge M \; (\forall M)$ (delay-differential systems only)
- All external poles are internal poles

Internal Stability \Rightarrow External Stability

Mikhailov Stability Criterion

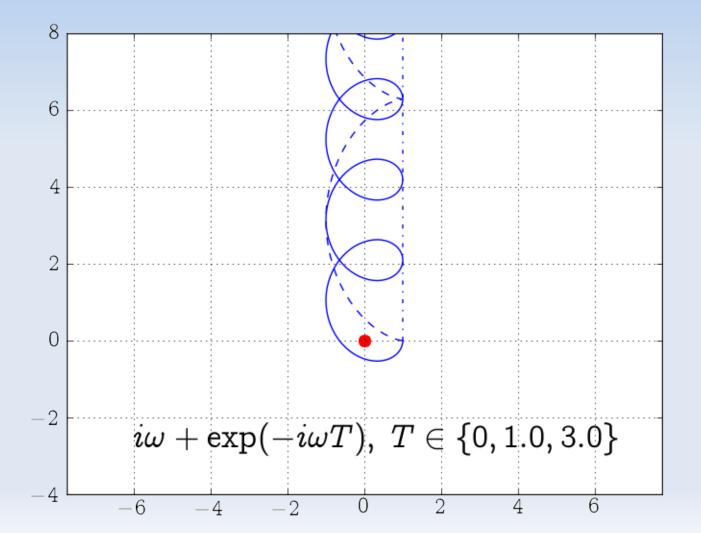
• Consider
$$\dot{x}(t) = Ax_t, \ x(t) \in \mathbb{R}^n$$

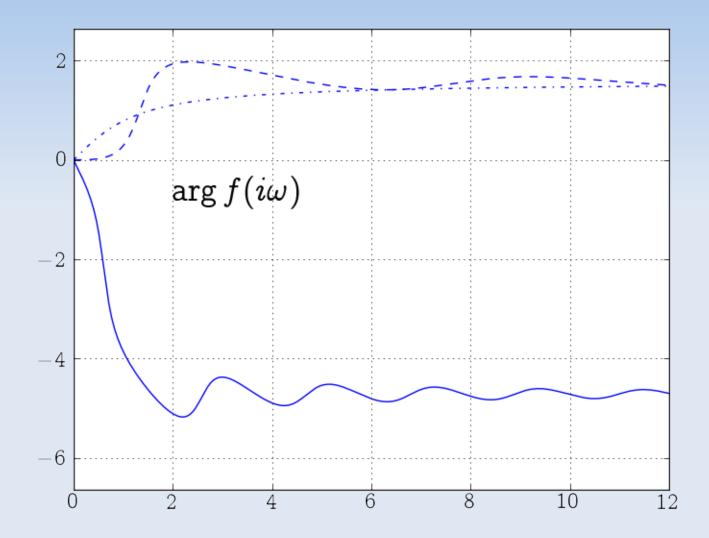
- The system is exponentially stable iff: $\forall \omega \in \mathbb{R}_+, \ f(i\omega) \neq 0$ $\Delta \arg f(i\omega)|_{\omega=0}^{+\infty} = n \frac{\pi}{2}$
- N being the number of unstable poles

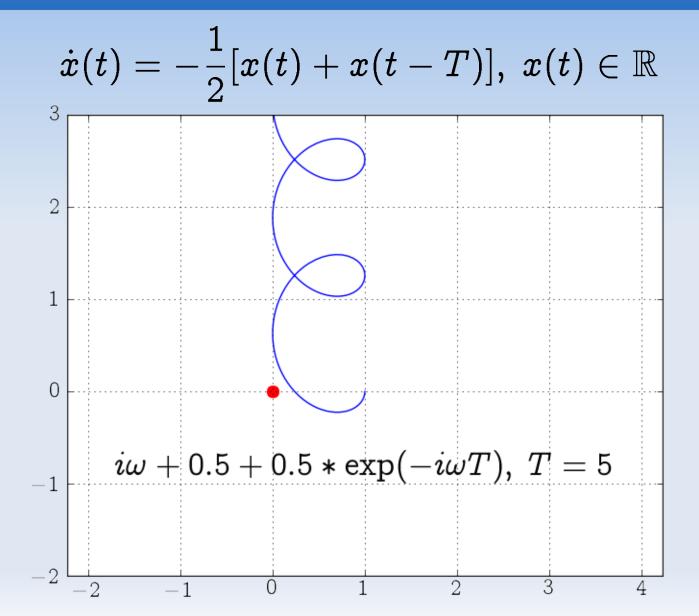
$$\Delta rg f(i \omega) ert_{\omega=0}^{+\infty} = n rac{\pi}{2} - N \pi$$

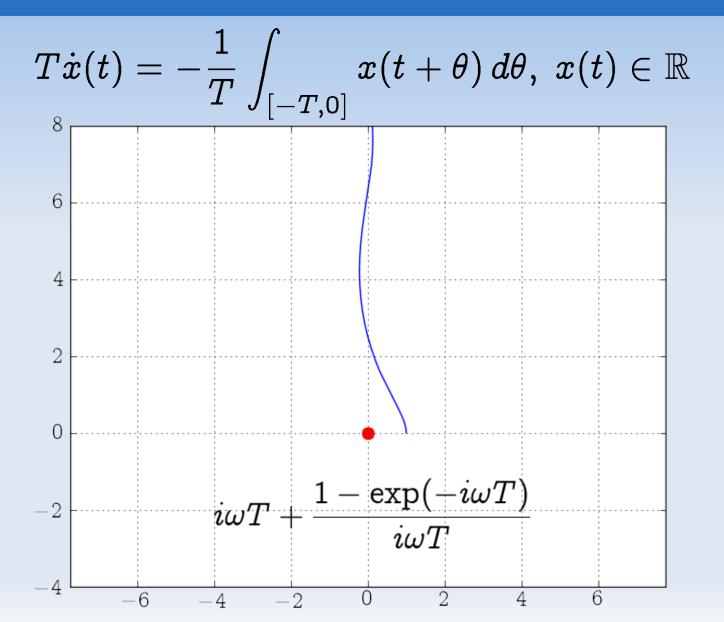
Examples

$$\dot{x}(t)=-x(t-T),\;x(t)\in\mathbb{R}$$









Stability for every delay

$$\dot{x}(t) = Ax(t) + Bx(t-T)$$

If the system exp. stable for T=0,

• If
$$\sigma(A) \cap \{i\omega, \, \omega \in \mathbb{R}^*_+\} = arnothing$$
 ,

• Let
$$H(i\omega) = (i\omega - A)^{-1}B$$
,

V

The system is exp. stable for any delay iff:

$$orall\,\omega\in\mathbb{R}_+\,,\,
ho(H(i\omega))<1$$
 with $ho(A)=\sup\{|\lambda|,\;\lambda\in\sigma(A)\}$

Delay Systems: Controller Design

Control of Dead-Time Systems : from the Smith predictor to Observer-Predictor structures.

Dead-Time Systems

The most common delay system structure:

 $egin{array}{lll} \dot{x}(t) = Ax(t) + Bu(t) & u(t) \in \mathbb{R}, \; y(t) \in \mathbb{R} \ y(t) = Cx(t-T) & \end{array}$

$$\begin{array}{c|c} u \\ \hline P(s) \\ \hline e^{-sT} \end{array} \begin{array}{c} y \\ \end{array}$$

$$P(s) = C(sI - A)^{-1}B$$

Smith Predictor Step I: delay-free controller

- Without delay, get a 1-d.o.f. controller with:
 - Internal closed-loop exp. stability,
 - a suitable $r \to y$ behavior (t.f. H(s)).

$$\xrightarrow{r} \xrightarrow{-e} C(s) \xrightarrow{u} P(s) \xrightarrow{y}$$

$$H(s) = (I + PC(s))^{-1} PC(s)$$

$$\dot{z} = Ez + F(-e)$$

$$u = Gz + H(-e)$$

$$C(s) = G(sI - E)^{-1}F + H$$

Smith Predictor Step I: delay-free controller

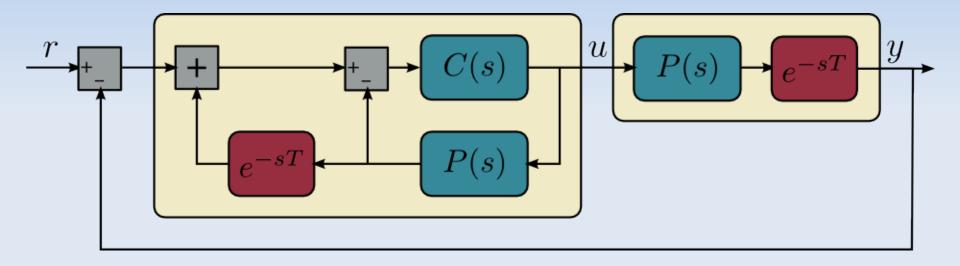
Closed-Loop State-Space Dynamics:

x plant state, z controller state

$$\begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} (t) = M \begin{bmatrix} x \\ z \end{bmatrix} (t)$$

$$M = \begin{bmatrix} A - BHC & BG \\ -FC & E \end{bmatrix}$$

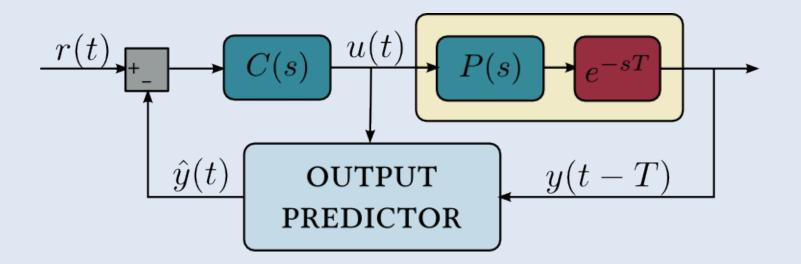
Smith Predictor Step II: build the controller



There is no step III !

Smith Controller Design

How do you think of such a design ?
 Adopt the general (sensible) structure:

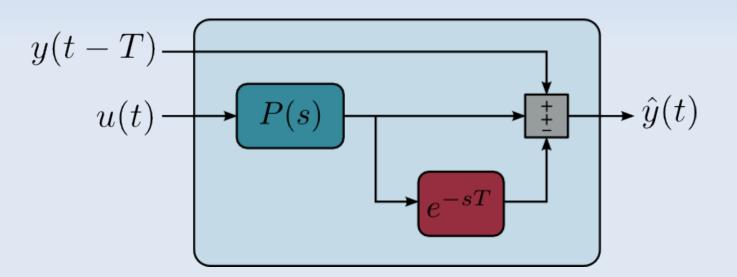


Output Predictor Design

- Try first an 'open loop predictor'.
 - what is the issue ?
- Close the loop
 - ... but preserve the same I/O behavior !
- Among predictor designs
 - ... select the one that creates a one-degree of freedom controller.

Smith (Output) Predictor

 Builds an output estimate from the delayed output measure and applied control:



Smith Predictor Analysis

I/O behavior:

$$H(s) = (I + PC(s))^{-1}PC(s)e^{-sT}$$

that is the delay-free behavior, delayed.

• What about internal stability ?

Smith Predictor State-Space Model

Denote

x plant state, z controller state e prediction error

Closed-loop system dynamics structure:

$$\begin{bmatrix} \dot{x} \\ \dot{z} \\ \dot{e} \end{bmatrix} (t) = \mathcal{A} \begin{bmatrix} x \\ z \\ e \end{bmatrix} (t) + \mathcal{A}_d \begin{bmatrix} x \\ z \\ e \end{bmatrix} (t - T)$$

Smith Predictor Closed Loop Dynamics

$$\mathcal{A} = \begin{bmatrix} A - BHC & BG & -BHC \\ -FC & E & -FC \\ 0 & 0 & A \end{bmatrix}$$

$$\mathcal{A}_d = \begin{bmatrix} 0 & 0 & BHC \\ 0 & 0 & FC \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Delta(s) = sI - \mathcal{A} - \mathcal{A}_d \exp(-sT) = \begin{bmatrix} sI - M & ? \\ 0 & sI - A \end{bmatrix}$$

Smith Predictor Characteristic Function

 $f(s) = \det(sI - M) \times \det(sI - A)$

poles of the closed-loop system

_

poles of the delay-free closed-loop system + poles of the plant open loop

Smith Predictor Conclusions

- Nice I/O behavior,
- Internal exp. stability:
 - iff the plant is already exp. stable

(rk: potential unstability was visible from I/O analysis)

What about a STATE predictor strategy ?

Exact State Predictor I

Assume that for $t \ge 0$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

then for $t_1 \ge t_0$ $x(t_1) = e^{A(t_1 - t_0)} x(t_0) + \int_{t_0}^{t_1} e^{A(t_1 - t)} Bu(t) dt$

so for any $t \leq T$

$$x(t)=e^{AT}x(t-T)+\int_{t-T}^{t}e^{A(t- au)}Bu(au)\,d au$$

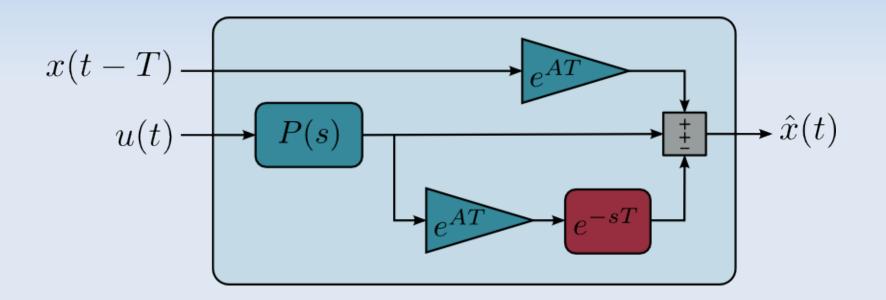
Exact State Predictor

 The predictor can be realized without using distributed delays as :

This is a bad idea ! (more on this subject later)

Exact State Predictor

Still, the structure is interesting:

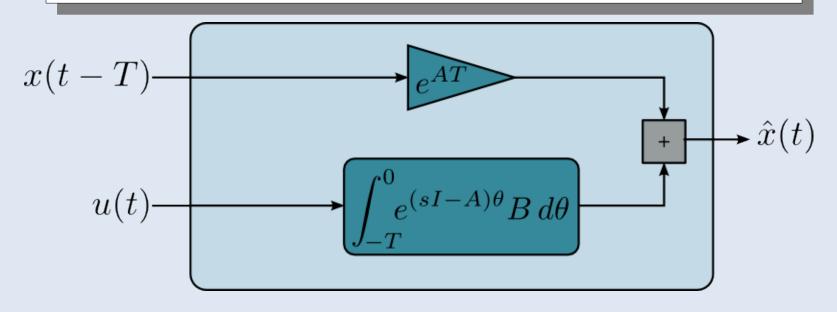


(compare with Smith predictor)

Exact State Predictor II

• define the state estimator $\hat{x}(t)$ for $t \ge 0$ by:

$$\hat{x}(t) = e^{AT}x(t-T) + \int_{[-T,0]} [e^{-A heta}Bd heta]\,u_t(heta)$$



• the estimation is **exact** for $t \ge T$

Finite-Spectrum Assignment Controller Design

Step 1: find a matrix gain K such that

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $u(t) = -Kx(t)$

is asymptotically stable.

• Step 2: as x(t) is not available, use instead $u(t) = -K\hat{x}(t)$

FSA Stability Analysis

State-space model:

$$\dot{x}(t) = Ax(t) - BK\hat{x}(t)$$

 $\hat{x}(t) = e^{AT}x(t-T) - \int_{[-T,0]} [e^{-A heta}BKd heta]\hat{x}_t(heta)$

• Laplace analysis - matrix $\Delta(s)$

$$\begin{bmatrix} sI - A & BK \\ \hline -e^{-(sI - A)T} & I + [sI - A]^{-1}(I - e^{-(sI - A)T})BK \end{bmatrix}$$

charac. func.: $f(s) = \det \Delta(s)$

Set
$$L(s) = [sI - A]^{-1}[I - e^{(sI - A)T}]$$

then

$$\Delta(s) \begin{bmatrix} I & 0 \\ \hline I & I \end{bmatrix} = \mathcal{P}(s) \begin{bmatrix} sI - A + BK & 0 \\ \hline 0 & I \end{bmatrix}$$

with
$$\mathcal{P}(s) = \begin{bmatrix} I & BK \\ \hline L(s) & I + L(s)BK \end{bmatrix}$$
$$= \begin{bmatrix} I & 0 \\ \hline L(s) & I \end{bmatrix} \begin{bmatrix} I & BK \\ \hline 0 & I \end{bmatrix}$$

FSA Conclusions

- $f(s) = \det \Delta(s) = \det(sI A + BK)$
- finite number of poles
- internal exp. stability:

delayed loop with FSA poles

delay-free loop with state feedback poles.

- Exercice: consider the FSA controller but with a predictor implemented as a Smith structure (no distributed delay).
- Show without computations that the openloop system poles are still poles of the closed loop (therefore the closed loop is internally exp. stable iff the original system is)

FSA with Observers

• What if x(t - T) is not available but only y(t)?

$$\dot{x}(t) = Ax(t) + Bu(t)
onumber \ y(t) = Cx(t-T)$$

Assume that (A, C) is observable. We can build an **observer** to get an estimate x̃(t) of the delayed state x(t - T).

Observer Design

- Pick up L such that A LC is stable.
- Consider

$$\dot{ ilde{x}}(t) = A ilde{x}(t) + Bu(t-T) - L(ilde{y}(t) - y(t)) \ ilde{y}(t) = C ilde{x}(t)$$

• The error $e(t) = \tilde{x}(t) - x(t - T)$ satisfies :

$$\dot{e}(t) = (A - LC)e(t)$$

therefore $e(t) \rightarrow 0$ when $t \rightarrow +\infty$

Integration

Adapt the FSA control law :

chain the observer and the predictor

$$egin{aligned} u(t) &= -K \hat{x}(t) \ \hat{x}(t) &= e^{AT} ilde{x}(t) - \int_{[-T,0]} [e^{-A heta} BK d heta] \, \hat{x}_t(heta) \end{aligned}$$

Is the full construct internally exp. stable ?

FSA with Observers : Stability Analysis

- Consider the dynamics of $(x(t), \hat{x}(t), e(t))$,
- The associated characteristic matrix is :

$$\mathcal{M}(s) = egin{bmatrix} \Delta(s) & ? \ \hline 0 & sI - A + LC \end{bmatrix}$$

The characteristic equation is:
 det(M(s)) = det(sI − A + BK) × det(sI − A + LC)
 ⇒ internal exp. stability

Example

Consider the scalar equation :

$$\ddot{y}(t) = u(t-T)$$

- Design a predictor-observer-controller that stabilizes exponentially this system,
- More precisely, locate all closed-loop poles at s = -1.

State-space model:

$$egin{aligned} \dot{x}(t) &= \left[egin{aligned} y(t+T)\ \dot{y}(t+T) \end{array}
ight] \in \mathbb{R}^2 \ \dot{x}(t) &= Ax(t) + Bu(t) \ y(t) &= Cx(t-T) \end{aligned}$$

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \ B = \left[\begin{array}{cc} 0 \\ 1 \end{array} \right], \ C = \left[\begin{array}{cc} 1 & 0 \end{array} \right]$$

Finite-Dimensional Observer/Controller Design

The gain matrices :

$$K = \begin{bmatrix} 1 & 2 \end{bmatrix}, L = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
are such that :

$$\sigma(A - BK) = \{-1, -1\}$$

 $\sigma(A - LC) = \{-1, -1\}$

 \implies poles of the closed-loop system:

$$\{-1, -1, -1, -1\}$$

Predictor + Observer + Controller structure:

$$egin{aligned} \dot{ ilde{x}}(t) &= A ilde{x}(t) + Bu(t-T) - L(C ilde{x}(t) - y(t)) \ u(t) &= -K \hat{x}(t) \ \hat{x}(t) &= e^{AT} ilde{x}(t) - \int_{[-T,0]} [e^{-A heta} BKd heta] \hat{x}_t(heta) \end{aligned}$$

for
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $e^{At} = \sum_{n=0}^{+\infty} \frac{1}{n!} (tA)^n = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$

$$egin{array}{rll} \hat{x}_1(t)&=& ilde{x}_1(t)+T ilde{x}_2(t)+\int_{[-T,0]} heta(\hat{x}_1(t+ heta)+2 ilde{x}_2(t+ heta))d heta\ \hat{x}_2(t)&=& ilde{x}_2(t)-\int_{[-T,0]}\hat{x}_1(t+ heta)+2 ilde{x}_2(t+ heta)d heta\ rac{d}{dt} ilde{x}_1(t)&=& ilde{x}_2(t)-2 ilde{x}_1(t)+2y(t)\ rac{d}{dt} ilde{x}_2(t)&=&-\hat{x}_1(t)-2 ilde{x}_2(t)- ilde{x}_1(t)+y(t)\ u(t)&=&-\hat{x}_1(t)-2 ilde{x}_2(t) \end{array}$$

Short Reference List

- 1) Jack K. Hale and Sjoerd M. Verduyn Lunel. Introduction to functional differential equations. Applied Mathematical Sciences. 99. New York, NY: Springer-Verlag. ix, 447 p. 1993.
- 2) W Michiels and S-I Niculescu. Stability and stabilization of time-delay systems. An eigenvalue based approach. In Advances in Design and Control, 2007.
- Alain Bensoussan, Giuseppe Da Prato, Michel C. Delfour, and Sanjoy K. Mitter. Representation and Control of Infinite Dimensional Systems (Systems & Control: Foundations & Applications). Birkhauser, 2006.
- 4) Leonid Mirkin and Natalya Raskin. Every stabilizing dead-time controller has an observer-predictorbased structure. Automatica, 39(10):1747–1754, 2003.