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Prerequisites

 Control Theory: 
 Finite-Dim. Linear Time-Invariant Systems,
 State-Space and Input/Output settings.

 Mathematics:
 Measure Theory,
 Linear Operators,
 Complex Analysis,
 Semigroup Theory.
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Introduction

 Sometimes ordinary differential equations 
(ODEs) are not the proper model for a system: 

 delays are necessary       FDEs (Functional)
 hopefully such models are:

 linear and time-invariant (LTI),
 but their state space is infinite-dimensional : 

  new modelling, analysis and control 
methods are required.
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Example:
Control of a Thermic Loop

System properties:
 volumic heat capacity:   , 
 thermal conductivity:   .
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Thermic Loop: 
Analytic Model I

Let the reference temperature be 0,

Inject     joules at 
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Thermic Loop:
Analytic Model II

Heat Diffusion

Impulse response (1 joule injected)
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Thermic Model:
Analytic Model III

Take into account the transport
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Identification: 
System Structure

Delay: 

Two time scales:
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Identification: 
2nd-order + delay

3rd-order linear model improves accuracy
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Identification:
State-Space Model

 State-space model for this dead-time system:

 Control: try a linear feedback:

What are the properties of this system ?
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Delay-Differential Systems:
Examples
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State-Space Model:
Concrete Framework

Concrete Framework (Retarded Equation)

    : set of signed Borel measures on
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System State Space

State for        :

For         define                         by: 

State Space     of continuous functions:
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State-Space Model: 
Abstract Framework



15

State-Space Model
Unified Framework

    : set of signed Borel measures on 

Riesz Representation Theorem:

if and only iff there is                 such that
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Ordinary Differential Equations: 
Initial Value (Cauchy) Problem 

Caratheodory - Existence + Uniqueness:
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Differential-Delay Systems 
Initial Value (Cauchy) Problem

Caratheodory - Existence + Uniqueness:
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Linear DDS

 Solution existence and uniqueness:
 in general, check Caratheodory solutions

(fixed-point argument behind the scenes),
 in simple cases « method of steps » works. 
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Linear Delay-Differential 
Algebraic System

Existence and uniqueness if:

no algebraic loop:

consistency:
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Delay Systems – Stability

Internal/External Stability
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Internal Stability

 stable:

 asympt. stable: stable and

 exp. stable: 
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External (I/O) Stability

     stability:
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Delays as a Convolutions 

 Consider the delay operator          with:

 Let     be a compact Borel subset of    . 

   defines a matrix-valued measure     on       .
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Examples

 Pointwise delay:

 Distributed delay:
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 Every delay operator is a convolution:

 This convolution form : 
 enables a definition of  the output     for 

irregular inputs (such as                 ),
 is handy for Laplace analysis. 
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Laplace Transform Analysis

Consider           with
 The impulse response (matrix) is      ,
 Its transfer function        is given by:

 For suitable inputs and values of         :   



27

External Stability:
Transfer Functions

 The transfer function of the I/O system is:

 Search for exponential solutions:

if                                       ,
 Its singularities are the  I/O poles
 External stability: 

  iff all I/O poles    satisfy                    .
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Transfer Functions 
Examples
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From External Stability to 
Internal Stability

Take a FINITE-DIMENSIONAL linear system
 1- get rid of all inputs and outputs,
 2- add a new input in front of any integrator,
 3- observe every state variable.

The new system is observable + commandable

External Stability iff Internal Stability  
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Finite-Dimensional Systems
Internal Stability

 Apply the process to a finite-dim. system:

Conclusion - Internal Stability:
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Differential-Delay Systems
Internal Stability

 Apply formally the process to a DDS: 

Conclusion (valid !) - Internal Stability:
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Differential-Delay Systems
Internal Stability

 Characteristic Matrix 

 Characteristic Function / Equation:

 The roots of         are the system poles,
 Spectral Exponential Stability Criterion:
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Delay-Differential Algebraic Sys.
Internal Stability

 For the class of delay systems:

the characteristic matrix is:

 The spectral stability criterion still works : the  
spectral determined growth condition holds. 
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Delay-Differential Systems
External/Internal Poles

         is holomorphic,           merophormic : 
 finite or infinite number of poles,
 but they are all isolated.  

 There is a finite number of them such that
                                 (delay-differential systems only)

 All external poles are internal poles

Internal Stability      External Stability
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Mikhailov Stability Criterion

 Consider
 The system is exponentially stable iff:

    being the number of unstable poles
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Examples
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Stability for every delay

 If the system exp. stable for T=0,
 If                                    ,
 Let                             ,                              

The system is exp. stable for any delay iff:
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Delay Systems:
Controller Design

Control of Dead-Time Systems : from  
the Smith predictor to Observer-

Predictor structures.



42

Dead-Time Systems

The most common delay system structure:
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Smith Predictor 
Step I: delay-free controller

 Without delay, get a 1-d.o.f. controller with: 
 Internal closed-loop exp. stability,
 a suitable          behavior (t.f.        ).
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Smith Predictor
Step I: delay-free controller

Closed-Loop State-Space Dynamics:
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Smith Predictor
Step II: build the controller

                  There is no step III !
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Smith Controller Design

 How do you think of such a design ? 

    Adopt the general (sensible) structure:
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Output Predictor Design

 Try first an 'open loop predictor'.
 what is the issue ?

 Close the loop 
 ... but preserve the same I/O behavior !

 Among predictor designs 
 ... select the one that creates a one-degree 

of freedom controller. 
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Smith (Output) Predictor

 Builds an output estimate from the delayed 
output measure and applied control:
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Smith Predictor
Analysis

 I/O behavior:

that is the delay-free behavior, delayed.
 What about internal stability ?
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Smith Predictor
State-Space Model

 Denote

 Closed-loop system dynamics structure: 
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Smith Predictor
Closed Loop Dynamics
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Smith Predictor
Characteristic Function

poles of the closed-loop system 

= 

poles of the delay-free closed-loop system

+

poles of the plant open loop
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Smith Predictor
Conclusions

 Nice I/O behavior,
 Internal exp. stability:

 iff the plant is already exp. stable
(rk: potential unstability was visible from I/0 analysis)

What about a STATE predictor strategy ?
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Exact State Predictor I

Assume that  for

then for

so for any 
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Exact State Predictor

 The predictor can be realized without using 
distributed delays as : 

  This is a bad idea !   (more on this subject later)
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Exact State Predictor

Still, the structure is interesting:

(compare with Smith predictor)
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Exact State Predictor II

 define the state estimator       for         by:

 
 the estimation is exact for 
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Finite-Spectrum Assignment
Controller Design

 Step 1: find a matrix gain     such that

is asymptotically stable.
 Step 2: as       is not available, use instead
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FSA Stability Analysis

 State-space model:

 Laplace analysis - matrix
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Set

then

with
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FSA 
Conclusions

 finite number of poles
 internal exp. stability:

delayed loop with FSA poles

=

delay-free loop with state feedback poles. 
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 Exercice: consider the FSA controller but 
with a predictor implemented as a Smith 
structure (no distributed delay).

 Show without computations that the open-
loop system poles are still poles of the 
closed loop (therefore the closed loop is 
internally exp. stable iff the original system 
is)
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FSA with Observers

 What if            is not available but only      ? 

 Assume that          is observable. We can 
build an observer to get an estimate       of 
the delayed state           .
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Observer Design

 Pick up    such that             is stable.
 Consider

 The error                              satisfies : 

    therefore
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Integration

 Adapt the FSA control law :  

   chain the observer and the predictor

 Is the full construct internally exp. stable ?
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FSA with Observers :  
Stability Analysis

 Consider the dynamics of                    ,
 The associated characteristic matrix is : 

 The characteristic equation is:
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Example

 Consider the scalar equation : 

 Design a predictor-observer-controller that 
stabilizes exponentially this system,

 More precisely, locate all closed-loop poles 
at          . 
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 State-space model:
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Finite-Dimensional 
Observer/Controller Design

 The gain matrices : 

    are such that : 

       poles of the closed-loop system: 
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 Predictor + Observer + Controller structure:
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