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Path Sequences

It is convenient to state Cauchy’s integral theorem for finite sequences of paths
instead of paths. To this end, we generalize some of the concepts initially defined
for paths.

Definition – Opposite & Concatenation. The opposite of the path sequence
γ = (γ1, . . . , γn) is the path sequence

γ← = (γ←n , . . . , γ←1 ).

The concatenation of the path sequences

α = (α1, . . . , αk) and β = (β1, . . . , βl)

is the path sequence

α |β = (α1, . . . , αk, β1, . . . , βl).

Definition – Image. The image of the path sequence γ = (γ1, . . . , γn) is the
set

γ([0, 1]) =
n⋃
k=1

γk([0, 1]).
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Definition – Winding Number, Exterior, Interior. If γ = (γ1, . . . , γn) is
a sequence of closed paths and a ∈ C is not on its image, the winding number of
γ around a is defined by

ind(γ, a) =
n∑
k=1

ind(γk, a).

The exterior of γ is the set

Ext γ = {z ∈ C \ γ([0, 1]) | ind(γ, z) = 0}

and its interior is the set

Int γ = {z ∈ C \ γ([0, 1]) | ind(γ, z) 6= 0}

or equivalently
Int γ = C \ (γ([0, 1]) ∪ Ext γ).

Definition – Length & Line Integral. Let γ = (γ1, . . . , γn) be a sequence of
rectifiable paths. The length of γ is defined as

`(γ) =
n∑
k=1

`(γk).

The integral along γ of a complex-valued function f which is defined and
continuous on the image of γ is∫

γ

f(z) dz =
n∑
k=1

∫
γk

f(z) dz.

Cauchy’s Theorem & Corollaries

For the global version of Cauchy’s integral theorem, the star-shaped assumption
is replaced by a weaker geometric requirement:

Theorem – Cauchy’s Integral Theorem (Global Version). Let Ω be an
open subset of C and let f : Ω → C be a holomorphic function. Let γ be a
sequence of rectifiable closed paths of Ω. If Int γ ⊂ Ω then∫

γ

f(z) dz = 0.

Remark – One or Two Paths. This version of Cauchy’s integral theorem is
clearly applicable for a single path γ instead of a path sequence. Now, the next
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Figure 1: A pair γ of two rectifiable closed paths in an open set Ω represented
in light grey. Both paths are concatenations of quadratic Bézier curves.
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Figure 2: This path sequence forms the outline of the capital “Q” letter in the
League Spartan typeface. The interior of the path sequence is represented in
dark grey; as the two paths are oriented in opposite directions, the interior of the
path sequence is included in Ω. The interior of the inner path does not belong
to the interior of the path sequence; a typographist would say that it is a closed
counter of the letter.
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common use case involves two rectifiable closed paths γ and µ of Ω. If they have
the same winding number with respect to any point which is not in Ω:

∀ z ∈ C \ Ω, ind(γ, z) = ind(µ, z),

then the interior of the path sequence (γ, µ←) is included in Ω and Cauchy’s
integral theorem is applicable. Its conclusion provides∫

γ

f(z) dz =
∫
µ

f(z) dz.

Remark – Simply Connected Sets. If Ω is simply connected, Cauchy’s
theorem is applicable for any sequence of rectifiable closed paths γ of Ω. Indeed
in any such set Ω, for any path γ – and thus for any sequence of paths γ – we
have Int γ ⊂ Ω. Since any star-shaped set is simply connected, the local version
of Cauchy’s theorem is a special case of the global version.

Cauchy’s residue theorem is a generalization of his integral theorem. It covers
the case where the interior of the path sequence γ is included in the domain
Ω of the holomorphic function f, except for a set of isolated singularities. The
integral of f along γ in this case can be computed in terms of the residues of
the function at these singularities.

Definition – Singularity. Let Ω be an open subset of C. A singularity of a
function f : Ω→ C is a point a of C \Ω. It is isolated if its distance to the other
singularities of f is positive:

∃ ε > 0, ∀ z ∈ C, (|z − a| < ε and z 6= a ) ⇒ z ∈ Ω.

Definition – Residue. Let a be an isolated singularity of the holomorphic
function f : Ω→ C. Let d be the distance between a and the other singularities
of f (+∞ if a is the only singularity of f). The integral of f along γ = a+ r[	]
is defined and independent of r as long as 0 < r < d. We define the residue of f
at a as

res(f, a) = 1
i2π

∫
γ

f(z) dz

for any such r.

Examples – Singularity & Residue. Let a ∈ C and

f : z ∈ C \ {a} 7→ 1
z − a

.

The point a is the only singularity of f ; it is clearly isolated. For any r > 0 and
γ = a+ r[	] we have∫

γ

f(z) dz =
∫
γ

dz

z − a
= i2π × ind(γ, a) = i2π,
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thus res(f, a) = 1. Now, let a ∈ C and let

f : z ∈ C \ {a} 7→ (z − a)n where n ∈ Z \ {−1}.

Since z ∈ C \ {a} 7→ (z − a)n+1/(n+ 1) is a primitive of f,∫
γ

f(z) dz =
∫
γ

(z − a)n dz = 0,

thus res(f, a) = 0.

Proof – Residue: independence with respect to the radius. Let r1 and
r2 be two real numbers in ]0, d[ and let γ1 = z + r1[	] and γ2 = z + r2[	]. If
z ∈ C \ Ω, either z = a and

ind(γ1, z) = ind(γ2, z) = 1,

or |z − a| ≥ d and
ind(γ1, z) = ind(γ2, z) = 0.

In any case the winding numbers are equal. The “One or Two Paths” remark
therefore provides ∫

γ1

f(z) dz =
∫
γ2

f(z) dz

which concludes the proof. �

Theorem – Cauchy’s Residue Theorem. Let Ω be an open subset of C and
let f : Ω → C be a holomorphic function. Let γ be a sequence of rectifiable
closed paths of Ω. If A is a finite set of isolated singularities of f such that

Int γ ⊂ Ω ∪A

then ∫
γ

f(z) dz = i2π
∑
a∈A

ind(γ, a)× res(f, a).

Remark – Infinite Set of Singularities. Note that if we drop the assumption
that A is finite, the conclusion of the theorem still holds since only a finite number
of singularities of A may be in the interior of γ(1); the sum in the right-hand
side of the theorem equation may then have an infinite number of terms, but
only a finite number of them are non-zero.

Proof – Cauchy’s Residue Theorem. We may assume that the set A is
included in Int γ. If this assumption is not satisfied, replace A with A ∩ Int γ;

1Indeed, assume instead that there is a infinite sequence of distincts points of A in Int γ; by
compactness a subsequence of it converges to some point a in its closure. The singularities of
f are a closed set, thus a is itself a singularity. Since the boundary of Int γ is included in the
image of γ and hence in Ω, the point a actually belongs to Int γ. Now Int γ ⊂ Ω ∪A, therefore
a ∈ A, but by construction it is not isolated, which is a contradiction.
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this new set A still satisfies Int γ ⊂ Ω ∪A and the conclusion of the theorem for
the new set does provide the result for the original set.

Let ε > 0 be such that for any a ∈ A, D(a, ε) ⊂ Ω ∪ {a} and let 0 < r < ε.
Define for every a in A the path γa by

γa(t) = a+ r[	]−ind(γ,a).

We clearly have ind(γa, a) = −ind(γ, a).

Let λ be the concatenation of γ and the sequence of all γa for a ∈ A. We now
prove that Intλ ⊂ Ω; we need to establish that ind(λ, z) = 0 for every z ∈ C \Ω.
For such a point z, either

1. z ∈ A.
In this case, ind(γz, a) = 0 for any other singularity a ∈ A. Therefore,

ind(λ, z) = ind(γ, z) + ind(γz, z) = 0.

2. z 6∈ Ω ∪A.
We have ind(γa, z) = 0 for any a ∈ A. Additionally, as Int γ ⊂ Ω ∪ A,
ind(γ, z) = 0. Finally, ind(λ, z) = 0.

Cauchy’s integral theorem then provides∫
λ

f(z)dz =
∫
γ

f(z) dz +
∑
a∈A

∫
γa

f(z) dz = 0,

By construction of the γa and the definition of residues, we have∫
γa

f(z) dz = −ind(γ, a)× i2π res(f, a).

�

There is a third equivalent form of Cauchy’s integral theorem: Cauchy’s integral
formula2. It gives the value of f at any point of the interior of γ as a function of
its values on the image of γ.

Theorem – Cauchy’s Integral Formula. Let Ω be an open subset of C and
let f : Ω → C be a holomorphic function. Let γ be a sequence of rectifiable
closed paths of Ω and a ∈ Ω \ γ([0, 1]). If Int γ ⊂ Ω, then∫

γ

f(z)
z − a

dz = i2π × ind(γ, a)× f(a).

Proof. The function
g : z ∈ Ω \ {a} 7→ f(z)

z − a
2The integral theorem implies the residue theorem which in turn implies the integral formula.

Finally, the proof of the integral theorem is straightforward if we assume that the integral
formula holds.
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is holomorphic. The point a is one of its isolated singularities. For A = {a}, we
have

Int γ ⊂ (Ω \ {a}) ∪A = Ω.

Additionally, if µ = a+ r[	],

res(g, a) = lim
r→0

1
i2π

∫
µ

g(z) dz = lim
r→0

∫ 1

0
f(a+ rei2πt) dt = f(a).

Therefore, Cauchy’s residue theorem provides∫
γ

f(z)
z − a

dz = i2π × ind(γ, a)× f(a)

which is Cauchy’s integral formula. �

The Proof

Definition – Path Sequence Decomposition. A decomposition of a sequence
of rectifiable paths γ = (γ1, . . . , γn) is a sequence of rectifiable paths

γ∗ = (γ∗1 , . . . , γ∗p1
, γ∗p1+1, . . . , γ

∗
pn
, γ∗pn+1, . . . , γ

∗
p)

such that for a suitable set of partitions of the unity

γ1 = γ∗1 |t11 · · · |t1p1−1
γ∗p1

γ2 = γ∗p1+1 |t21 · · · |t2p2−p1−1
γ∗p2

...
γp = γ∗pn+1 |tn1 · · · |tnp−pn−1

γ∗p

Definition – Equivalent Path Sequences. Let nγ(µ) be the number of
occurences of the path µ in the path sequence γ. Two sequences of rectifiable
paths γ and λ are equivalent if they have decompositions γ∗ and λ∗ such that
for any path µ

nγ∗(µ)− nγ∗(µ←) = nλ∗(µ)− nλ∗(µ←).

Remark – Integral along Equivalent Paths. If the sequence of rectifiable
paths γ has a decomposition into a sequence of rectifiable paths γ∗, then for
every continuous and complex-valued function f defined on the image of γ,∫

γ

f(z) dz = 1
2
∑
µ

(nγ∗(µ)− nγ∗(µ←))×
(∫

µ

f(z) dz
)
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Figure 3: A path sequence made of arrows whose interior is included in Ω.
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Figure 4: We can apply the local version of Cauchy’s integral theorem “cell-by-cell”
to such a path to prove the global version of the theorem.
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Figure 5: The path sequence made of arrows (in grey) is a suitable approximation
of the original outline: the integral on both path sequence of holomorphic
functions defined in Ω are equal.

11



Figure 6: Indeed, the integral on the “difference” between the two paths sequence
(the concatenation of the original and the opposite of the grid approximation) is
an integral on a collection of “small” closed paths for which the local version of
Cauchy’s integral theorem can be applied: all these integrals are equal to zero.
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where the sum is taken over the paths µ such that µ or µ← has at least one
occurrence in γ∗. Consequently, if γ and λ are equivalent and f is defined and
continuous on the images of γ and λ,∫

γ

f(z) dz =
∫
λ

f(z) dz.

Definition – Path Diameter. The diameter of a path γ : [0, 1]→ C is defined
as the diameter of its image: it is the nonnegative real number

diam(γ) = diam(γ([0, 1])) = max {|z − w| | z ∈ γ([0, 1]), w ∈ γ([0, 1])}.

Theorem – Small Closed Paths Theorem. Let Ω be an open subset of C
and γ be a sequence of rectifiable closed paths of Ω such that Int γ ⊂ Ω. There is
a sequence of rectifiable closed paths µ of Ω of arbitrarily small diameter which
is equivalent to γ.

This geometric result and the local Cauchy theory yield the global version of
Cauchy’s integral theorem:

Proof – Cauchy’s Integral Theorem. Assume that Ω, f and γ satisfy the
assumptions of Cauchy’s integral theorem. Since the union of the image of γ
and its interior is a compact set, there is a ε > 0 such that the open set

Ω′ = {z ∈ Ω | d(z,C \ Ω) > ε}

contains the image of γ and its interior. By the small closed paths theorem,
there is a sequence of rectifiable closed paths µ = (µ1, . . . , µn) of Ω′ of diameter
less than ε which is equivalent to γ, and therefore such that∫

γ

f(z) dz =
∫
µ

f(z) dz.

The image of every path µk of diameter less than ε is included in the disk
centered on µk(0) and of radius ε. This disk belongs to Ω by construction and
thus the local version of Cauchy’s theorem is applicable. Finally,∫

µ

f(z) dz =
n∑
k=1

∫
µk

f(z) dz = 0.

�

The proof of the small closed paths theorem itself requires several lemmas.

Definition – Arrow. An arrow is an oriented line segment

[(k + il)2−n → (k′ + il′)2−n]

for some n ∈ N and k, l, k′, l′ ∈ Z such that

|k′ − k|+ |l′ − l| = 1.
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Lemma – Small Paths & Path of Arrows. Let Ω be an open subset of C
and γ be a sequence of rectifiable closed paths of Ω. For any ε > 0, there are
two sequences λ1 and λ2 of rectifiable closed paths of Ω such that

1. the path sequences γ and λ1 |λ2 are equivalent.

2. the diameter of every path of λ1 is smaller than ε.

3. λ2 has a decomposition into arrows.

Proof. We prove the result for a rectifiable closed path γ; the result for path
sequences is a simple corollary. Let n be a natural number and let (γ1, . . . , γm)
be a sequence of rectifiable paths such that γ = γ1 | · · · | γm and `(γk) < 2−n for
any k ∈ {1, . . . ,m}. Denote πn the function defined on C by

πn(z) = [Re(2nz)]2−n + i[Im(2nz)]2−n;

where the function [ · ] rounds a real number to (one of) the nearest integer(s).
For any z ∈ C, |πn(z)−z| < 2−n. The points πn(γk(0)) and πn(γk(1)) are distant
by less than 3× 2−n and thus may always be joined by a path λ2,k which is the
concatenation of at most four consecutive arrows of length 2−n.

Define the rectifiable closed path λ1,k as the concatenation:

λ1,k = γk | [γk(1)→ πn(γk(1))] |λ←2,k | [πn(γk(0))→ γk(0)]

The length of the closed path λ1,k is smaller than 7× 2−n, hence its diameter
is smaller than 7/2× 2−n. A suitable choice of n provides diam(λ1,k) < ε. The
paths λ1 = (λ1,1, . . . , λ1,m) and λ2 = (λ2,1, . . . , λ2,m) satisfy the statement of
the lemma. �

Lemma – Small Closed Paths Theorem (Arrow Version). Let Ω be an
open subset of C and let γ be a sequence of rectifiable closed paths of Ω with
a decomposition into arrows and such that Int γ ⊂ Ω. There is a sequence of
rectifiable closed paths µ of Ω of arbitrarily small diameter which is equivalent
to γ.

Proof – Small Closed Paths Theorem (Arrow Version). Any sequence
γ of rectifiable closed paths made of arrows may be decomposed further into a
sequence γ∗ of arrows of the same length 2−n for an arbitrary large n. Now, we
may associate to this level of decomposition a family indexed by integers k and
l of square cells

Ck,l = {(k + il + s+ it)2−n | (s, t) ∈ [0, 1]2}.

with centers
ck,l = k + 0.5 + i(l + 0.5).

For every arrow µ of length 2−n, the number nγ∗(µ)− nγ∗(µ←) only depends
on the numbers ind(γ, c) where c is the center of a cell (or actually with respect
to any other point of the cell – the index is constant in each cell) and thus, two
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path sequences with the same set of winding numbers are equivalent. Consider
for example the vertical arrow

µ = [(k + il)2−n → (k + i(l + 1))2−n]

and the associated left cell Ck−1,l and Ck,l. If we edit γ∗ to replace every
occurence of µ with the polyline

µ2 = [(k + il)2−n → (k + 1 + il)2−n →
(k + 1 + i(l + 1))2−n → (k + i(l + 1))2−n]

and every occurence of µ← by µ←2 , we have increased the index of the right cell
(with center ck,l) by nγ∗(µ)− nγ∗(µ←) and the index of every other cell remains
the same. By construction, for this new path sequence γ2, we have nγ∗

2
(µ) = 0

and n∗γ2
(µ←) = 0; the left and right cells belongs to the same component of

C \ γ2([0, 1]). Therefore the index of γ2 around both cells is the same which
means that

ind(γ, ck−1,l) = ind(γ, ck,l) + nγ∗(µ)− nγ∗(µ←).

The treatment of horizontal arrows is similar.

Now, consider the sequence of centers (c1, . . . , cm) such that ind(γ, cp) 6= 0 and
the path sequence λ = (λ1, . . . , λm) where λp is either the concatenation of
ind(γ, cp) times the boundary of the cell with center cp oriented counterclockwise
if this winding number is positive, or the concatenation of −ind(γ, cp) times the
boundary of the cell of center cp oriented clockwise if it is negative. Every path
λp is rectifiable; the corresponding cell with center cp is included in Int γ and
therefore λp([0, 1]) is included in Ω. Additionally, by construction, for every cell
center c, ind(γ, c) = ind(λ, c) and therefore γ and λ are equivalent. The diameter
of λp is smaller than 2−n; a suitably large choice of n makes the diameter as
small as required and this concludes the proof. �

Proof – Small Closed Paths Theorem. Let ε > 0 such that that the open
set

Ω′ = {z ∈ Ω | d(z,C \ Ω) > ε}
contains the image of γ and its interior. Let λ1 and λ2 be the path sequences
provided by the small paths & path of arrows lemma with Ω = Ω′.

The image of every path µ of the sequence λ1 is included in the disk centered on
µ(0) of radius ε which is itself included in Ω. Any point z ∈ C \Ω belongs to the
unbounded component of C \ µ([0, 1]), thus ind(µ, z) = 0. Consequently, for any
such z,

ind(λ2, z) = ind(γ, z)
and thus Intλ2 ⊂ Ω. The conclusion of the theorem then follows from the
application of the arrow version of the small closed paths theorem to the sequence
of paths λ2. �
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