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Introduction

The main goal of this chapter is to derive the fundamental theorem of calculus
for functions of a complex variable. This theorem characterizes the relation
between functions and their primitives with the help of integrals. A version of
this theorem for functions of a real variable is the following:

Theorem – Fundamental Theorem of Calculus (Real Analysis). Let I
be an open interval of R, f : I → R be a continuous function and a ∈ I. A
function g : I → R is a primitive of f if and only if it satisfies

∀x ∈ I, g(x) = g(a) +
∫ x

a

f(t) dt.

Proof. Suppose that the function g satisfies the integral equation of the theorem.
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For any x ∈ I and any real number h such that x+ h ∈ I,

g(x+ h)− g(x)
h

= 1
h

∫ x+h

x

f(t) dt

= 1
h

∫ x+h

x

f(x) dt+ 1
h

∫ x+h

x

(f(t)− f(x)) dt

= f(x) + 1
h

∫ x+h

x

(f(t)− f(x)) dt,

Let ε > 0; by continuity of f at x, there is a δ > 0 such that

∀ t ∈ I, (|t− x| ≤ δ ⇒ |f(t)− f(x)| < ε)

thus if |h| < δ, ∣∣∣∣g(x+ h)− g(x)
h

− f(x)
∣∣∣∣ ≤ 1
|h|
|h| × ε = ε.

The difference quotient tends to f(x) when h tends to zero: g′(x) exists and is
equal to f(x).

Conversely, suppose that e : I → R is a primitive of f. The difference d between
e and the function

g : x ∈ I 7→ e(a) +
∫ x

a

f(t) dt

is zero at a and has a zero derivative on I. By the mean value theorem, for any
x ∈ I such that x 6= a, there is a b ∈ I such that

d(x)− d(a)
x− a

= d′(b) = 0,

hence d(x) = d(a) = 0 and therefore e = g. �

Paths

Definition – Path. A path γ is a continuous function from [0, 1] to C. If A is
a subset of the complex plane, γ is a path of A if additionally γ([0, 1]) ⊂ A.

Definition – Image of a Path. The image or trajectory or trace of the path
γ is the image γ([0, 1]) of the interval [0, 1] by the function γ.

Definition – Path Endpoints. The complex numbers γ(0) and γ(1) are the
initial point and terminal point of γ – they are its endpoints; the path γ joins its
initial and terminal points. The path is closed if the initial and terminal point
are the same. The paths γ1, . . . , γn are consecutive if for k = 1, . . . , n− 1, the
terminal point of γk is the initial point of γk+1.
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Example – Oriented Line Segment. The oriented line segment (or simply
oriented segment) with initial point a ∈ C and terminal point b ∈ C is denoted
[a→ b] and defined as

[a→ b] : t ∈ [0, 1] 7→ (1− t)a+ tb.

Its image is the line segment [a, b].

0 1 2

0

1

Figure 1: Representation of the oriented line segment [0→ 2 + i]

Example – Oriented Circle. The oriented circle of radius one centered at
the origin traversed once in the positive sense (counterclockwise) is denoted [	]
and defined as

[	] : t ∈ [0, 1]→ ei2πt.

The circle of radius r ≥ 0 centered at c ∈ C traversed n ∈ Z∗ times in the
positive sense is the path

c+ r[	]n : t ∈ [0, 1]→ c+ rei2πnt.

Its image is the circle centered on c with radius r; its initial and terminal points
are both c+ r, hence it is closed.

Definition – Open (Path-)Connected Sets. An open subset Ω of the
complex-plane is (path-)connected if for any points x and y of Ω, there is a path
of Ω that joins x and y.

Definition – Reverse Path. The reverse (or opposite) of the path γ is the
path γ← defined by

∀ t ∈ [0, 1], γ←(t) = γ(1− t).

Definition – Path Concatenation. Let t0 = 0 < t1 < · · · < tn−1 < tn = 1
be a partition of the interval [0, 1]. The concatenation of consecutive paths
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Figure 2: Representation of the oriented circle [	]
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γ1, . . . , γn associated to this partition is the path γ denoted

γ1 |t1 · · · |tn−1 γn

such that
∀ k ∈ {1, . . . , n}, γ|[tk−1,tk] = γk

(
t− tk−1

tk − tk−1

)
.

If the partition of [0, 1] is uniform, that is, if

∀ k ∈ {0, . . . , n}, tk = k/n,

we denote the concatenated path with the simpler notation

γ1 | · · · | γn.

Example – Oriented Polyline. An oriented polyline (or piecewise linear
path) is the concatenation of consecutive oriented line segments. When the
associated partition of [0, 1] is uniform, we use the notation

[a0 → a1 → · · · → an−1 → an] = [a0 → a1] | · · · | [an−1 → an].

Definition – Rectifiable Path. A path γ : [0, 1] → C is rectifiable if the
function γ is piecewise continuously differentiable.

Given the definition of piecewise continuously differentiable, the following alter-
nate characterization is plain:

Theorem – Continuously Differentiable Decomposition. A path γ :
[0, 1]→ C is rectifiable if and only if there are consecutive continuously differ-
entiable paths γ1, . . . , γn and a partition (t0, . . . , tn) of the interval [0, 1] such
that

γ = γ1 |t1 · · · |tn−1 γn.

We characterized initially connected sets via merely continuous paths. However,
when such sets are open, we can use rectifiable paths instead:

Lemma – Connectedness & Rectifiable Paths. An open subset Ω of the
complex plane is connected if and only if every pair of points of Ω may be joined
by a rectifiable path of Ω.

Proof. If any pair of points of Ω can be joined by a rectifiable path of Ω, then
Ω is connected. Conversely, assume that a (merely continuous) path γ of Ω joins
x and y. Its image γ([0, 1]) is a compact subset of Ω – as the image of a compact
set by a continuous function – thus the distance r between γ([0, 1]) and the
closed set C\Ω is positive. Additionally, the function γ is uniformly continuous –
as a continuous function with a compact domain of definition; there is a positive
integer n such that

∀ t ∈ [0, 1], ∀ s ∈ [0, 1], (|t− s| ≤ 1/n ⇒ |γ(t)− γ(s)| < r).
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For any k ∈ {0, . . . , n}, the point γ(k/n) belongs to Ω; the path µ defined as

µ = [γ(0)→ · · · → γ(k/n)→ · · · → γ(1)]

is rectifiable and joins x and y. Now, for any t ∈ [0, 1], let k ∈ {0, . . . , n− 1} be
such that t ∈ [k/n, (k + 1)/n]. We have

|µ(t)− γ(k/n)| ≤ |γ((k + 1)/n)− γ(k/n)| < r,

therefore µ is a path of Ω. �

Line Integrals

Definition – Length of a Rectifiable Path. The length of a rectifiable path
γ is the nonnegative real number

`(γ) =
∫ 1

0
|γ′(t)| dt.

Example – Length of an Oriented Segment. The oriented segment [a→ b]
is continuously differentiable and thus rectifiable. For any t ∈ [0, 1], [a→ b]′(t) =
b− a, hence its length is

`([a→ b]) =
∫ 1

0
|b− a| dt = |b− a|.

Example – Length of an Oriented Circle. The oriented circle c + r[	]n
centered at c with radius r ≥ 0 traversed n times in the positive sense is
continuously differentiable and thus rectifiable. For any t ∈ [0, 1],

[c+ r[	]n]′(t) = (i2πn)rei2πnt,

hence the length of this path is

`(c+ r[	]n) =
∫ 1

0
|(i2πn)rei2πnt| dt =

∫ 1

0
|2πnr| dt = 2πr × |n|.

It differs from the length of its circle image – which is 2πr – unless the circle is
traversed exactly once in the positive or negative sense.

Definition – Line Integral. The line integral along a rectifiable path γ of
a complex-valued function f defined and continuous on the image of γ is the
complex number defined by∫

γ

f(z) dz =
∫ 1

0
f(γ(t))γ′(t) dt.
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Remark – Undefined Integrands. In the definitions of the length of γ and
of the integral along γ, the integrands

|γ′(t)| and f(γ(t))γ′(t)

may be undefined for some values of t if γ is merely rectifiable. However it’s not
an issue since they are always defined almost everywhere (and integrable).

Remark – Integral Notation. It’s sometimes handy to use the notation∫
γ

f(z) |dz| =
∫ 1

0
f(γ(t))|γ′(t)|dt.

which is similar to the one used for line integrals. With this convention, we have
for example

`(γ) =
∫
γ

|dz|.

Example – Integration along an Oriented Segment. The line integral of
the continuous function f : [a, b] 7→ C along the oriented segment [a→ b] is∫

[a→b]
f(z) dz =

∫ 1

0
f((1− t)a+ tb)(b− a) dt

= (b− a)
∫ 1

0
f((1− t)a+ tb) dt.

Example – Integration along an Oriented Circle. The line integral of a
continuous function f : {z ∈ C | |z| = 1} → C on the oriented circle [	] is∫

[	]
f(z) dz =

∫ 1

0
f(ei2πt)(i2πei2πtdt)

= i

∫ 1

0
f(ei2πt)ei2πt (2πdt)

= i

∫ 2π

0
f(eiθ)eiθdθ.

Theorem – Complex-Linearity of the Line Integral. Let γ be a rectifiable
path. For any α, β ∈ C and any continuous functions f and g defined on the
image of γ, ∫

γ

αf(z) + βg(z) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz.

Proof. Since by definition of the line integral∫
γ

αf(z) + βg(z) dz =
∫ 1

0
(αf(γ(t)) + βg(γ(t)))γ′(t)dt,
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the complex-linearity of the integral on [0, 1] provides∫
γ

αf(z) + βg(z) dz = α

∫ 1

0
f(γ(t))γ′(t) dt

+ β
∑
k

∫ 1

0
g(γ(t))γ′(t) dt

�

Theorem – Integration along a Reverse Path. For any rectifiable path γ,

`(γ←) = `(γ).

For any continuous function f : A ⊂ C→ C defined on the image of γ,∫
γ←

f(z) dz = −
∫
γ

f(z) dz.

Proof. Since γ←(t) = γ(1− t), the length of the opposite of γ satisfies

`(γ←(t)) =
∫ 1

0
|(γ←)′(t)| dt =

∫ 1

0
| − γ′(1− t)| dt.

The change of variable t 7→ 1− t yields

`(γ←(t)) =
∫ 1

0
|γ′(t)| dt = `(γ).

Similarly, ∫
γ←

f(z) dz =
∫ 1

0
f(γ←(t))(γ←)′(t) dt

=
∫ 1

0
f(γ(1− t))(−γ′(1− t)) dt

=
∫ 1

0
f(γ(t))(−γ′(t)) dt

= −
∫
γ

f(z) dz

�

Theorem – Integration along Concatenation of Paths. Let A be a subset
of C. Let γ1, . . . , γn be consecutive rectifiable paths of A and let γ be their
concatenation

γ = γ1 |t1 · · · |tn−1 γn.

The length of γ satisfies

`(γ) =
n∑
k=1

`(γk).
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For any continuous function f : A ⊂ C→ C defined on the image of γ,∫
γ

f(z) dz =
n∑
k=1

∫
γk

f(z) dz.

Proof. Since by definition γ(t) = γk((t− tk)/(tk − tk−1)) whenever
t ∈ [tk, tk+1], the decomposition

`(γ) =
∫ 1

0
|γ′(t)| dt

=
n−1∑
k=0

∫ tk+1

tk

|γ′(t)| dt

provides

`(γ) =
n−1∑
k=0

∫ tk+1

tk

∣∣∣∣∣∣
γ′k

(
t−tk

tk+1−tk

)
tk − tk−1

dt

∣∣∣∣∣∣
and the changes of variables t ∈ [tk, tk+1] 7→ t−tk

tk+1−tk yield

`(γ) =
n∑
k=1

∫ 1

0
|γ′k(t)| dt

=
n∑
k=1

`(γk)

Similarly,∫
γ

f(z)dz =
∫ 1

0
f(γ(t))γ′(t) dt

=
n−1∑
k=0

∫ tk+1

tk

f(γ(t))γ′(t) dt

=
n−1∑
k=0

∫ tk+1

tk

f

(
γk

(
t− tk

tk+1 − tk

)) γ′k

(
t−tk

tk+1−tk

)
tk − tk−1

dt

=
n∑
k=1

∫ 1

0
f(γk(t))γ′k(t) dt

=
n∑
k=1

∫
γk

f(z) dz

�
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Theorem – M-L Inequality. For any rectifiable path γ and any continuous
function f : A ⊂ C→ C defined on the image of γ,∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ ≤ ( max

z∈γ([0,1])
|f(z)|

)
× `(γ).

Proof. By definition of the line integral∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ =

∣∣∣∣∫ 1

0
f(γ(t))γ′(t) dt

∣∣∣∣
≤
∫ 1

0
|f(γ(t))||γ′(t)| dt

≤
(

max
t∈[0,1]

|f(γ(t))|
)
×
∫ 1

0
|γ′(t)| dt

=
(

max
z∈γ([0,1])

|f(z)|
)
× `(γ).

�

A practical consequence of the M-L inequality:

Corollary – Convergence in Line Integrals. For any rectifiable path γ and
any sequence of continuous function fn : A ⊂ C→ C defined on the image of γ
which converges uniformly to the function f,

lim
n→+∞

∫
γ

fn(z) dz =
∫
γ

f(z) dz.

Proof. The linearity of the line integral and the M-L inequality provide∣∣∣∣∫
γ

fn(z) dz −
∫
γ

f(z)
∣∣∣∣ =

∣∣∣∣∫
γ

(fn(z)− f(z)) dz
∣∣∣∣

≤
(

max
z∈γ([0,1])

|fn − f(z)|
)
× `(γ)

which yields the desired result. �

Theorem – Invariance By Reparametrization. Let γ : [0, 1] → C be a
continuously differentiable path. Let φ : [0, 1] → [0, 1] be an increasing C1-
diffeomorphism – a continuously differentiable function such that φ(0) = 0,
φ(1) = 1 and φ′(t) > 0 for any t ∈ [0, 1]. The following statements hold:

• The path µ = γ ◦ φ is a continuously differentiable path.

• It has the same initial point, terminal point and image as γ.

• The length of µ and γ are identical.

10



• For any continuous function f : γ([0, 1])→ C,∫
µ

f(z) dz =
∫
γ

f(z) dz.

Proof. The function µ is continuously differentiable as the composition of
continuously differentiable functions. We have

µ(0) = γ(φ(0)) = γ(0), µ(1) = γ(φ(1)) = γ(1),

hence the endpoints of γ and µ are identical. The function φ is a bijection from
[0, 1] into itself, therefore

µ([0, 1]) = γ(φ([0, 1])) = γ([0, 1])

and the images of γ and µ are identical.

The length of µ is

`(µ) =
∫ 1

0
|µ′(t)| dt =

∫ 1

0
|γ′(φ(t))φ′(t)| dt =

∫ 1

0
|γ′(φ(t))|φ′(t)dt

The change of variable s = φ(t) provides∫ 1

0
|γ′(φ(t))|φ′(t)dt =

∫ 1

0
|γ′(s)| ds,

hence the lengths of γ and µ are equal. We also have∫
µ

f(z) dz =
∫ 1

0
(f ◦ µ)(t)µ′(t) dt =

∫ 1

0
(f ◦ γ)(φ(t))γ′(φ(t)) (φ′(t)dt).

The same change of variable leads to∫
µ

f(z) dz =
∫ 1

0
(f ◦ γ)(s)γ′(s) ds =

∫
γ

f(z) dz,

which concludes the proof. �

Definition – Image of a Path by a Function. Let γ : [0, 1]→ C be a path
and f : A ⊂ C → C be a continuous function defined on the image of γ. The
image of γ by f is the path f ◦ γ.

Theorem – Change of Variable in Line Integrals. Let Ω be an open subset
of C, let γ be a rectifiable path of Ω and let f : Ω→ C be a holomorphic function.
The path f ◦ γ is rectifiable and for any continuous function g : A ⊂ C → C
defined on the image of f ◦ γ,∫

f◦γ
g(z) dz =

∫
γ

g(f(w))f ′(w) dw.
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Proof. Let γ1 |t1 . . . |tn−1 γn be a continously differentiable decomposition of γ.
We have

f ◦ γ = f ◦ γ1 |t1 . . . |tn−1 f ◦ γn,
and for any k ∈ {1, . . . , n}, by the chain rule, the function f ◦ γk is continuously
differentiable hence the path f ◦ γ is rectifiable.

Moreover, ∫
γ

g(f(w))f ′(w) dw =
∫ 1

0
g(f(γ(t))f ′(γ(t))γ′(t) dt

=
∫ 1

0
g(f(γ(t))(f ◦ γ)′(t) dt

=
∫
f◦γ

g(w) dw

�

Primitives

Definition – Primitive. Let f : Ω → C where Ω is an open subset of C. A
primitive (or antiderivative) of f is a holomorphic function g : Ω→ C such that
g′ = f.

Theorem – Fundamental Theorem of Calculus (Complex Analysis).
Let Ω be an open connected subset of C, f : Ω→ C be a continuous function
and let a ∈ Ω. A function g : Ω → C is a primitive of f if and only if for any
z ∈ Ω and any rectifiable path γ of Ω that joins a and z,

g(z) = g(a) +
∫
γ

f(w) dw.

Proof. Let g be a primitive of f and γ be a rectifiable path of Ω that joins a
and z. Let γ = γ1 |t1 . . . |tn−1 γn be a continuously differentiable decomposition
of γ. For any k ∈ {1, . . . , n}, the function

φ : t ∈ [0, 1] 7→ g(γk(t))

is differentiable as a composition of real-differentiable functions, with

φ′(t) = dgγk(t)(γ′k(t)) = g′(γk(t))γ′k(t).

The function φ′ is continuous hence by the fundamental theorem of calculus
(from real analysis) applied to the real and imaginary parts of φ′ on ]0, 1[ , we
have for any positive number ε smaller than 1,

φ(1− ε)− φ(ε) =
∫ 1−ε

ε

φ′(t) dt,
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and thus by continuity of φ and φ′

φ(1)− φ(0) =
∫ 1

0
φ′(t) dt,

which is equivalent to

g(γk(1))− g(γk(0)) =
∫ 1

0
g′(γk(t))γ′k(t) dt =

∫
γk

f(w) dw.

The sum of these equations for all k ∈ {1, . . . , n} provides

g(z)− g(a) =
∫
γ

f(w) dw.

Conversely, assume that g satisfies the theorem property. Let γ be a rectifiable
path of Ω that joins a and z and let r > 0 be such that the open disk centered
at z with radius r is included in Ω. Consider the concatenation µ of γ and of
the oriented segment [z → z + h] for h such that |h| < r. It is a rectifiable path
of Ω, hence

g(z + h) = g(a) +
∫
µ

f(w) dw

= g(a) +
∫
γ

f(w) dw + h

∫ 1

0
f(z + th) dt

= g(z) + h

∫ 1

0
f(z + th) dt

hence
g(z + h)− g(z)

h
=
∫ 1

0
f(z + th) dt.

The right-hand side of this equation converges to f(z) by continuity when h goes
to zero, therefore g is a primitive of f. �

Corollary – Existence of Primitives [†]. Let Ω be an open connected subset
of C. The function f : Ω→ C has a primitive if and only if it is continuous and
for any closed rectifiable path γ ∫

γ

f(z) dz = 0.

Proof – Existence of Primitives. If the function f has primitives, it is the
derivative of a holomorphic function, thus it is continuous. Additionally, for any
closed rectifiable path γ of Ω, the fundamental theorem of calculus provides

g(γ(1)) = g(γ(0)) +
∫
γ

f(w) dw,
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hence as γ(1) = γ(0), ∫
γ

f(w) dw = 0.

Conversely, assume that any such integral is zero. Select any a in Ω and define
for any point z in Ω and any rectifiable path γ of Ω that joins them the function

g(z) = g(a) +
∫
γ

f(w) dw.

This definition is non-ambiguous: if we select a different path µ, the difference
between the right-hand sides of the definitions would be(

g(a) +
∫
γ

f(w) dw
)
−
(
g(a) +

∫
µ

f(w) dw
)

=
∫
γ |µ←

f(w) dw = 0

as γ |µ← is a closed rectifiable path of Ω. Consequently, g is uniquely defined
and by the fundamental theorem of calculus, it is a primitive of f. �

Corollary – Set of Primitives. Let Ω be an open connected subset of C and
let f : Ω→ C. If g : Ω→ C is a primitive of f, the function h : Ω→ C is also a
primitive of f if and only iff it differs from g by a constant.

Proof. It is clear that a function h that differs from g by a constant is a primitive
of f. Conversely, if g and h are both primitives of f, g − h is a primitive of the
zero function. The fundamental theorem of calculus shows that for any a and z
in Ω and any rectifiable path γ of Ω that joins them,

g(z)− h(z) = g(a)− h(a) +
∫
γ

0 dw = g(a)− h(a)

hence their difference is a constant. �

Corollary – Integration by Parts [†]. Let Ω be an open connected subset
of C and let γ be a rectifiable path of Ω. For any pair of holomorphic functions
f : Ω→ C and g : Ω→ C,∫

γ

f ′g(z) dz = [fg(γ(1))− fg(γ(0))]−
∫
γ

fg′(z) dz.

Proof. The derivative of the function fg is f ′g + fg′. It is continuous as a sum
and product of continuous functions thus the fundamental theorem of calculus
provides

fg(γ(1)) = fg(γ(0)) +
∫
γ

(f ′g + fg′)(z) dz,

which is equivalent to the conclusion of the corollary. �

Remark & Definition – Variation of a Function on a Path. The difference
between the value of a function f at the terminal value and at the initial value
of a path γ may be denoted [f ]γ :

[f ]γ = f(γ(1))− f(γ(0)).
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With this convention, the formula that relates a function f and its primitive g is

[g]γ =
∫
γ

f(z) dz

and the integration by parts formula becomes∫
γ

f ′g(z) dz = [fg]γ −
∫
γ

fg′(z) dz.

Appendix – A Better Theory of Rectifiability

Rectifiable Paths

The definition we used so far for “rectifiable” is a conservative one. In this
section, we come up with a more general definition of the concept that still meets
the requirements for the definition of line integrals.

To “rectify” a path (from Latin rectus “straight” and facere “to make”) is to
straighten – or by extension to compute its length, which is a trivial operation
once a path has been straightened.

The general definition of the length of a path does not require line integrals.
Instead, consider any partition (t0, . . . , tn) of the interval [0, 1] and the path
µ = µ1 |t1 . . . |tn−1µn where

µk(t) = (1− t)γ(tk−1) + tγ(tk).

We may define the length of such a combination of straight lines as

`(µ) =
n−1∑
k=1
|γ(tk+1)− γ(tk)|.

As the straight line is the shortest path between two points, this number should
provide a lower bound of the length of γ. On the other hand, using finer partitions
of the interval [0, 1] should also provide better approximations of the length of
γ. Following this idea, we may define the length of γ as the supremum of the
length of µ for all possible partitions of [0, 1]:

`(γ) = sup
{
n−1∑
k=0
|γ(tk+1)− γ(tk)|

∣∣∣∣∣ n ∈ N∗, t0 = 0 < · · · < tn = 1
}

Not every path has a finite length; those who have are by definition rectifiable.
In general, a function γ : [0, 1] 7→ C whose length is finite – even if it is not
continuous – is of bounded variation.
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The Line Integral

To define line integrals along the path γ, it is enough that γ is of bounded
variation. For any such function γ, we may build a (complex-valued, Borel)
measure on [0, 1] denoted dγ. This measure is defined by its integral of any
continuous function φ : [0, 1]→ C, as a limit of Riemann(-Stieltjes) sums∫

[0,1]
φdγ = lim

n−1∑
m=0

φ(tm)(γ(tm+1)− γ(tm)).

The limit is taken over the partitions of the interval [0, 1] with

max {|tm+1 − tm| | m ∈ {0, . . . , n− 1}} → 0.

The line integral of a continuous function f : γ([0, 1])→ C is then defined by∫
γ

f(z) dz =
∫

[0,1]
(f ◦ γ) dγ.

The total variation |dγ| of dγ is the positive measure defined by

|dγ|(A) = sup
P

∑
B∈P

|dγ(B)|

where the supremum is taken over all finite partitions P of A into measurable
sets. This measure provides an integral expression for the length of γ:

`(γ) =
∫

[0,1]
|dγ|.

A Non-Rectifiable Curve

The Koch snowflake (Koch 1904) is an example of a continuous curve which is is
nowhere differentiable; it is also a non-rectifiable closed path. It is defined as
the limit of a sequence of polylines γn. The first element of this sequence is an
oriented equilateral triangle:

γ1 = [0→ 1→ eiπ3 → 0].

Then, γn+1 is defined as a transformation of γn: every oriented line segment
[a→ a+ h] that composes γn is replaced by the polyline:[

a→ a+ h

3 → a+
(

1 + e−iπ/3
) h

3 → a+ 2h3 → a+ h

]
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Figure 3: Image of the Koch snowflake, first iteration.
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Figure 4: Image of the Koch snowflake, second iteration.
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Figure 5: Image of the Koch snowflake, third iteration.
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Figure 6: Image of the Koch snowflake, fourth iteration
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The Koch snowflake γ is defined as the limit of the γn sequence. The geometric
construction yields that for any n greater than zero,

∀ t ∈ [0, 1], |γn+1(t)− γn(t)| ≤
(

1
3

)n √3
2 .

As
∑+∞
p=0

( 1
3
)p = 1

1−1/3 = 3
2 , for any positive integer p we have

∀ t ∈ [0, 1], |γn+p(t)− γn(t)| ≤
(

1
3

)n 3
2

√
3

2 .

The sequence γn is a Cauchy sequence in the space of continuous and complex-
valued functions defined on [0, 1]; its uniform limit exists and is also continuous.

On the other hand, the curve is not rectifiable. First, the definition of the
sequence γn makes it plain that every iteration increases the initial length of the
path by one-third:

`(γn) = 3×
(

4
3

)n−1
.

The length of γn tends to +∞ when n→ +∞. Now, every point at the junction
of the segments of the polyline γn also belongs to the Koch snowflake; more
precisely

∀m ∈ {0, . . . , 3× 4n−1}, γ
(

m

3× 4n−1

)
= γn

(
m

3× 4n−1

)
.

Therefore

`(γ) ≥
3×4n−1−1∑
m=0

∣∣∣∣γ ( m+ 1
3× 4n−1

)
− γ

(
m

3× 4n−1

)∣∣∣∣ = `(γn)

and thus `(γ) = +∞: the path γ is not rectifiable.
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