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Introduction

We characterize the subsets of the plane that are “in one piece”. Two slightly
different mathematical properties can play this role: path-connectedness, whose
definition is quite elementary, and connectedness, a slightly weaker – and arguably
more convoluted – property, but also a more robust and powerful one. The
difference matters only when one deals with “pathological” sets; for “well-behaved”
sets – and that includes all open sets – the two properties are equivalent.

In this document, we use the word “set” to mean “subset of the complex plane”
because this is what we need most of the time. However, the theory still works if
we interpret “set” as “subset of a given normed vector space” instead; the only
adaption that is required is the replacement of open disks by open balls.

Path-Connected/Connected Sets

Definition – Path-Connected Set. A set A is path-connected if any pair of
points of A can be joined by a path of A:

∀ (w, z) ∈ A2, ∃ γ ∈ C0([0, 1], A), γ(0) = w and γ(1) = z.
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Definition – Dilation. A set B is a dilation of a set A if it is the union of a
collection of non-empty open disks whose centers are the points of A:

B =
⋃

a∈A

D(a, ra) and ∀ a ∈ A, ra > 0.

Remark – Non-Uniformity of Dilations. We borrowed the word dilation
from mathematical morphology, but our use of the word is not completely
standard. The dilation of a set A by the non-empty open disk D(0, r) would be
classically defined as

B = A+D(0, r) = {a+ b | a ∈ A, b ∈ D(0, r)} =
⋃

a∈A

D(a, r).

By contrast, the definition that we use allows non-uniform dilations: the radius
of the disks may change with their centers.

Definition – Connected Set. A set is connected if all its dilations are path-
connected. A set which is not connected is disconnected.

Theorem – Path-Connected/Connected Set. Every path-connected set is
connected. Conversely, every open connected set is path-connected.

Proof. Let A be a path-connected set and B = ∪a∈ADa be a dilation of A. For
any points w and z in B, there are points a and b in A such that w ∈ Da and
z ∈ Db. There is a path that joins w and a in Da, a path that joins a and b in
A and a path that joins b and z in Db. The concatenation of these paths joins w
and z in B, hence A is connected.

Conversely, let A be an open connected set. For any a ∈ A, the distance ra

between a and the complement of A – which is a closed set – is positive, hence
the disk Da = D(a, ra) is a non-empty subset of A and A = ∪a∈ADa. The set A
is one of its dilations, hence it is path-connected. �

Corollary – Open Connected Sets. An open set is connected if and only if
it is path-connected.

Set Operations

Many properties of connected sets are similar to properties of path-connected
sets, so many statements exist in two variants. For example:

Theorem – Union of Sets With a Non-Empty Intersection. if A is a
collection of path-connected/connected sets whose intersection ∩A is non-empty,
then the union ∪A is path-connected/connected.

Proof. For path-connected sets: let a and b in ∪A. There are some sets A and
B in A such that a ∈ A and b ∈ B. The intersection ∩A is included in A ∩B,
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hence A ∩B is not empty; let c ∈ A ∩B. There is a path of A that joins a and
c and a path of B that joins c and b; their concatenation joins a and b in ∪A.
Hence, this set is path-connected.

For connected sets: let ∪a∈∪ADa be a dilation of ∪A. We have⋃
a∈∪A

Da =
⋃

A∈A
∪a∈ADa.

For any A ∈ A, the set ∪a∈ADa is a dilation of A, hence it is path-connected;
the inclusion A ⊂

⋃
a∈A Da provides

∩A =
⋂

A∈A
A ⊂

⋂
A∈A
∪a∈ADa,

hence the intersection of all ∪a∈ADa over A ∈ A is not empty. We may
therefore apply the result of the theorem for path-connected sets to the collection
{∪a∈ADa | A ∈ A}. Our arbitrary dilation of ∪A is path-connected, hence ∪A
is connected. �

Theorem – Disjoint Union of Open Sets. If A and B are two non-empty
open sets such that A ∩B = ∅, then A ∪B is not path-connected/connected.

Proof. Assume that γ is a path of A ∪B that joins a point a ∈ A and a point
b ∈ B. Consider the function

φ : t ∈ [0, 1] 7→ d(γ(t), A)− d(γ(t), B).

If z = γ(t) ∈ A, for example when t = 0, d(z,A) = 0 and as A is open and
A ∩ B = ∅, d(z,B) > 0, hence φ(t) < 0. Otherwise, for example when t = 1,
z = γ(t) ∈ B, d(z,B) = 0 and as B is open and A ∩B = ∅, d(z,A) > 0, hence
φ(t) > 0. But the function φ is also continuous; the intermediate value theorem
asserts the existence of a t ∈ ]0, 1[ such that φ(t) = 0, which is a contradiction.
Hence no such path γ can exist and A ∪B is not path-connected; as A ∪B is
open, it is not connected either. �

Connected sets also have some interesting properties that are not shared by all
path-connected sets; for example:

Theorem – Closure of Connected Sets. The closure of a connected set is
connected.

Proof. Let A be a connected set and let ∪b∈BDb be a dilation of its closure
B = A. For any b ∈ B, let rb be the distance between b and the complement of
this dilation. We have

∪b∈BDb = ∪b∈BD(b, rb).

Consider the dilation ∪a∈AD(a, ra) of A. It is a clearly a subset of the dilation
of B; actually, we can prove that both sets are equal. Assume that z belongs to

3



the dilation of B: there is a b ∈ B such that |z − b| < rb. As B is the closure of
A, there is a point a ∈ A such that |a− b| < (rb − |z − b|)/2; we have

|z − a| ≤ |z − b|+ |a− b| < rb − |a− b| ≤ ra,

hence the point z also belongs to the dilation of A. As the dilation of A is
path-connected, so is the dilation of B: B is connected. �

The equivalent statement is false for some path-connected sets. Actually, we may
leverage this difference to build a connected set which is not path-connected:

Example – The Topologist’s Sine Curve. Consider

A = {(x, sin 1/x) | x ∈ ]0, 1]}.

This set is path-connected – as the image by a continuous function of a path-
connected set – hence its closure

A = A ∪ {(0, y) | y ∈ [−1,+1]}

is connected; however, it is not path-connected.
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Figure 1: The Topologist’s Sine Curve.

Assume on the contrary that γ : [0, 1]→ C is a path of A that joins the points
a0 = (2/π, 1) and a∞ = (0, 0); it has to go through every point

an = (xn, yn), n ∈ N where
∣∣∣∣ xn = 1/((n+ 1/2)π)
yn = sin 1/xn = (−1)n

in this specific order. Indeed, given some tn ∈ [0, 1[ such that γ(tn) = an,
we have Re(γ(tn)) = xn. As Re(γ(1)) = Re(a∞) = 0, by continuity of t ∈
[0, 1] 7→ Re(γ(t)), there is a tn+1 ∈ ]tn, 1[ such that Re(γ(tn+1)) = xn+1. Since
for any x > 0, there is a unique real number y such that (x, y) ∈ A, this yields
γ(tn+1) = an+1. Now, since the sequence tn is increasing and bounded from
above, necessarily |tn+1 − tn| → 0 when n→ +∞. But on the other hand, for
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any n ∈ N,

|γ(tn+1)− γ(tn)| = |an+1 − an|
≥ |yn+1 − yn|
= 2

Hence the function γ, despite being continuous and defined on the compact set
[0, 1] cannot be uniformly continuous, which is a contradiction.

Components

We define two concepts of components based respectively on path-connectedness
and connectedness.

Definition – Component. A (path-connected/connected) component of a non-
empty set A is a subset of A which is path-connected/connected and maximal
with respect to inclusion among such sets – that is, included in no other path-
connected/connected subset of A.

Theorem – Partition into Components. The path-connected/connected
components of a non-empty set A are a partition of A: they are a collection of
non-empty and pairwise disjoint subsets of A whose union is A.

Proof. The proof is identical for path-connected and connected components.
Let a ∈ A. Consider the collection Aa of all connected subsets of A that contain
the point a. The set Aa = ∪Aa is connected. By construction, the set Aa is
maximal: it is a component of A. As every component of A is maximal, it
contains at least one point a ∈ A: it is therefore non-empty and equal to Aa.
Hence the union of all components of A is ∪a∈AAa = A. Finally, if two such
components Aa and Ab have a non-empty intersection c ∈ A, the set Aa ∪Ab is
connected and contains Aa and Ab, therefore Aa = Ab. �

Corollary – Connectedness & Components. A non-empty set is path-
connected/connected if and only if it has a single path-connected/connected
component.

Proof. If a set is path-connected/connected, it is one of its components, because
it is clearly connected and maximal. As the components form a partition of the
set, it is the only component. Conversely, if there is a unique component, again
because the components form a partition of the set, it is the set itself, which is
therefore path-connected/connected. �

Theorem – Components of Open Sets. The partitions of a non-empty open
set into path-connected components and connected components are identical.
All such components are open.

Proof. Let A be an open set and let B be a path-connected component of A.
For any b ∈ B, there is a non-empty open disk D centered on b which is included
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in A. The disk D is a path-connected subset of A that contains a; it is therefore
included in the unique maximal path-connected subset of A that contains a: the
set B. Therefore, B is open.

The path-connected components of A are open and path-connected, hence they
are also connected. They are also maximal among the connected sets of A:
a connected component of A contains a path-connected component of A if
it contains a point of it; if it were to contain more than one path-connected
component, it would be the union several disjoint open sets and hence could not
be connected. �

Locally Constant Functions

Definition – Locally Constant Function. A function f defined on a set A
is locally constant if for any a in A, there is a non-empty open disk D centered
on a such that f is constant on A ∩D:

∀ a ∈ A, ∃ ε > 0, ∀ b ∈ A, |b− a| < ε ⇒ f(b) = f(a).

Theorem – Locally Constant Functions & Connected Sets. A set A is
connected if and only if every locally constant function defined on A is constant.

Proof. Let f be a locally constant function defined on A. Let a ∈ A and
B = {b ∈ A | f(b) = f(a)}. Assume that f is not constant, that is, that
C = A \ B is non-empty. As f is locally constant, the distance between any
point b of B and the set C is positive; we may define Db = D(b, rb) where
rb = d(b, C)/2 > 0. We may perform a similar construction for any point c of C
and define a disk Dc = D(c, rc) with rc = d(c,B)/2 > 0. By construction, the
sets ∪b∈BDb and ∪c∈CDc are non-empty, open and disjoints, hence the dilation
∪a∈ADa of A is not path-connected. Therefore, A is not connected.

Conversely, if A is not connected, let ∪a∈ADa be a dilation of A which is not
path-connected. It has multiple (path-connected) components; let B be one of
them and C be the union of all the others. Since every component is non-empty
and open, B and C are both non-empty and open. Then, the function f defined
by f(z) = 1 if z ∈ B and f(z) = 0 if z ∈ C is locally constant; however, it is not
constant. �
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