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Convergence of Power Series

Definition & Theorem — Radius of Convergence. Let ¢ € C and a,, € C
for every n € N. The radius of convergence of the power series

“+o0
Z an(z—2¢)"
n=0

is the unique r € [0, +o0] such that the series converges if |z — ¢| < r and diverges
if |z — ¢| > r. The disk D(c,r) — the largest open disk centered on ¢ where the
series converges — is the open disk of convergence of the series.

The radius of convergence r is the inverse of the growth ratio of the sequence
an, defined as the infimum in [0, +00] of the set of values o € [0,400) such that
a, is eventually dominated by ¢™:

dmeN, VneN, (n>m) = la,| <o".

(or equivalently, such that 3k > 0, Vn € N, |a,| < ko™.) This growth ratio is
equal to limsup,, ., |an|*/™, which leads to the Cauchy-Hadamard formula':

1
lim sup |a,|"/™
n—-+oo

Ito compute the limit superior of a sequence of (extended) real numbers, consider all
subsequences that converge (as extended real numbers: in [—o0, +00]) and take the supremum
of their limits.
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By convention here, 1/0 = 400 and 1/(400) = 0.

Proof. Let p be the growth ratio of the sequence a,,. If a complex number z
satisfies |z — ¢| < p~1, p is finite and there is a ¢ > p such that |z — c| < o7L.
Eventually, we have |a,| < ¢™ and thus

|an(z = )" < (o]z = ¢])".

As o]z — ¢| < 1, the series 3.2 a,(z — ¢)" is convergent. Conversely, if

|z —c| > p~t, p > 0 and there is a o < p such that |z —c| > 71 As 0 < p,
there is a strictly increasing sequence of n € N such that |a,| > ¢™ and thus
lan(z — )" > (oo~ 1)™ = 1. Since its terms do not converge to zero, the series
S Ay (2 — )™ is divergent.

We now prove that the growth ratio of |a,| is equal lim sup,, |a,|"/". Indeed, for
any o greater than the growth ratio p, eventually |a,| < o™, hence |a,|"/" <
o and limsup, |a,|'/™ < o, therefore limsup, |a,|'/™ < p. Conversely, if o
is smaller than the growth ratio, there is a strictly increasing sequence of
n € N such that |a,| > ¢”, hence |a,|'/" > ¢ and limsup, |a,|'/™ > o, thus
lim sup,, |an|"/™ > p. |

Example — A Geometric Series. Consider the power series

“+oo
> (=1/2)m2m
n=0
Since |(—1/2)™| = 1/2™ < o™ eventually if and only if o > 1/2, the growth bound
of the geometric sequence (—1/2)™ is 1/2. Thus the open disk of convergence of
this power series is D(0, 2).
Example — A Lacunary Series. Consider the power series:
+oo
n=0
The “lacunary” adjective refers to the large gaps between nonzero coefficients;
These coefficients are defined by

|1 if 3peN, n=27,
n =10 otherwise.

It is plain that |a,| < o™ eventually if and only if o > 1. Hence the growth
bound of the sequence if 1 and the open disk of convergence of the power series
is D(0,1).

Lemma — Multiplication of Power Series Coefficients. The radius of
convergence of the power series ZZ:& anby(z — )™ is at least the product of
the radii of convergence of the series 3.7 a,(z — ¢)” and 30 b, (2 — ¢)". In
particular, for any nonzero polynomial sequence

an =09 +oqn+ -+ apn?,



the radii of convergence of 372 a,b, (2 — )" and 3.0 b, (2 —¢)" are identical.

Proof. Denote by p, and p, the respective growth bounds of the sequences a,,
and b,; the growth bound of the product sequence a,b,, is at most p,pp: for any
0 > papp, we may find some o, > p, and o, > pp such that ¢ = o,03. Since
|an| < (04)™ and |b,| < (0p)™ eventually, |a,b,| < o™ eventually.

The growth bound of any polynomial sequence a,, is at most 1: the inequality
lag + ain+ -+ apnP| < p"

holds for any p > 1 eventually. Now, for any nonzero polynomial sequence a,,
and any sequence b, eventually |b,| is dominated by a multiple of |a,b,|, thus
the growth bound of |b,| is at most the growth bound of |a,b,|. Reciprocally,
the growth bound of |a,by| is at most the product of the growth bound of |a,| —
at most one — and the growth bound of |b,| and thus at most the growth bound
of |by|. [ |

Theorem — Locally Normal Convergence. The convergence of the power
series Z:er% an(z — )™ in its open disk of convergence D(c,r) is locally normal:
for any z € D(e,r), there is an open neighbourghood U of z in D(c,r) such that

+oo
dk>0,VzeU, Z|an(z—c)”| <k

n=0
or equivalently, for every compact subset K of D(c,r),

“+o0
dk>0,Vze K, Z|an(z—c)"| < k.

n=0

Proof. If K is compact subset of D(¢,r) and p =sup{|z — c| | z € K},

—+oo —+oo
VzeK, Z lan(z — )] < Z lan|p™.
n=0 n=0

Since the growth bound of the sequence a,, and |a,| are identical, the radius
of convergence of the series 30 |a,|2™ is 7. Given that [p| < r, the series

:ioo |an|p™ is convergent; all its terms are non-negative real numbers, thus the
sum is finite: there is a & > 0 such that 3720 |a,|p" < k. |

Remark — Other Types of Convergence. The locally normal convergence
implies the absolute convergence:

—+o0
Vz e D(c,r), Z lan(z — )| < 4o0.

n=0



It also provides the locally uniform convergence: on any compact subset K
of D(e,r), the partial sums > _ a,(z — ¢)" converge uniformly to the sum

:“g an(z —c)™:

lim sup Zanz—c Zanz—c =0.

—+00
p 2€K =0

Power Series and Holomorphic Functions

Theorem — Power Series Derivative. A power series and its formal deriva-

tive
-1
g an(z —¢)" and g nap(z —c)" .

have the same radlus of convergence 7. The sum
+oo

f:zeD(c,r)HZan(z—c)"

n=0

is holomorphic; its derivative is the sum of the formal derivative:

Vz € D(c,r), f/( Znanzfc -1
n=1
More generally, the p-th order derivative of f is defined for any p € N and
+oo
Vze Dler), fP(z) = Z nn—1)---(n—p+LDan(z —c)"P.

n=p

Lemma. For any z € C, h € C* and n > 2,

(z+h)" = 2" T nin—1
h

< "D (1o -yl

Proof — Lemma. Using the identity a™ — " = (a — b) Z?n;lo ambnT1mm yields
n—1
(z+h)"=2"=h Z (z 4 h)mzn—t=m,
m=0

hence

n n n—1 n—1
(Z+h) -z _nzn—l _ 2 (z+hmn1m § Zmnlm
m=0
n—1

= Z [(z 4+ h)™ — 2™ 2",

m=0



By the same identity, we also have

m—1
G+ h)™ = 2™ = | S (2 + B < m|z] + [A) ™ Al
1=0
Therefore
z+h)" — 2" n— — m— n—l-m
%7712 o< [Zm (Il + [RD)™ 7 (|2l + [B)" 1™ | |
m=0
n(n—1 _
< D) 4 a2
as expected. [ |

Proof — Power Series Derivative. Let D(c,r) be the open disk of convergence
of the series

+oo
f(2) =Y an(z =)™
n=0

The radii of convergence of the series

+o0 too
Z nan(z —c)"* and Z nan(z —c)"
n=1 n=0

are equal. Since the coefficient sequence of the latter series is the product of a,
and a nonzero polynomial sequence, the open radius of convergence of f and
of its the formal derivative are identical. For any z € D(c,r) and h € C, define
e(z,h) as

+oo
e(z,h) = w — Znan(z —c)" L.

A straightforward calculation leads to

e(2, h) = fan [(”h‘c)z_ =" _ —c)"l} ,

n=1

hence, using the lemma, we obtain

“+o0
n(n — 1) n—
le(z,h)| < [Z —5 lanl(]z = ¢[ +|h]) 2] x |h].
n=2
The power series
400
-1
PR R
n=2



has the same radius of convergence than

—+o0

Z n(nz_ 1)(1"(2 _ C)nf2

n=2

which is the the formal derivative of order 2 of the original series, hence the
three series have the same radius of convergence r. Consequently, for any h such
that |z —¢| + |h| <,

—+oo

-1
S PO Y (12— ef Bl < 4o
n=2
and therefore
. f(z+h 1
lim ————2 - .
hli% Znan z—2¢o)"

The statement about the p-th order derlvatlve of f can be obtained by a simple
induction on p. |

Theorem & Definition — Taylor Series. If the complex-valued function
f has a power series expansion centered at ¢ inside the non-empty open disk
D(c,r), it is the Taylor series of f:

Vze D(c,r) Z f(n) —c)".

Proof. If f(2) = :L'(XE) an(z —c)", then for any p € N, the p-th order derivative
of f inside D(c,r) is given by

+oo
fP(z2) = Z nn—1)...(n—p+ Dap(z —c)"7?
n=p
and consequently, f()(c) = play. |

Note that the above theorem is only a uniqueness result; it says nothing about
the existence of the power series expansion. This is the role of the following
theorem.

Theorem — Power Series Expansion. Let 2 be an open subset of C, let
c € Qand r € ]0,400] such that the open disk D(c,r) is included in €. For any
holomorphic function f : 2 — C, there is a power series with coefficients a,, such
that

Vze D(c,r), Zanz—c

Its coefficients are given by

_ ! f(2) G —
VpG]O,T[, a/n—m/’y(zc)nﬂdz Wlth ’7—C+p[©]



Proof — Power Series Expansion. For any n € N, the complex number

a,nzl/(f()dz with v = ¢+ p[0)]

27 z—c)ntl

is independent of p aslong as 0 < p < r. Indeed, if p; and p, are two such numbers,
denote y1 = ¢+ p1[0] and v2 = ¢ + p2[O]. The interior of the sequence of paths
p =1 |75 is included in D(e,r) \ {c} where the function 2z — f(2)/(z — c¢)"*!
is holomorphic. Hence, by Cauchy’s integral theorem,

/u(zﬂcz))”“dzzll(zﬂj)zmdz—/%(zﬂglﬂdzzo.

Now, let z € D(c,r) and let p € |0, [ such that |z — ¢| < p. Cauchy’s integral
formula provides
1
) = 7/ f(w) dw.
27 ), w— 2
For any w € ([0, 1]), we have

1 1 1 1

w—z (w—c)—(z—c)_w—cl—ﬁ

Since

_lmd oy
p

zZ—C
’

w—=c

we may expand f(w)/(w — z) into

=

w—c

The term of this series is dominated by

SUP|yy—c|=p | f(w)] <|Z - C|>n.
p p ’

the convergence of the series is normal — and thus uniform — with respect to the
variable w. Finally

Z — C n+1 C>7;| dw

nO

{ W@_@ndw}

I
HMHM* —

ol [

which is the desired expansion. |



Laurent Series

Definition — Annulus. Let ¢ € C and 71,79 € [0, +00]. We denote by
Ale,ry,re) ={2€C|ri <|z—c| <r2}

the open annulus with center c, inner radius r1 and outer radius ro.
Examples — Annuli.

1. The open annulus A(0,0, +00), centered on the origin, with inner radius 0
and outer radius +o0, is the set C*.

2. The sets A(0,0,1), A(0,1,2) and A(0, 2, +00) are three open annuli centered
on the origin and included in the open set = C\ {i,2}. They are maximal
in 2 — if we decrease their inner radius and/or increase their outer radius
the resulting annulus is not a subset of Q2 anymore.

Definition — Laurent Series. The Laurent series centered on ¢ € C with
coefficients a,, € C for every n € Z is

+oo

Z an(z —o)".

n=—oo

It is convergent for some z € C\ {c} if the series

E an(z — )" and g a_n(z—0c)™"

are both convergent — otherwise it is divergent. When the Laurent series is
convergent its sum is defined as

“+ o0
Z an(z —c)" Zanz—c —|—Za_ z—c) ™

n=—oo

Theorem — Convergence of Laurent Series. Let ¢ € C and let a,, € C
for n € Z. The inner radius of convergence r1 € [0,400] and outer radius of
convergence 12 € [0,400] of the Laurent series Z:io_oo an(z — )™ defined by

. 1
ry = 11msup|a,n|1/" and 79 = ——T Y
n—s+o0 lim sup |ay|
n——+oo

are such that the series converges in A(c,r1,r2) and diverges if |z — ¢| < r1 or
|z — ¢| > ro. In this open annulus of convergence, the convergence is locally
normal.



Proof — Convergence of Laurent Series. The first series converges if |z — ¢|
is smaller than the radius of convergence r, of this power series and diverges if
it is greater. We may rewrite the second series as:

+oo B +oo 1 n
;a,n(z—c) :;a,n (z—c) .

Consequently, it converges if |1/(z — ¢)| is smaller than the radius of convergence
1/r1 of the power series 7% a_,2", that is if |2 — ¢| > r1, and diverges if
|1/(z — ¢)| is greater than 1/r1, that is |z — ¢| is smaller than r;.

Now, for any z € A(c,r1,72), there is an open neighbourhood U of z where
:ico an(z — ¢)™ is normally convergent and an open neighbourhood V of
(2 —¢)~' in C* where 370 a_,w™ is normally convergent. The Laurent series
:io_ + an(z—c)™ is normally convergent in the open neighbourhood UN{w~!+

clweV}of z |

Theorem — Laurent Series Expansion. Let Q be an open subset of C, let
¢ € C and ry,73 € [0, +00] such that 71 < ro and the open annulus A(c,r1,72)
is included in 2. For any holomorphic function f : 2 — C, there is a Laurent
series with coefficients a,, such that

“+oo
Vze Ale,r,re), f(z) = Z an(z —c)".
Its coefficients are given by
1 f(2) .
Vpe}TlaTQ[; an:ﬂ ’ymdz with ’7:C+p[o]

Proof — Laurent Series Expansion. For any integer n, the coefficient

1 f(z)

n=7| ——~——d ith v=
27 [, G e e with =40

is independent of p € ]rq, o] — refer to the proof of “Power Series Expansion” for
a detailled argument.

Let z € A(c,r1,72) and p1,p2 € ]ri,7a[ such that p; < |z — ¢| < pa. Let
71 = c+ p1[0] and v2 = ¢ + p2[0)]; Cauchy’s integral formula provides

f(z)—L (w) dw — ! / de

127 by, W— 2 127 w—z

As in the proof of “Power Series Expansion”, we can establish that
400

n=0




A similar argument, based on a series expansion of

1 1 1 1

w—z (z—¢c)—(w—2¢) z—cl—2=¢

yields

i2177/71 i(iU)zdw:_ f [Z;T/%(w{(z}))nﬂdw} (z—c)"

n=-—1

The combination of both expansions provides the expected result.
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