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Introduction

The main goal of this chapter is to derive the fundamental theorem of calculus
for functions of a complex variable. This theorem characterizes the relation
between functions and their primitives with the help of integrals. A version of
this theorem for functions of a real variable is the following:

Theorem — Fundamental Theorem of Calculus (Real Analysis). Let [
be an open interval of R, f : I — R be a continuous function and a € 1. A
function g : I — R is a primitive of f if and only if it satisfies

Vzel, g(z)=gla) +/f f(¢)de.

Proof. Suppose that the function g satisfies the integral equation of the theorem.


mailto:Sebastien.Boisgerault@mines-paristech.fr
https://creativecommons.org/licenses/by-nc-sa/4.0

For any x € I and any real number h such that x + h € I,

x —g(x oth
oot )=o) L[
z+h z+h
-1 t@ag [ uw-rana
x+h
— f@+y [ O~ fa)

Let € > 0; by continuity of f at x, there is a > 0 such that
Viel, (t—z[ <0 = [f(t) - f(z)] <¢)
thus if |h| < 4,

w <i|h|><€:6,

—f(LC) = |h|

The difference quotient tends to f(x) when h tends to zero: ¢'(x) exists and is
equal to f(z).

Conversely, suppose that e : I — R is a primitive of f. The difference d between
e and the function

g:melb—>e(a)—|—/mf(t)dt

is zero at a and has a zero derivative on I. By the mean value theorem, for any
x € I such that x # a, there is a b € I such that

d(x) — d(a) _ d/(b) — O,
T—a
hence d(z) = d(a) = 0 and therefore e = g. |

Paths

Definition — Path. A path « is a continuous function from [0, 1] to C. If A is
a subset of the complex plane, v is a path of A if additionally v([0,1]) C A.

Definition — Image of a Path. The image or trajectory or trace of the path
~ is the image ([0, 1]) of the interval [0, 1] by the function ~.

Definition — Path Endpoints. The complex numbers v(0) and (1) are the
initial point and terminal point of v — they are its endpoints; the path ~ joins its
initial and terminal points. The path is closed if the initial and terminal point
are the same. The paths 71,...,v, are consecutive if for k =1,...,n — 1, the
terminal point of vy is the initial point of y41.



Example — Oriented Line Segment. The oriented line segment (or simply
oriented segment) with initial point a € C and terminal point b € C is denoted
[a — b] and defined as

[a—b]:te€[0,1] — (1 —t)a+tb

Its image is the line segment [a, b].

Figure 1: Representation of the oriented line segment [0 — 2 + 4]

Example — Oriented Circle. The oriented circle of radius one centered at
the origin traversed once in the positive sense (counterclockwise) is denoted [0
and defined as

[O] : t € ]0,1] — e,

The circle of radius r > 0 centered at ¢ € C traversed n € Z* times in the
positive sense is the path

c+r[O]":te0,1] = c+ ret?mmt,

Its image is the circle centered on ¢ with radius r; its initial and terminal points
are both ¢+ r, hence it is closed.

Definition — Open (Path-)Connected Sets. An open subset  of the
complex-plane is (path-)connected if for any points x and y of ), there is a path
of  that joins x and y.

Definition — Reverse Path. The reverse (or opposite) of the path « is the
path v defined by
Vte[0,1], v (t) =v(1 1)

Definition — Path Concatenation. Let tg =0 <t < --- <t,_1 <t, =1
be a partition of the interval [0,1]. The concatenation of consecutive paths



Figure 2: Representation of the oriented circle [O]




Y1,--.,7n associated to this partition is the path + denoted

§a! ‘tl e |tn—1 Tn

such that
t—tp_
Yk e {L...n}h Yo = <1> ,

If the partition of [0, 1] is uniform, that is, if
Vke{0,...,n}, tr, =k/n,
we denote the concatenated path with the simpler notation

"l e

Example — Oriented Polyline. An oriented polyline (or piecewise linear
path) is the concatenation of consecutive oriented line segments. When the
associated partition of [0, 1] is uniform, we use the notation

[ap = a1 — -+ = an—1 — an] =[ao = a1]| - |[an—1 = an]-

Definition — Rectifiable Path. A path v : [0,1] — C is rectifiable if the
function =y is piecewise continuously differentiable.

Given the definition of piecewise continuously differentiable, the following alter-
nate characterization is plain:

Theorem — Continuously Differentiable Decomposition. A path ~ :
[0,1] — C is rectifiable if and only if there are consecutive continuously differ-
entiable paths v1,...,7, and a partition (o, ...,¢,) of the interval [0, 1] such
that

Y=ltr - ltn1 -

We characterized initially connected sets via merely continuous paths. However,
when such sets are open, we can use rectifiable paths instead:

Lemma — Connectedness & Rectifiable Paths. An open subset €2 of the
complex plane is connected if and only if every pair of points of 2 may be joined
by a rectifiable path of Q.

Proof. If any pair of points of Q2 can be joined by a rectifiable path of €, then
Q is connected. Conversely, assume that a (merely continuous) path 7 of Q joins
x and y. Its image ([0, 1]) is a compact subset of { — as the image of a compact
set by a continuous function — thus the distance r between ([0, 1]) and the
closed set C\ Q is positive. Additionally, the function ~ is uniformly continuous —
as a continuous function with a compact domain of definition; there is a positive
integer n such that

Vte|0,1], Vs €[0,1], (Jt —s| <1/n = |y(t) —~(s)| < 7).



For any k € {0,...,n}, the point v(k/n) belongs to ; the path p defined as

w=1[y0)—= - —=yk/n)— - —=~v(1)]

is rectifiable and joins x and y. Now, for any ¢ € [0, 1], let k& € {0,...,n — 1} be
such that ¢ € [k/n, (k 4+ 1)/n]. We have

u(t) = y(k/n)| < [y((k+1)/n) —~y(k/n)| <,

therefore p is a path of Q. |

Line Integrals

Definition — Length of a Rectifiable Path. The length of a rectifiable path
v is the nonnegative real number

= [ el

Example — Length of an Oriented Segment. The oriented segment [a — b]
is continuously differentiable and thus rectifiable. For any ¢ € [0, 1], [a — b]'(t) =
b — a, hence its length is

E([a—)b]):/o b—aldt=|b—al.

Example — Length of an Oriented Circle. The oriented circle ¢ + r[O]"
centered at ¢ with radius r > 0 traversed n times in the positive sense is
continuously differentiable and thus rectifiable. For any ¢ € [0, 1],

[e +7[C]"] (1) = (i2mn)re™™,

hence the length of this path is
1 . 1
te+r[o]) = / ((i27m)re27t) df — / 2mnr|dt = 277 x |n].
0 0

It differs from the length of its circle image — which is 27 — unless the circle is
traversed exactly once in the positive or negative sense.

Definition — Line Integral. The line integral along a rectifiable path v of
a complex-valued function f defined and continuous on the image of ~ is the
complex number defined by

/ﬂdW=AfW@W®ﬁ-



Remark — Undefined Integrands. In the definitions of the length of v and
of the integral along -y, the integrands

Y ()] and f(v(£)'(t)

may be undefined for some values of ¢ if v is merely rectifiable. However it’s not
an issue since they are always defined almost everywhere (and integrable).

Remark — Integral Notation. It’s sometimes handy to use the notation

[ et = [ sk ol

which is similar to the one used for line integrals. With this convention, we have
for example
() = | 1dal.
%l

Example — Integration along an Oriented Segment. The line integral of
the continuous function f : [a,b] — C along the oriented segment [a — b] is

/ f(z)dz:/ F((L=t)a+tb)(b—a)dt
[a—b] 0
=(b- a)/o F((1—t)a+tb) dt.

Example — Integration along an Oriented Circle. The line integral of a
continuous function f: {z € C||z| = 1} — C on the oriented circle [] is

1
/ f(Z) dZ = / f(6i27rt)(i27re’i2ﬂ'tdt)
(0] 0

1
:Z/ f(eiQ‘n't)ei%rt (271’dt)
0
27 ) )
=i f(e?)edp.
0

Theorem — Complex-Linearity of the Line Integral. Let v be a rectifiable
path. For any «, 3 € C and any continuous functions f and g defined on the
image of 7,

[Yaf(z)-l-ﬂg(z)dzza[Yf(z)dz—i-B/g(z)dz.

Y

Proof. Since by definition of the line integral

/ af(2) + By(z) dz = / (af (Y1) + Ba(y () (1),



the complex-linearity of the integral on [0, 1] provides
1
[at@)+pg2)dz=a [ o)y @
¥ 0

+ﬁ§k: / (Y)Y (1) dt

Theorem — Integration along a Reverse Path. For any rectifiable path -,

() = L)

For any continuous function f: A C C — C defined on the image of ~,

Leﬂ@wz—Lﬂ@M.

Proof. Since v (t) = v(1 — t), the length of the opposite of v satisfies

Uy (1)) = / () (1) dt = / | (1= D) dt.

The change of variable ¢t +— 1 — t yields

Uy (1) = / I (8)] dt = €().

Similarly,
[ t@a= [ s o)ey @
- [ fea-o)=a-na

- / SO ) (—'(8)) dt

(
__Lﬂ@m

Theorem — Integration along Concatenation of Paths. Let A be a subset
of C. Let 71,...,7, be consecutive rectifiable paths of A and let v be their
concatenation

Y=l e T
The length of v satisfies
() = tn)-

k=1

n



For any continuous function f : A C C — C defined on the image of ~,

/ f(z)dz = Z f(z)dz.

k=1"7k

Proof.  Since by definition ~(¢) = 75 ((t —tx)/(tx —tx—1)) whenever
t € [tk, tk+1], the decomposition

1
o) = / (1) dt

-y [ el

k=0 "tk

provides

() = S/tk+l ! <7tk:t_ktk> dt

o /e te — th—1
and the changes of variables ¢ € [tg, tgy1] — tk:t—ktk yield
noorl
()= [ hitlae
k=10
= Z (k)
k=1
Similarly,
1
[ 1= [ e
v 0
n—1 thil /
=Y [ s @
k=0 "tk
B n=1 ity t—tg ’Y}lc (tk:t_ktk)
= Z I\ e dt
0t tet1 — tk tr — th—1
n 1
=3 [ renonio
k=1"0
=3 [ 1@
k=1""7k



Theorem — M-L Inequality. For any rectifiable path v and any continuous
function f: A C C — C defined on the image of ~,

[{f(z) dz

Proof. By definition of the line integral

< (L, 171 x e

z€v([0,1])

1
[ ramo dt\

/|f DI (8)] dt
< (max lrae0)) < [ ol

— (L 1)) 160,

ze~([0,1])

A practical consequence of the M-L inequality:

Corollary — Convergence in Line Integrals. For any rectifiable path + and
any sequence of continuous function f, : A C C — C defined on the image of
which converges uniformly to the function f,

nEwayfn(z)dz:Lf(z)dz

Proof. The linearity of the line integral and the M-L inequality provide

L fulz)dz - / 1) =

< (Lamx 1 = £0]) x40

zev([0,1])

(fn(2) = f(2)) dz

which yields the desired result. ]

Theorem — Invariance By Reparametrization. Let v : [0,1] — C be a
continuously differentiable path. Let ¢ : [0,1] — [0,1] be an increasing C-
diffeomorphism — a continuously differentiable function such that ¢(0) = 0,
¢(1) =1 and ¢'(t) > 0 for any t € [0, 1]. The following statements hold:

e The path = o ¢ is a continuously differentiable path.
o It has the same initial point, terminal point and image as 7.

e The length of p and v are identical.

10



 For any continuous function f : v([0,1]) — C,

/Mf(z)dzzlf(z)dz.

Proof. The function p is continuously differentiable as the composition of
continuously differentiable functions. We have

w(0) = ~(¢(0)) = 7(0), (1) =~(e(1)) = (1),

hence the endpoints of v and p are identical. The function ¢ is a bijection from
[0, 1] into itself, therefore

1([0,1]) = y(&([0,1])) = ~([0,1])
and the images of v and u are identical.

The length of p is

o) = / 1 (0)] dt = / I (6(t)) (1) dt = / (o) &' (1)t

The change of variable s = ¢(¢) provides

[ e = [ 1l
0 0

hence the lengths of v and p are equal. We also have

1
0

/ f(z)dz = / (f o 1) () () dt = / (f o) (@) (6(1)) (&' (1)de).

The same change of variable leads to

L f(2)dz = / (Fom)(e () ds = / £(2) dz,

which concludes the proof. |

Definition — Image of a Path by a Function. Let 7 : [0, 1] — C be a path
and f: A C C — C be a continuous function defined on the image of 7. The
image of v by f is the path f o~.

Theorem — Change of Variable in Line Integrals. Let {2 be an open subset
of C, let v be a rectifiable path of Q and let f : @ — C be a holomorphic function.
The path f o~ is rectifiable and for any continuous function g : A C C — C
defined on the image of f o+,

/M9<z> dz = / 9(f (w))f' () du.

11



Proof. Let 71 |¢, ... |t,_, Yn be a continously differentiable decomposition of .
We have

fov=fovley - |ty f OV,

and for any k € {1,...,n}, by the chain rule, the function f o~ is continuously
differentiable hence the path f o+ is rectifiable.

Moreover,
/g(f(w))f’(w)de/O g(f(y@®) f (v () (1) dt
- / G(F (D) (f o) (8)dt
L
fovy
u
Primitives

Definition — Primitive. Let f : @ — C where 2 is an open subset of C. A
primitive (or antiderivative) of f is a holomorphic function g : Q — C such that

g =T

Theorem — Fundamental Theorem of Calculus (Complex Analysis).
Let © be an open connected subset of C, f : Q@ — C be a continuous function
and let a € . A function g : Q — C is a primitive of f if and only if for any
z € ) and any rectifiable path ~ of € that joins a and z,

Proof. Let g be a primitive of f and  be a rectifiable path of 2 that joins a
and z. Let vy =71 |¢, ... |t,_, 7n be a continuously differentiable decomposition
of v. For any k € {1,...,n}, the function

¢:t€[0,1] = g(w(t))

is differentiable as a composition of real-differentiable functions, with

O’ (t) = dgq, vy (71 (1) = g (v (t)) 12 (D)

The function ¢’ is continuous hence by the fundamental theorem of calculus
(from real analysis) applied to the real and imaginary parts of ¢’ on ]0,1[, we
have for any positive number e smaller than 1,

1—e

P(1—€) —g(e) = ¢'(t) dt,

€

12



and thus by continuity of ¢ and ¢’

0) = / o/(t) dt

which is equivalent to

1
90u(1) = 9n(0) = [ g nlOi(de = [ fw)du

0 Tk

The sum of these equations for all k € {1,...,n} provides
g(2) - gla) = [ flw)du.
v

Conversely, assume that g satisfies the theorem property. Let v be a rectifiable
path of Q that joins a and z and let r > 0 be such that the open disk centered
at z with radius r is included in . Consider the concatenation p of v and of

the oriented segment [z — z + h] for h such that |h| < r. It is a rectifiable path
of 2, hence

g(z+h) = g(a) + / f(w) duw

+Lf(w)dw+h/01f(z+th)dt

1
- (z)+h/ =+ th) dt
0
hence
h

9lz+h) —9(2) / flz+th)d
The right-hand side of this equation converges to f(z) by continuity when h goes
to zero, therefore ¢ is a primitive of f. |

Corollary — Existence of Primitives [f]. Let 2 be an open connected subset
of C. The function f : £ — C has a primitive if and only if it is continuous and
for any closed rectifiable path ~

/7 f()dz =

Proof — Existence of Primitives. If the function f has primitives, it is the
derivative of a holomorphic function, thus it is continuous. Additionally, for any
closed rectifiable path + of €2, the fundamental theorem of calculus provides

9(+(1)) = g(1(0)) + / f(w) duw

13



hence as (1) = v(0),
/ f(w)dw = 0.

Conversely, assume that any such integral is zero. Select any a in {2 and define
for any point z in  and any rectifiable path « of € that joins them the function

9(2) = gla) + / f(w) duw,

This definition is non-ambiguous: if we select a different path u, the difference
between the right-hand sides of the definitions would be

(st + [ 1) aw) ~ (sta) + [ 1) i) - / w0

as v | pu is a closed rectifiable path of Q. Consequently, g is uniquely defined
and by the fundamental theorem of calculus, it is a primitive of f. |

Corollary — Set of Primitives. Let {2 be an open connected subset of C and
let f:Q—C.If g: Q2 — Cis a primitive of f, the function h : Q@ — C is also a
primitive of f if and only iff it differs from g by a constant.

Proof. It is clear that a function h that differs from g by a constant is a primitive
of f. Conversely, if g and h are both primitives of f, g — h is a primitive of the
zero function. The fundamental theorem of calculus shows that for any a and z
in Q2 and any rectifiable path v of Q2 that joins them,

9(2) — h(z) = gla) — h(a) + / 0dw = g(a) — h(a)

.
hence their difference is a constant. |
Corollary — Integration by Parts [f]. Let  be an open connected subset

of C and let v be a rectifiable path of Q. For any pair of holomorphic functions
f:Q@—=Candg:Q—C,

/f’g(Z)dzz [f9(v(1)) = f9(~(0))] —/fg’(Z) dz.

Proof. The derivative of the function fg is f'g + fg¢’. It is continuous as a sum
and product of continuous functions thus the fundamental theorem of calculus
provides

Fo(v(1)) = Fa(r(0) + / (F'g+ f¢)(2) d=,

¥
which is equivalent to the conclusion of the corollary. |

Remark & Definition — Variation of a Function on a Path. The difference
between the value of a function f at the terminal value and at the initial value
of a path v may be denoted [f],:

[fly = F(v(1)) = F(2(0)).

14



With this convention, the formula that relates a function f and its primitive g is

gy = / f(2)dz

and the integration by parts formula becomes

L F9(2)d= = [fgl, - / 19'(2) dz.

Appendix — A Better Theory of Rectifiability

Rectifiable Paths

The definition we used so far for “rectifiable” is a conservative one. In this
section, we come up with a more general definition of the concept that still meets
the requirements for the definition of line integrals.

To “rectify” a path (from Latin rectus “straight” and facere “to make”) is to
straighten — or by extension to compute its length, which is a trivial operation
once a path has been straightened.

The general definition of the length of a path does not require line integrals.
Instead, consider any partition (g, ...,t,) of the interval [0,1] and the path
p=pale, - |t pn Where

() = (1= t)y(tk—1) + ty(te).

We may define the length of such a combination of straight lines as

() = 3 htisn) = 2 (t0)].
k=1

As the straight line is the shortest path between two points, this number should
provide a lower bound of the length of 7. On the other hand, using finer partitions
of the interval [0, 1] should also provide better approximations of the length of
~. Following this idea, we may define the length of v as the supremum of the
length of p for all possible partitions of [0, 1]:

n—1
{(5) = sup {Z V(tes1) —Y(te)] | neN  tg=0<--- <t, = 1}
k=0

Not every path has a finite length; those who have are by definition rectifiable.
In general, a function ~ : [0,1] — C whose length is finite — even if it is not
continuous — is of bounded variation.

15



The Line Integral

To define line integrals along the path ~, it is enough that v is of bounded
variation. For any such function «, we may build a (complex-valued, Borel)
measure on [0,1] denoted dry. This measure is defined by its integral of any
continuous function ¢ : [0,1] — C, as a limit of Riemann(-Stieltjes) sums

n—1
¢dy =1im Y d(tm)(V(tms1) = (tm))-
[0,1] m—0
The limit is taken over the partitions of the interval [0, 1] with

max {|tms1 — tm| |m € {0,...,n—1}} — 0.

The line integral of a continuous function f : v([0,1]) — C is then defined by

L f(2) dz = /M (f o) dr.

The total variation |dv| of d~y is the positive measure defined by
|dy|(A) =sup Y |dv(B)|
¥ pep

where the supremum is taken over all finite partitions 8 of A into measurable
sets. This measure provides an integral expression for the length of :

)=l
[0,1]

A Non-Rectifiable Curve

The Koch snowflake (Koch 1904) is an example of a continuous curve which is is
nowhere differentiable; it is also a non-rectifiable closed path. It is defined as
the limit of a sequence of polylines ~,. The first element of this sequence is an
oriented equilateral triangle:

71 =[0—=1—=¢e™ 0.
Then, 7,41 is defined as a transformation of v,,: every oriented line segment
[a — a + h] that composes 7, is replaced by the polyline:

h ; h h
a—>a+§—>a+(1+e_1”/3>§—>a+2§—>a+h

16



Figure 3: Image of the Koch snowflake, first iteration.
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Figure 4: Image of the Koch snowflake, second iteration.
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V

Figure 5: Image of the Koch snowflake, third iteration.
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Figure 6: Image of the Koch snowflake, fourth iteration
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The Koch snowflake «y is defined as the limit of the -, sequence. The geometric
construction yields that for any n greater than zero,
1 ) "V3

3

Vi€ 0,1], s () = 3 (8)] < ( e

As S (%)p = 1711/3 = %, for any positive integer p we have

p=0
"33
2 2°

1

V011 hsp(®) = 101 < (5

The sequence 7, is a Cauchy sequence in the space of continuous and complex-
valued functions defined on [0, 1]; its uniform limit exists and is also continuous.

On the other hand, the curve is not rectifiable. First, the definition of the
sequence -y, makes it plain that every iteration increases the initial length of the

path by one-third:
4 n—1
Uvn) =3 = .
(yn) = 3 % <3>

The length of ~,, tends to +00 when n — +o0o. Now, every point at the junction
of the segments of the polyline ~, also belongs to the Koch snowflake; more
precisely

n—1 m — _m
Vm e {0,...,3x 4" "}, 7<3><4"1> Yn <3><4"1)'

Therefore

m+l N (_m = ()
T\ 3xan—1) " M\ 3xqn-1)| ="

and thus £() = +oo: the path ~ is not rectifiable.

m=0
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