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Convergence of Power Series

Definition & Theorem – Radius of Convergence. Let c ∈ C and an ∈ C
for every n ∈ N. The radius of convergence of the power series

+∞∑
n=0

an(z − c)n

is the unique r ∈ [0,+∞] such that the series converges if |z−c| < r and diverges
if |z − c| > r. The disk D(c, r) – the largest open disk centered on c where the
series converges – is the open disk of convergence of the series.

The radius of convergence r is the inverse of the growth ratio of the sequence
an, defined as the infimum in [0,+∞] of the set of values σ ∈ [0,+∞) such that
an is eventually dominated by σn:

∃m ∈ N, ∀n ∈ N, (n ≥ m) ⇒ |an| ≤ σn.

(or equivalently, such that ∃κ > 0, ∀n ∈ N, |an| ≤ κσn.) This growth ratio is
equal to lim supn→+∞ |an|1/n, which leads to the Cauchy-Hadamard formula1:

r = 1
lim sup
n→+∞

|an|1/n
.

1to compute the limit superior of a sequence of (extended) real numbers, consider all
subsequences that converge (as extended real numbers: in [−∞, +∞]) and take the supremum
of their limits.
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By convention here, 1/0 = +∞ and 1/(+∞) = 0.

Proof. Let ρ be the growth ratio of the sequence an. If a complex number z
satisfies |z − c| < ρ−1, ρ is finite and there is a σ > ρ such that |z − c| < σ−1.
Eventually, we have |an| ≤ σn and thus

|an(z − c)n| ≤ (σ|z − c|)n.

As σ|z − c| < 1, the series
∑+∞
n=0 an(z − c)n is convergent. Conversely, if

|z − c| > ρ−1, ρ > 0 and there is a σ < ρ such that |z − c| > σ−1. As σ < ρ,
there is a strictly increasing sequence of n ∈ N such that |an| > σn and thus
|an(z − c)n| > (σσ−1)n = 1. Since its terms do not converge to zero, the series∑+∞
n=0 an(z − c)n is divergent.

We now prove that the growth ratio of |an| is equal lim supn |an|1/n. Indeed, for
any σ greater than the growth ratio ρ, eventually |an| ≤ σn, hence |an|1/n ≤
σ and lim supn |an|1/n ≤ σ, therefore lim supn |an|1/n ≤ ρ. Conversely, if σ
is smaller than the growth ratio, there is a strictly increasing sequence of
n ∈ N such that |an| > σn, hence |an|1/n > σ and lim supn |an|1/n ≥ σ, thus
lim supn |an|1/n ≥ ρ. �

Example – A Geometric Series. Consider the power series
+∞∑
n=0

(−1/2)nzn.

Since |(−1/2)n| = 1/2n ≤ σn eventually if and only if σ ≥ 1/2, the growth bound
of the geometric sequence (−1/2)n is 1/2. Thus the open disk of convergence of
this power series is D(0, 2).

Example – A Lacunary Series. Consider the power series:
+∞∑
n=0

z2n

= z + z2 + z4 + z8 + · · · .

The “lacunary” adjective refers to the large gaps between nonzero coefficients;
These coefficients are defined by

an =
∣∣∣∣ 1 if ∃ p ∈ N, n = 2p,

0 otherwise.

It is plain that |an| ≤ σn eventually if and only if σ ≥ 1. Hence the growth
bound of the sequence if 1 and the open disk of convergence of the power series
is D(0, 1).

Lemma – Multiplication of Power Series Coefficients. The radius of
convergence of the power series

∑+∞
n=0 anbn(z − c)n is at least the product of

the radii of convergence of the series
∑+∞
n=0 an(z − c)n and

∑+∞
n=0 bn(z − c)n. In

particular, for any nonzero polynomial sequence

an = α0 + α1n+ · · ·+ αpn
p,
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the radii of convergence of
∑+∞
n=0 anbn(z− c)n and

∑+∞
n=0 bn(z− c)n are identical.

Proof. Denote by ρa and ρb the respective growth bounds of the sequences an
and bn; the growth bound of the product sequence anbn is at most ρaρb: for any
σ > ρaρb, we may find some σa > ρa and σb > ρb such that σ = σaσb. Since
|an| ≤ (σa)n and |bn| ≤ (σb)n eventually, |anbn| ≤ σn eventually.

The growth bound of any polynomial sequence an is at most 1: the inequality

|α0 + α1n+ · · ·+ αpn
p| ≤ ρn

holds for any ρ > 1 eventually. Now, for any nonzero polynomial sequence an
and any sequence bn, eventually |bn| is dominated by a multiple of |anbn|, thus
the growth bound of |bn| is at most the growth bound of |anbn|. Reciprocally,
the growth bound of |anbn| is at most the product of the growth bound of |an| –
at most one – and the growth bound of |bn| and thus at most the growth bound
of |bn|. �

Theorem – Locally Normal Convergence. The convergence of the power
series

∑+∞
n=0 an(z − c)n in its open disk of convergence D(c, r) is locally normal:

for any z ∈ D(c, r), there is an open neighbourghood U of z in D(c, r) such that

∃κ > 0, ∀ z ∈ U,
+∞∑
n=0
|an(z − c)n| ≤ κ

or equivalently, for every compact subset K of D(c, r),

∃κ > 0, ∀ z ∈ K,
+∞∑
n=0
|an(z − c)n| ≤ κ.

Proof. If K is compact subset of D(c, r) and ρ = sup {|z − c| | z ∈ K},

∀ z ∈ K,
+∞∑
n=0
|an(z − c)n| ≤

+∞∑
n=0
|an|ρn.

Since the growth bound of the sequence an and |an| are identical, the radius
of convergence of the series

∑+∞
n=0 |an|zn is r. Given that |ρ| < r, the series∑+∞

n=0 |an|ρn is convergent; all its terms are non-negative real numbers, thus the
sum is finite: there is a κ > 0 such that

∑+∞
n=0 |an|ρn ≤ κ. �

Remark – Other Types of Convergence. The locally normal convergence
implies the absolute convergence:

∀ z ∈ D(c, r),
+∞∑
n=0
|an(z − c)n| < +∞.
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It also provides the locally uniform convergence: on any compact subset K
of D(c, r), the partial sums

∑p
n=0 an(z − c)n converge uniformly to the sum∑+∞

n=0 an(z − c)n:

lim
p→+∞

sup
z∈K

∣∣∣∣∣
p∑

n=0
an(z − c)n −

+∞∑
n=0

an(z − c)n
∣∣∣∣∣ = 0.

Power Series and Holomorphic Functions

Theorem – Power Series Derivative. A power series and its formal deriva-
tive

+∞∑
n=0

an(z − c)n and
+∞∑
n=1

nan(z − c)n−1.

have the same radius of convergence r. The sum

f : z ∈ D(c, r) 7→
+∞∑
n=0

an(z − c)n

is holomorphic; its derivative is the sum of the formal derivative:

∀ z ∈ D(c, r), f ′(z) =
+∞∑
n=1

nan(z − c)n−1.

More generally, the p-th order derivative of f is defined for any p ∈ N and

∀ z ∈ D(c, r), f (p)(z) =
+∞∑
n=p

n(n− 1) · · · (n− p+ 1)an(z − c)n−p.

Lemma. For any z ∈ C, h ∈ C∗ and n ≥ 2,∣∣∣∣ (z + h)n − zn

h
− nzn−1

∣∣∣∣ ≤ n(n− 1)
2 (|z|+ |h|)n−2|h|.

Proof – Lemma. Using the identity an − bn = (a− b)
∑n−1
m=0 a

mbn−1−m yields

(z + h)n − zn = h

n−1∑
m=0

(z + h)mzn−1−m,

hence

(z + h)n − zn

h
− nzn−1 =

n−1∑
m=0

(z + h)mzn−1−m −
n−1∑
m=0

zmzn−1−m

=
n−1∑
m=0

[(z + h)m − zm] zn−1−m.
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By the same identity, we also have

|(z + h)m − zm| =

∣∣∣∣∣h
m−1∑
l=0

(z + h)lzm−1−l

∣∣∣∣∣ ≤ m(|z|+ |h|)m−1|h|.

Therefore

∣∣∣∣ (z + h)n − zn

h
− nzn−1

∣∣∣∣ ≤
[
n−1∑
m=0

m (|z|+ |h|)m−1(|z|+ |h|)n−1−m

]
|h|

≤ n(n− 1)
2 (|z|+ |h|)n−2|h|

as expected. �

Proof – Power Series Derivative. LetD(c, r) be the open disk of convergence
of the series

f(z) =
+∞∑
n=0

an(z − c)n.

The radii of convergence of the series

+∞∑
n=1

nan(z − c)n−1 and
+∞∑
n=0

nan(z − c)n

are equal. Since the coefficient sequence of the latter series is the product of an
and a nonzero polynomial sequence, the open radius of convergence of f and
of its the formal derivative are identical. For any z ∈ D(c, r) and h ∈ C, define
e(z, h) as

e(z, h) = f(z + h)− f(z)
h

−
+∞∑
n=1

nan(z − c)n−1.

A straightforward calculation leads to

e(z, h) =
+∞∑
n=1

an

[
(z + h− c)n − (z − c)n

h
− n(z − c)n−1

]
,

hence, using the lemma, we obtain

|e(z, h)| ≤
[+∞∑
n=2

n(n− 1)
2 |an|(|z − c|+ |h|)n−2

]
× |h|.

The power series
+∞∑
n=2

n(n− 1)
2 |an|zn−2
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has the same radius of convergence than
+∞∑
n=2

n(n− 1)
2 an(z − c)n−2

which is the the formal derivative of order 2 of the original series, hence the
three series have the same radius of convergence r. Consequently, for any h such
that |z − c|+ |h| < r,

+∞∑
n=2

n(n− 1)
2 |an|(|z − c|+ |h|)n−2 < +∞

and therefore

lim
h→0

f(z + h)− f(z)
h

=
+∞∑
n=1

nan(z − c)n−1.

The statement about the p-th order derivative of f can be obtained by a simple
induction on p. �

Theorem & Definition – Taylor Series. If the complex-valued function
f has a power series expansion centered at c inside the non-empty open disk
D(c, r), it is the Taylor series of f :

∀ z ∈ D(c, r), f(z) =
+∞∑
n=0

f (n)(c)
n! (z − c)n.

Proof. If f(z) =
∑+∞
n=0 an(z− c)n, then for any p ∈ N, the p-th order derivative

of f inside D(c, r) is given by

f (p)(z) =
+∞∑
n=p

n(n− 1) . . . (n− p+ 1)an(z − c)n−p

and consequently, f (p)(c) = p!ap. �

Note that the above theorem is only a uniqueness result; it says nothing about
the existence of the power series expansion. This is the role of the following
theorem.

Theorem – Power Series Expansion. Let Ω be an open subset of C, let
c ∈ Ω and r ∈ ]0,+∞] such that the open disk D(c, r) is included in Ω. For any
holomorphic function f : Ω→ C, there is a power series with coefficients an such
that

∀ z ∈ D(c, r), f(z) =
+∞∑
n=0

an(z − c)n.

Its coefficients are given by

∀ ρ ∈ ]0, r[ , an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	].
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Proof – Power Series Expansion. For any n ∈ N, the complex number

an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	]

is independent of ρ as long as 0 < ρ < r. Indeed, if ρ1 and ρ2 are two such numbers,
denote γ1 = c+ ρ1[	] and γ2 = c+ ρ2[	]. The interior of the sequence of paths
µ = γ1 | γ←2 is included in D(c, r) \ {c} where the function z 7→ f(z)/(z − c)n+1

is holomorphic. Hence, by Cauchy’s integral theorem,∫
µ

f(z)
(z − c)n+1 dz =

∫
γ1

f(z)
(z − c)n+1 dz −

∫
γ2

f(z)
(z − c)n+1 dz = 0.

Now, let z ∈ D(c, r) and let ρ ∈ ]0, r[ such that |z − c| < ρ. Cauchy’s integral
formula provides

f(z) = 1
i2π

∫
γ

f(w)
w − z

dw.

For any w ∈ γ([0, 1]), we have

1
w − z

= 1
(w − c)− (z − c) = 1

w − c
1

1− z−c
w−c

.

Since ∣∣∣∣ z − cw − c

∣∣∣∣ = |z − c|
ρ

< 1,

we may expand f(w)/(w − z) into

f(w)
w − z

= f(w)
w − c

1
1− z−c

w−c
=

+∞∑
n=0

f(w)
w − c

(
z − c
w − c

)n
.

The term of this series is dominated by

sup|w−c|=ρ |f(w)|
ρ

(
|z − c|
ρ

)n
;

the convergence of the series is normal – and thus uniform – with respect to the
variable w. Finally

f(z) =
∫
γ

[+∞∑
n=0

f(w)
(w − c)n+1 (z − c)n

]
dw

=
+∞∑
n=0

[∫
γ

f(w)
(w − c)n+1 (z − c)n dw

]

=
+∞∑
n=0

[∫
γ

f(w)
(w − c)n+1 dw

]
(z − c)n

which is the desired expansion. �
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Laurent Series

Definition – Annulus. Let c ∈ C and r1, r2 ∈ [0,+∞]. We denote by

A(c, r1, r2) = {z ∈ C | r1 < |z − c| < r2}

the open annulus with center c, inner radius r1 and outer radius r2.

Examples – Annuli.

1. The open annulus A(0, 0,+∞), centered on the origin, with inner radius 0
and outer radius +∞, is the set C∗.

2. The setsA(0, 0, 1), A(0, 1, 2) andA(0, 2,+∞) are three open annuli centered
on the origin and included in the open set Ω = C\{i, 2}. They are maximal
in Ω – if we decrease their inner radius and/or increase their outer radius
the resulting annulus is not a subset of Ω anymore.

Definition – Laurent Series. The Laurent series centered on c ∈ C with
coefficients an ∈ C for every n ∈ Z is

+∞∑
n=−∞

an(z − c)n.

It is convergent for some z ∈ C \ {c} if the series

+∞∑
n=0

an(z − c)n and
+∞∑
n=1

a−n(z − c)−n

are both convergent – otherwise it is divergent. When the Laurent series is
convergent its sum is defined as

+∞∑
n=−∞

an(z − c)n =
+∞∑
n=0

an(z − c)n +
+∞∑
n=1

a−n(z − c)−n.

Theorem – Convergence of Laurent Series. Let c ∈ C and let an ∈ C
for n ∈ Z. The inner radius of convergence r1 ∈ [0,+∞] and outer radius of
convergence r2 ∈ [0,+∞] of the Laurent series

∑+∞
n=−∞ an(z − c)n defined by

r1 = lim sup
n→+∞

|a−n|1/n and r2 = 1
lim sup
n→+∞

|an|1/n
.

are such that the series converges in A(c, r1, r2) and diverges if |z − c| < r1 or
|z − c| > r2. In this open annulus of convergence, the convergence is locally
normal.
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Proof – Convergence of Laurent Series. The first series converges if |z− c|
is smaller than the radius of convergence r2 of this power series and diverges if
it is greater. We may rewrite the second series as:

+∞∑
n=1

a−n(z − c)−n =
+∞∑
n=1

a−n

(
1

z − c

)n
.

Consequently, it converges if |1/(z− c)| is smaller than the radius of convergence
1/r1 of the power series

∑+∞
n=1 a−nz

n, that is if |z − c| > r1, and diverges if
|1/(z − c)| is greater than 1/r1, that is |z − c| is smaller than r1.

Now, for any z ∈ A(c, r1, r2), there is an open neighbourhood U of z where∑+∞
n=0 an(z − c)n is normally convergent and an open neighbourhood V of

(z − c)−1 in C∗ where
∑+∞
n=1 a−nw

n is normally convergent. The Laurent series∑+∞
n=−∞ an(z−c)n is normally convergent in the open neighbourhood U ∩{w−1 +

c | w ∈ V } of z. �

Theorem – Laurent Series Expansion. Let Ω be an open subset of C, let
c ∈ C and r1, r2 ∈ [0,+∞] such that r1 < r2 and the open annulus A(c, r1, r2)
is included in Ω. For any holomorphic function f : Ω → C, there is a Laurent
series with coefficients an such that

∀ z ∈ A(c, r1, r2), f(z) =
+∞∑

n=−∞
an(z − c)n.

Its coefficients are given by

∀ ρ ∈ ]r1, r2[ , an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	].

Proof – Laurent Series Expansion. For any integer n, the coefficient

an = 1
i2π

∫
γ

f(z)
(z − c)n+1 dz with γ = c+ ρ[	]

is independent of ρ ∈ ]r1, r2[ – refer to the proof of “Power Series Expansion” for
a detailled argument.

Let z ∈ A(c, r1, r2) and ρ1, ρ2 ∈ ]r1, r2[ such that ρ1 < |z − c| < ρ2. Let
γ1 = c+ ρ1[	] and γ2 = c+ ρ2[	]; Cauchy’s integral formula provides

f(z) = 1
i2π

∫
γ2

f(w)
w − z

dw − 1
i2π

∫
γ1

f(w)
w − z

dw

As in the proof of “Power Series Expansion”, we can establish that

1
i2π

∫
γ2

f(w)
w − z

dw =
+∞∑
n=0

[
1
i2π

∫
γ2

f(w)
(w − c)n+1 dw

]
(z − c)n.
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A similar argument, based on a series expansion of

1
w − z

= − 1
(z − c)− (w − c) = − 1

z − c
1

1− w−c
z−c

yields

1
i2π

∫
γ1

f(w)
w − z

dw = −
−∞∑
n=−1

[
1
i2π

∫
γ1

f(w)
(w − c)n+1 dw

]
(z − c)n.

The combination of both expansions provides the expected result. �
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