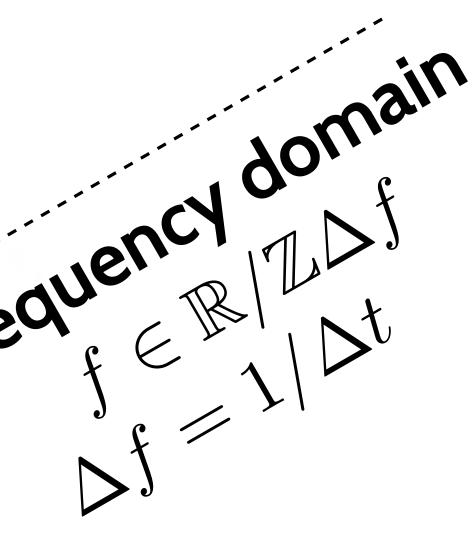
Spectral Analysis Digital Audio Coding

SEBASTIEN.BOISGERAULT@MINES-PARISTECH.FR

Discrete-Time Fourier Transform

 $\mathbf{time} \operatorname{domain}_{t \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}} x(t) \xleftarrow{\mathcal{F}}_{t \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T} \setminus \mathbb{T}}} x(f) \xrightarrow{\mathbf{frequency} \operatorname{domain}_{f \in \mathbb{T} \setminus \mathbb{T$ $x(f) = \Delta t \sum x(t) \exp(-i2\pi f t)$ $t \in \mathbb{Z} \Delta t$



Spectral Decomposition Problem

Given $x(t): \mathbb{Z}\Delta t \to \mathbb{R}$,

find $\begin{vmatrix} a(f) : \mathbb{R} \to \mathbb{R}_+ \\ \phi(f) : \mathbb{R} \to [-\pi, \pi) \end{vmatrix}$

such that $\forall t \in \mathbb{Z}\Delta t$.

$$x(t) = \int_0^{+\infty} a(f) \cos(2\pi f t + dx) dx$$

 $-\phi(f)) df$

Complex Exponentials

Instead, search for $x(f): \mathbb{R} \to \mathbb{C}$ such that

$$x(t) = \int_{-\infty}^{+\infty} x(f) \exp(i2\pi f)$$

(with
$$x(-f) = \overline{x(f)}$$
)

then $\begin{vmatrix} a(f) = 2|x(f)| \\ \phi(f) = \angle x(f) \end{vmatrix}$

ft) df

Uniqueness of the Decomposition

Define
$$\Delta f = \frac{1}{\Delta t}$$

If $x(f) : \mathbb{R} \to \mathbb{C}$ is a solution of

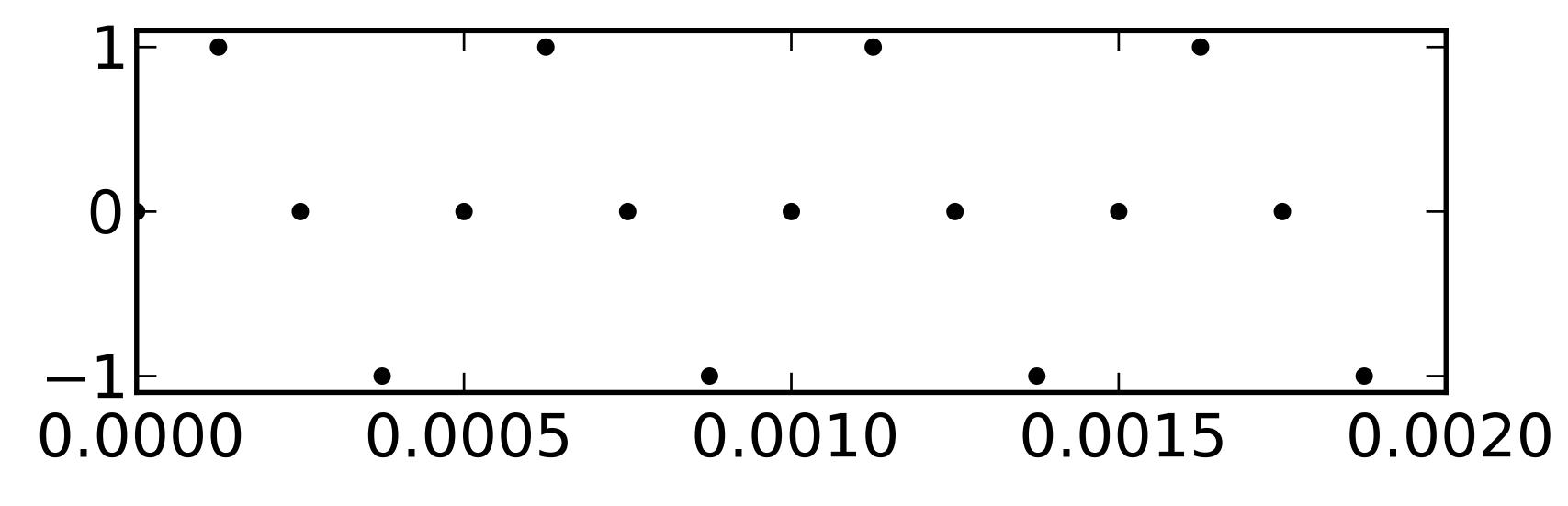
$$x(t) = \int_{-\infty}^{+\infty} x(f) \exp(it)$$

... so is $x(f - k\Delta f)$ for any $k \in \mathbb{Z}$.

$2\pi ft$ df

Frequency Ambiguity

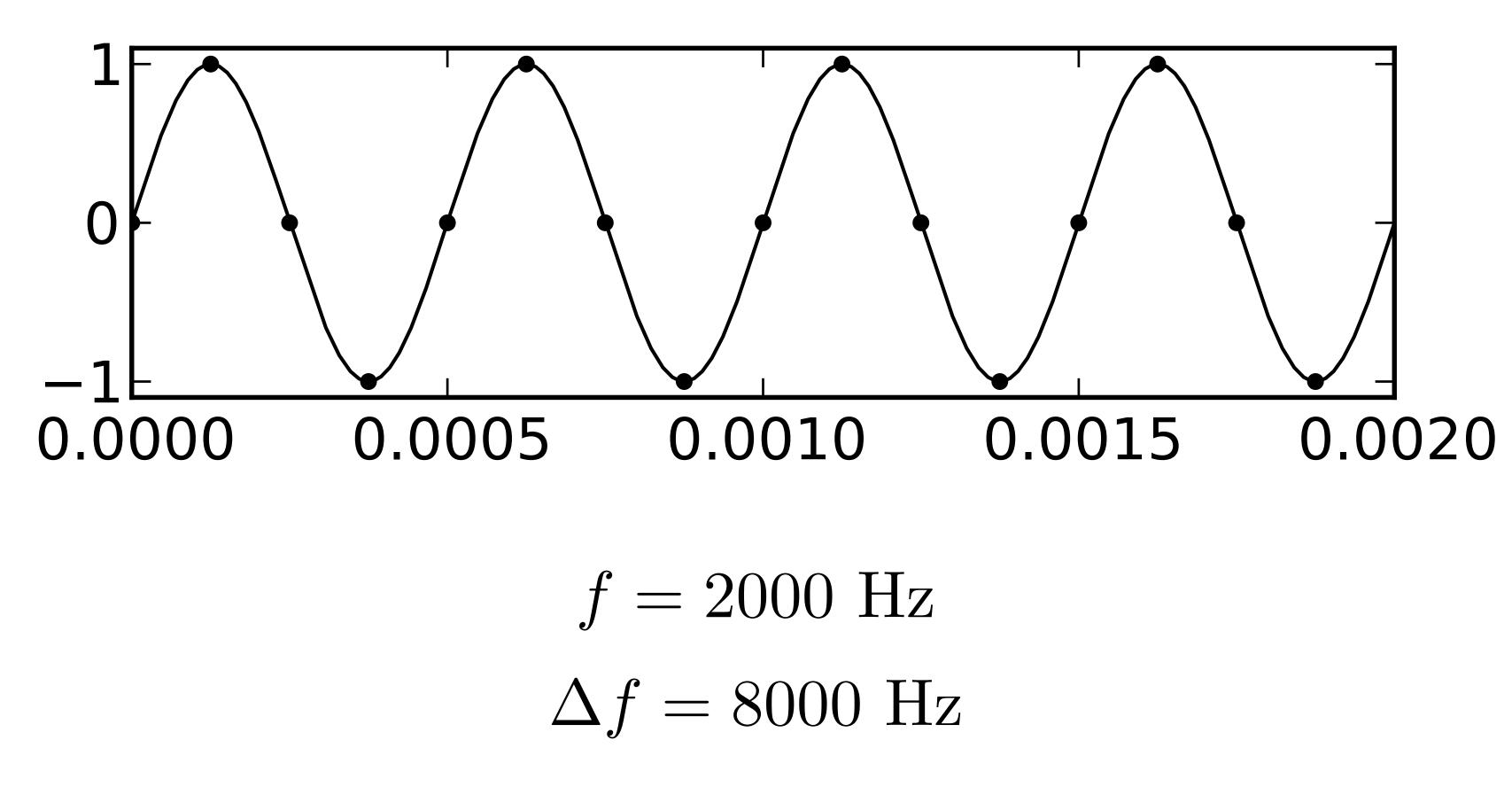
What is the frequency of this signal?



 $\Delta f = 8000 \text{ Hz}$

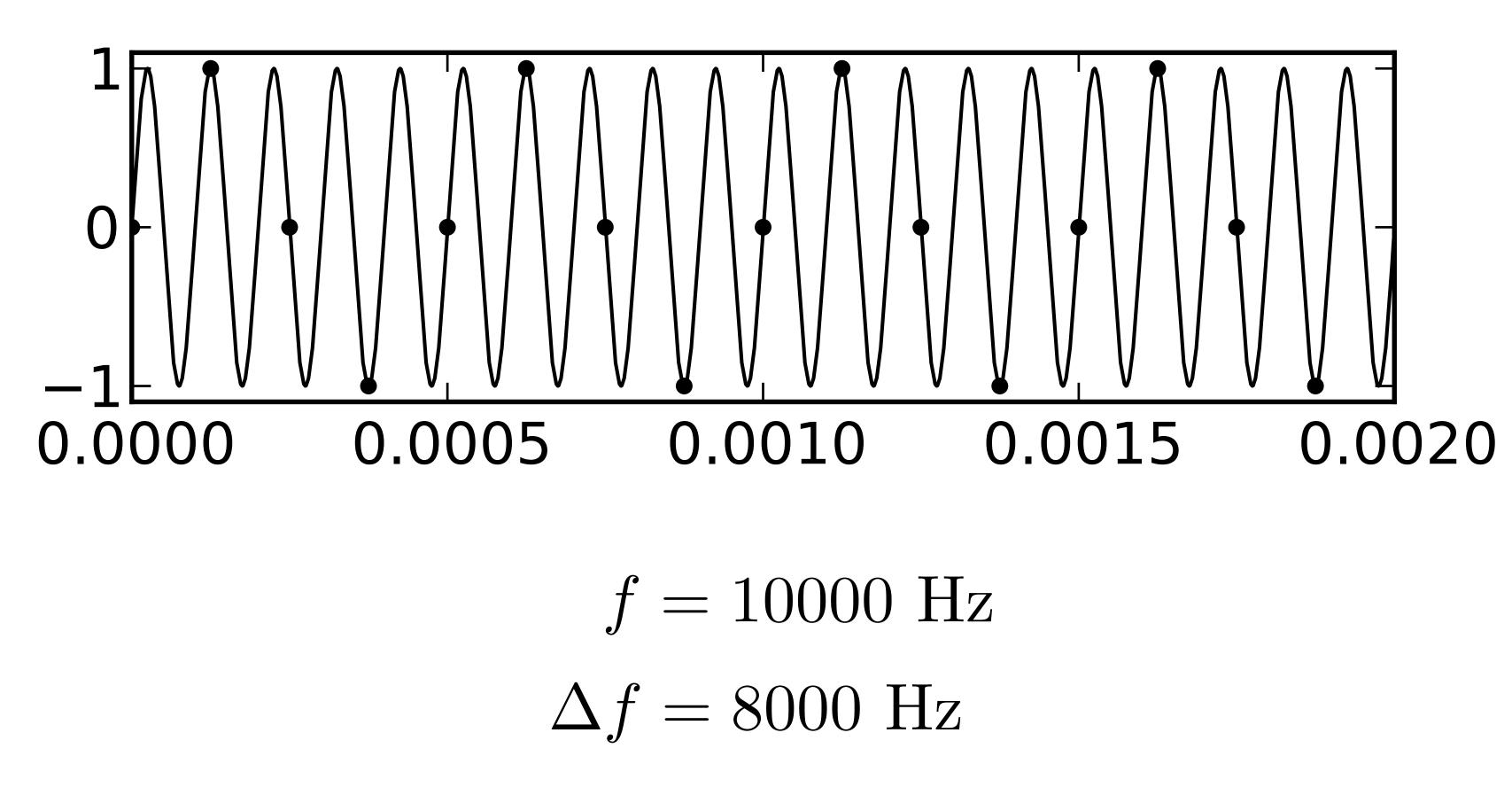
Frequency Ambiguity

What is the frequency of this signal?



Frequency Ambiguity

What is the frequency of this signal?



Spectral Decomposition - Conclusion

Search for $x(f) : \mathbb{R} \to \mathbb{C}$, solution of $x(t) = \int_{-\Lambda f/2}^{+\Delta f/2} x(f) \exp(i2\pi ft) df$

and enforce Δf – periodicity of x(f).

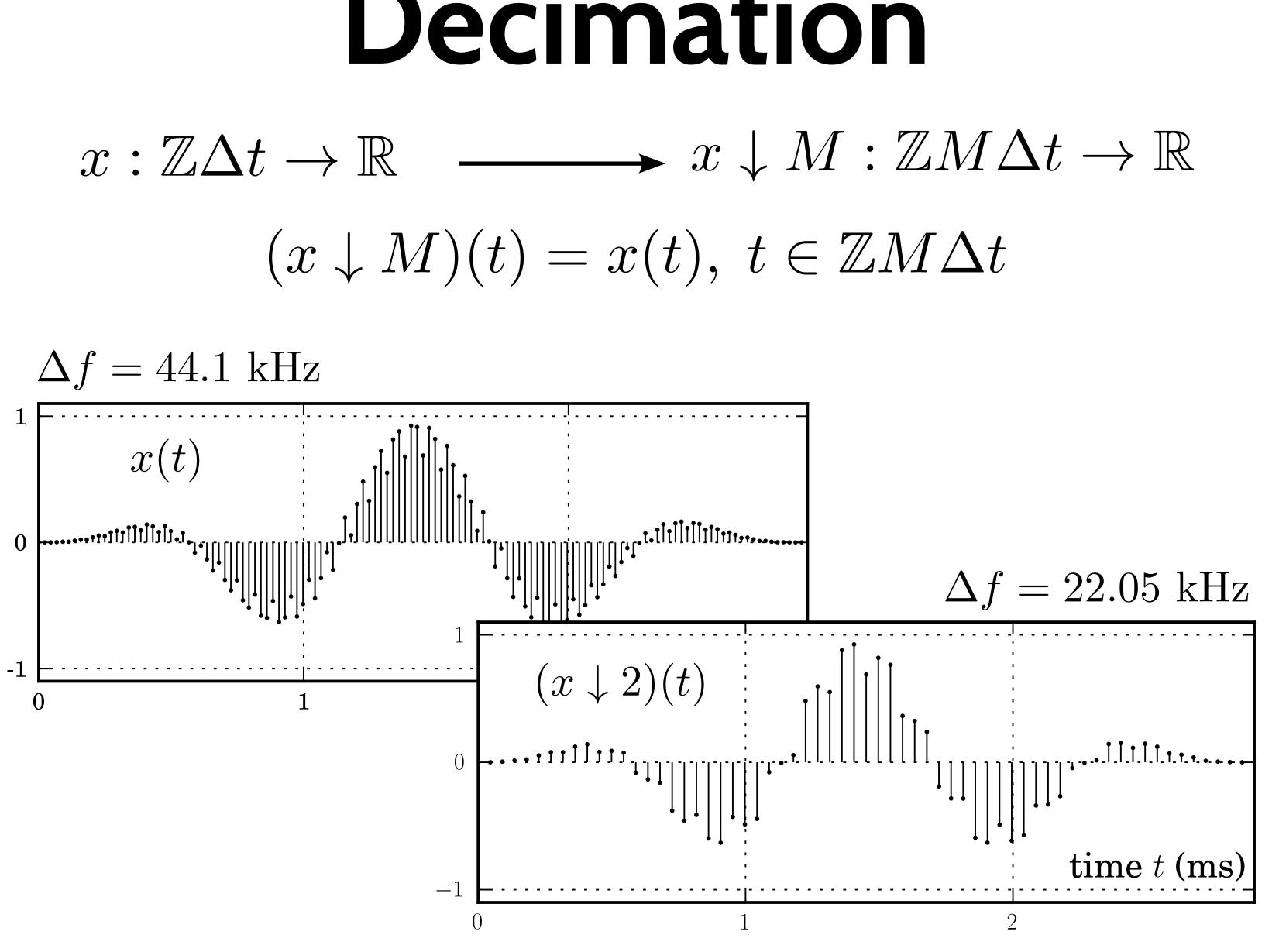
These choices yield uniqueness and:

$$x(f) = \Delta t \sum_{t \in \mathbb{Z}\Delta t} x(t) \exp(-t)$$

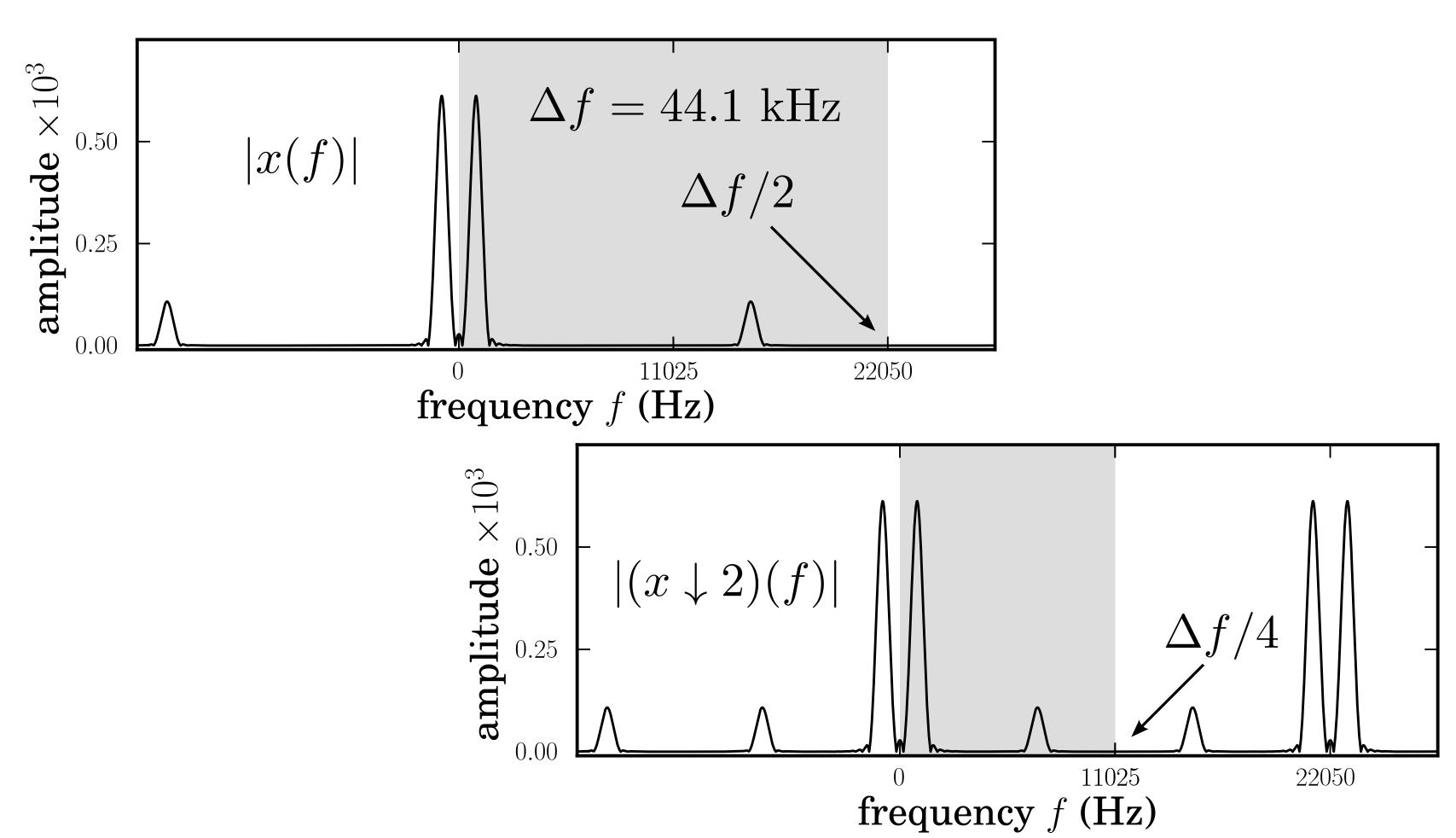
 $i2\pi ft$

Decimation

 $x:\mathbb{Z}\Delta t\to\mathbb{R}$



Decimation - Spectrum $(x \downarrow 2)(f) = x(f) + x(f + \Delta f/2)$



It's multiplication in the frequency domain: y(f) = h(f)u(f)or signal convolution in the time domain: $y(t) = (h * u)(t) = \Delta t \sum h(t')u(t - t')$ $t' \in \mathbb{Z} \Delta t$

h(t) is the filter impulse response: y(t) = h(t) if $u(t) = \begin{vmatrix} 1/\Delta t & \text{if } t = 0, \\ 0 & \text{otherwise.} \end{vmatrix}$

Low-Pass Filter

Defined by the **frequency response**:

$$h(f) = \begin{vmatrix} 1 & \text{if } |f| \le f_c \\ 0 & \text{otherwise} \end{vmatrix} \text{ for } |f|$$

where f_c is the cutoff frequency.

In the time domain:

 $h(t) = 2f_c \operatorname{sinc} 2f_c t$ with $\operatorname{sinc} x = \frac{\sin \pi x}{2}$

The impulse response is acausal and infinite.

$|\leq \Delta f/2$

$\sin \pi x$

πx

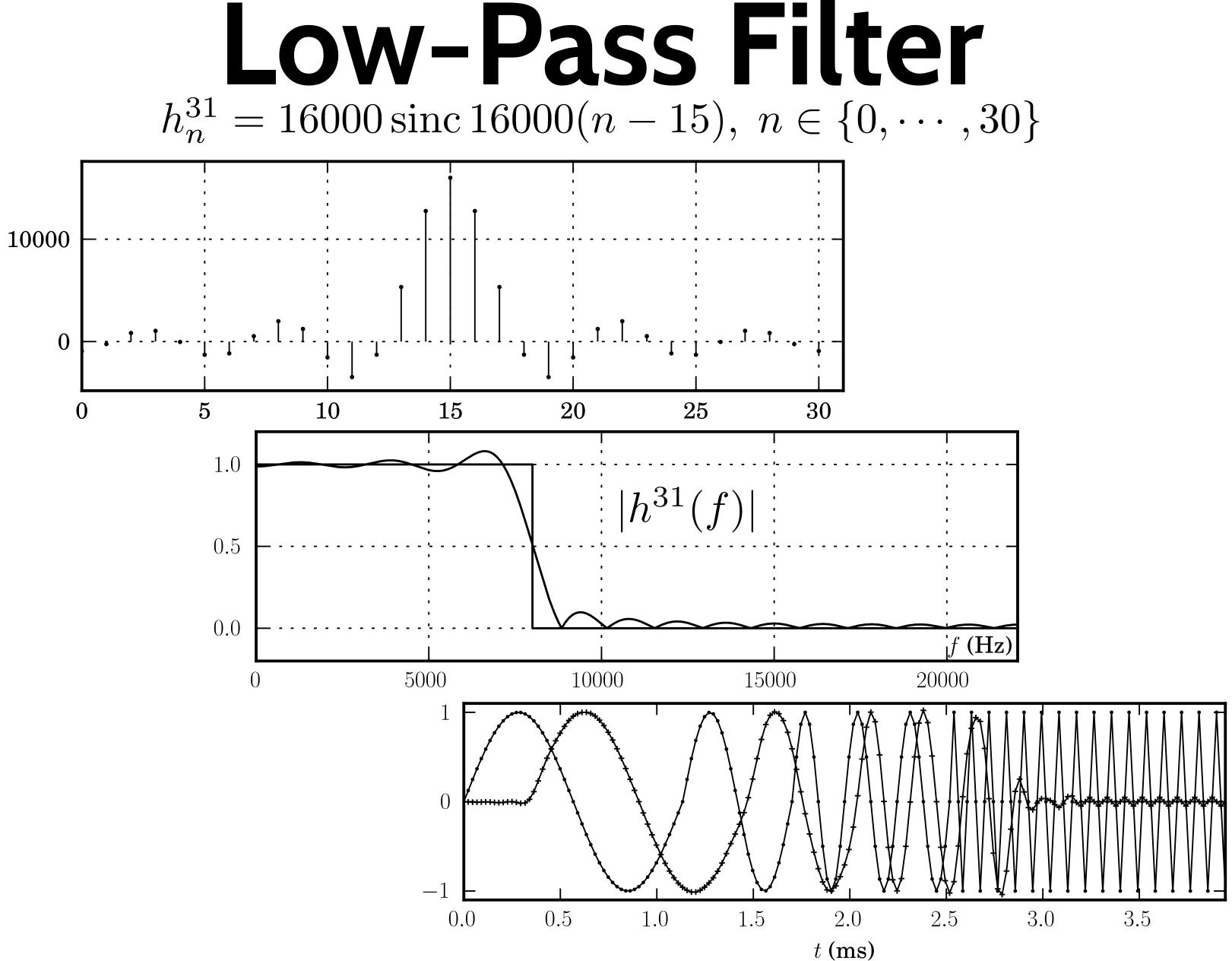
Low-Pass Filter

Concrete implementations are causal and finite: def low_pass(fc, dt=1.0, window=ones): def h(n): t = arange(-0.5 * (n-1), 0.5 * (n-1) + 1) * dt return 2 * fc * sinc(2 * fc * t) * window(n) return h

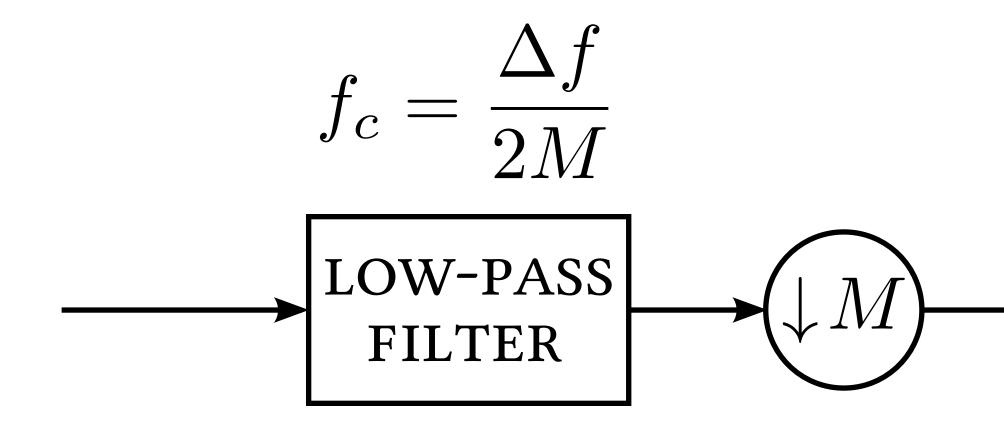
Filter the (finite, causal) signal u(t):

>>> N = 31

>>> h = low_pass(fc=8000.0, dt=1.0/44100.0)(N) >> y = dt * convolve(h, u)



Downsampling



F.T. & Signal Energy

Parseval theorem for Fourier series yields:

$$\Delta t \sum_{t \in \mathbb{Z} \Delta t} |x(t)|^2 = \int_{-\Delta f/2}^{\Delta f/2} |x(t)|^2 dt =$$

and proves that \mathcal{F} is an isomorphism:

 $L^2(\mathbb{Z}\Delta t) \longleftrightarrow L^2(\mathbb{R}/\mathbb{Z}\Delta f)$

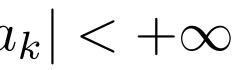
$|x(f)|^2 df$

F.T. & Measures Some signals are not of finite energy but may be represented in the Fourier domain as measures*: periodic $x(f) = x_1(f) + \sum_k a_k \delta(f - f_k)$ $L^2(\mathbb{R}/\mathbb{Z}\Delta f) \qquad \sum_k |a_k| < +\infty$

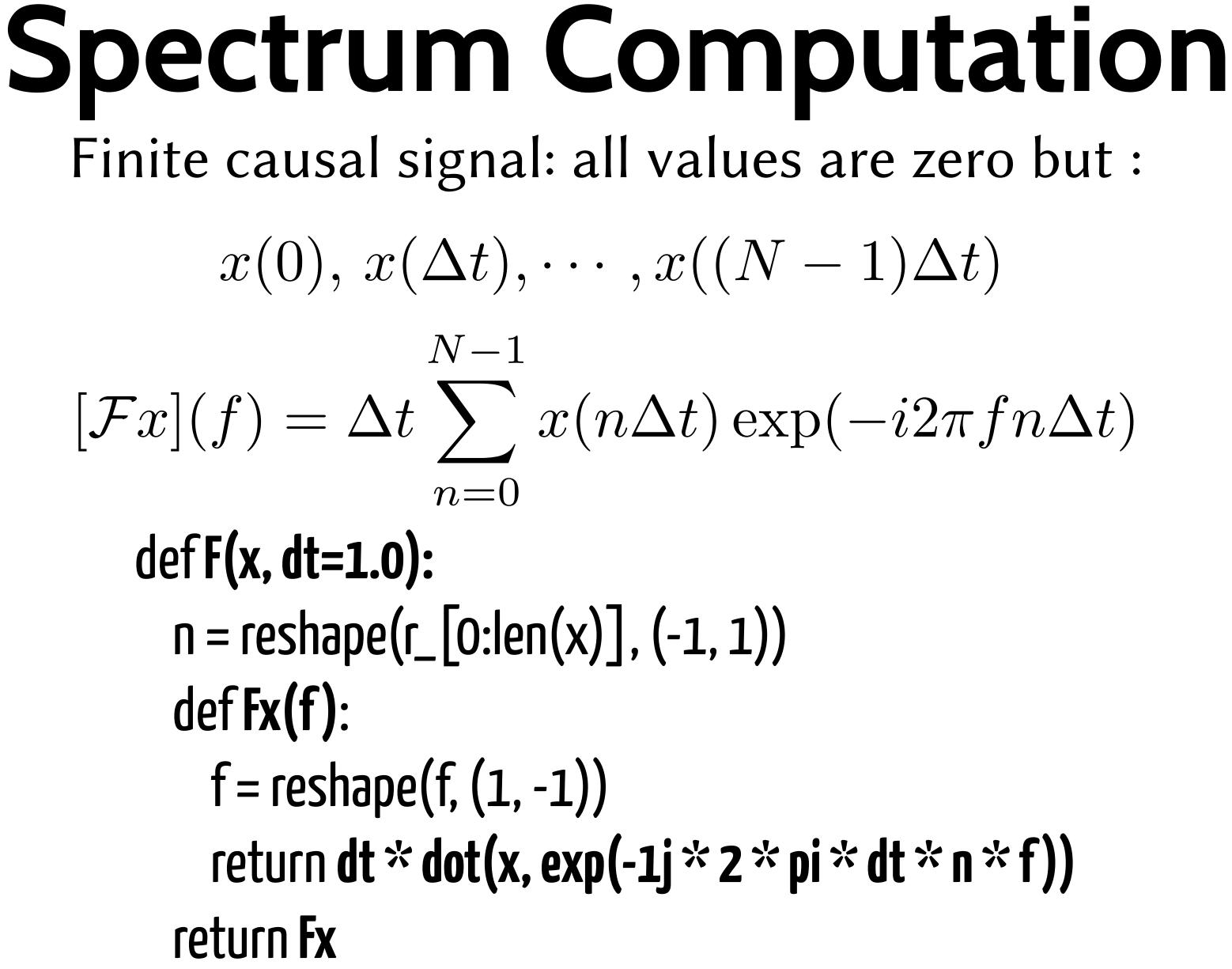
They correspond in the time domain to:

$$x(t) = x_1(t) + \sum_k a_k \exp(i2t)$$

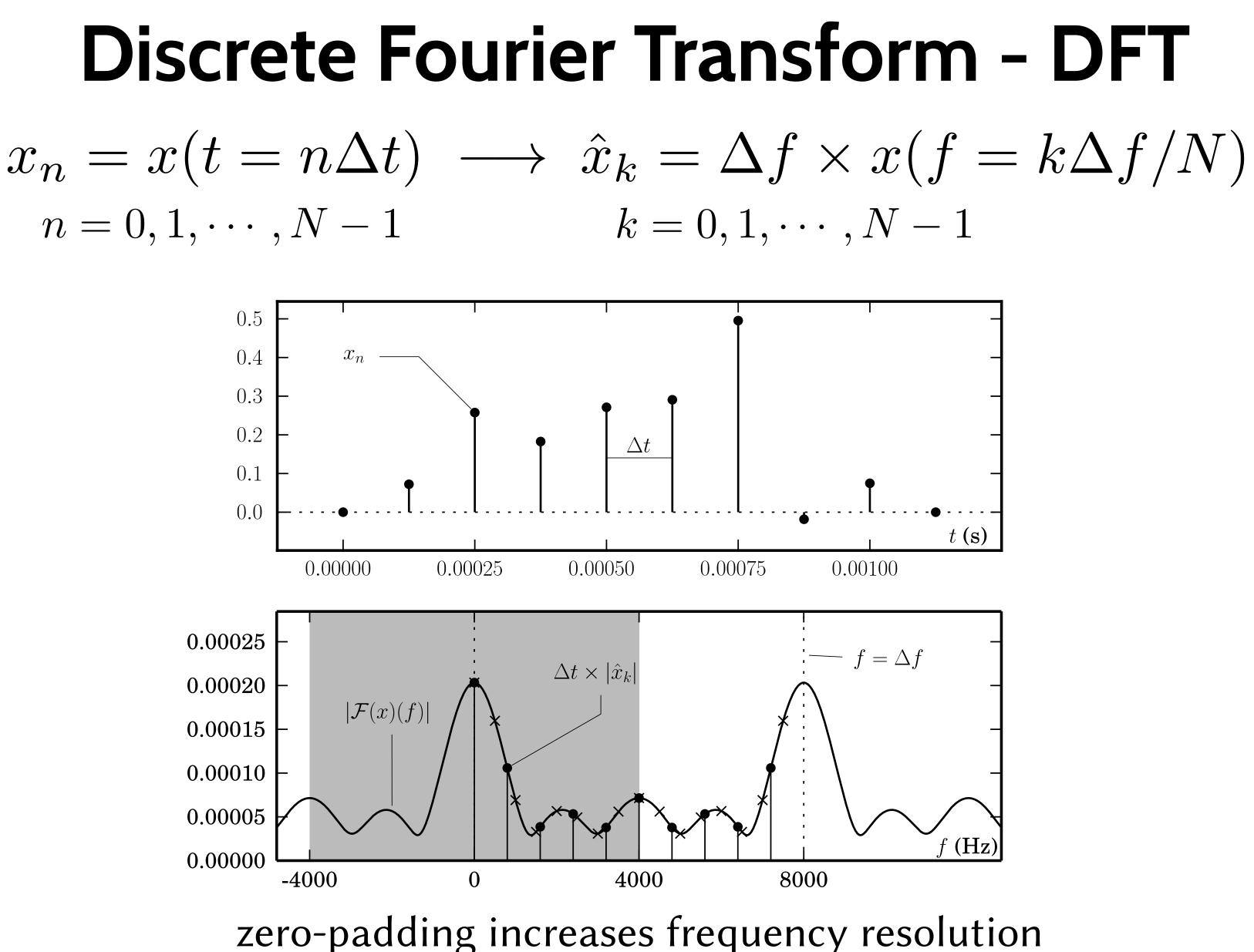
*: periodic, complex-valued, with no singular continous part.



 $2\pi f_k t$



$n = 0, 1, \cdots, N - 1$



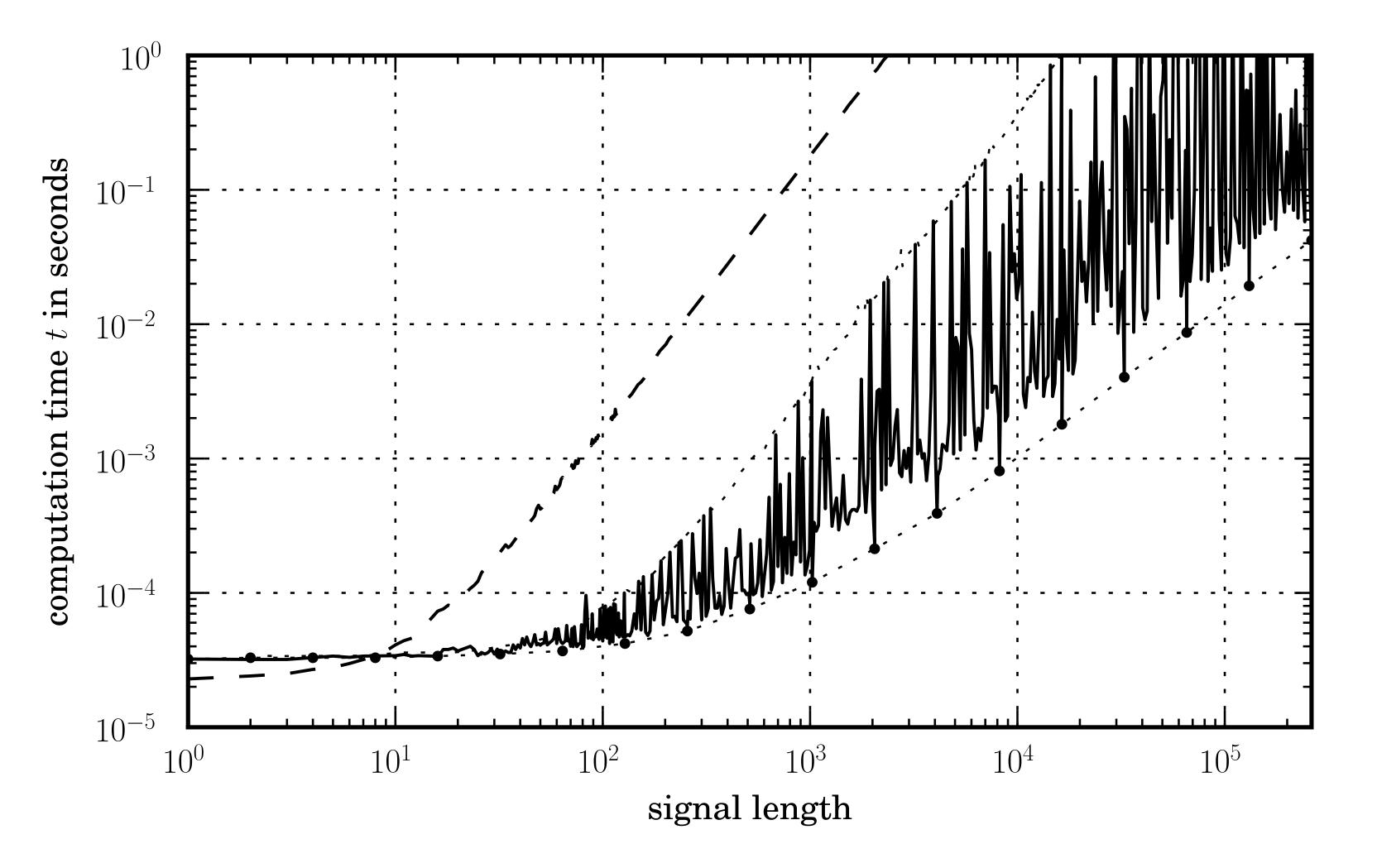
Fast Fourier Transform - FFT

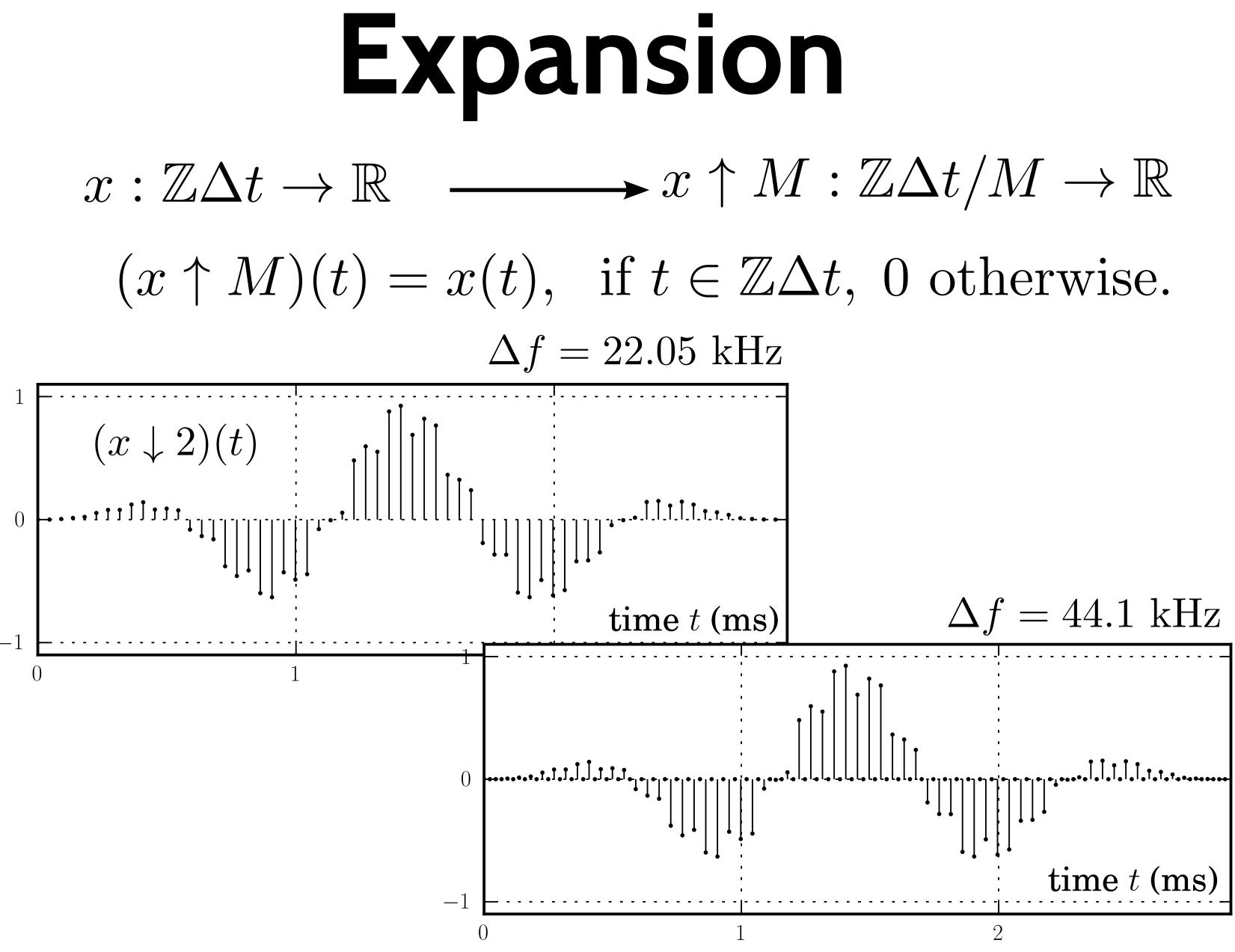
The DFT is a **function**, not an algorithm, that may be used to compute some spectrum (a.k.a. (DT)FT) values, for finite and causal signals.

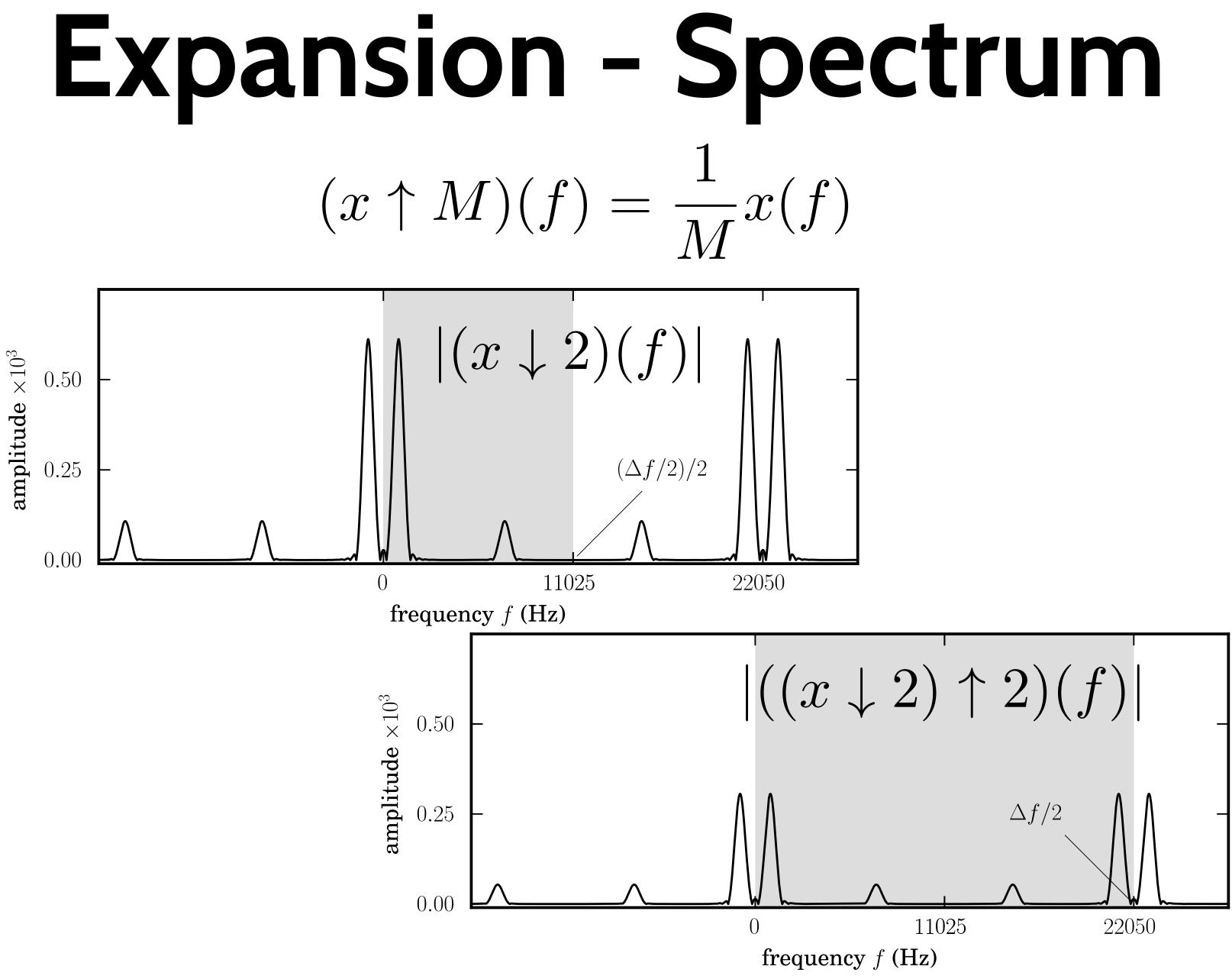
The naive algorithm (as a matrix-vector product) to compute the DFT has a $\mathcal{O}(N^2)$ complexity.

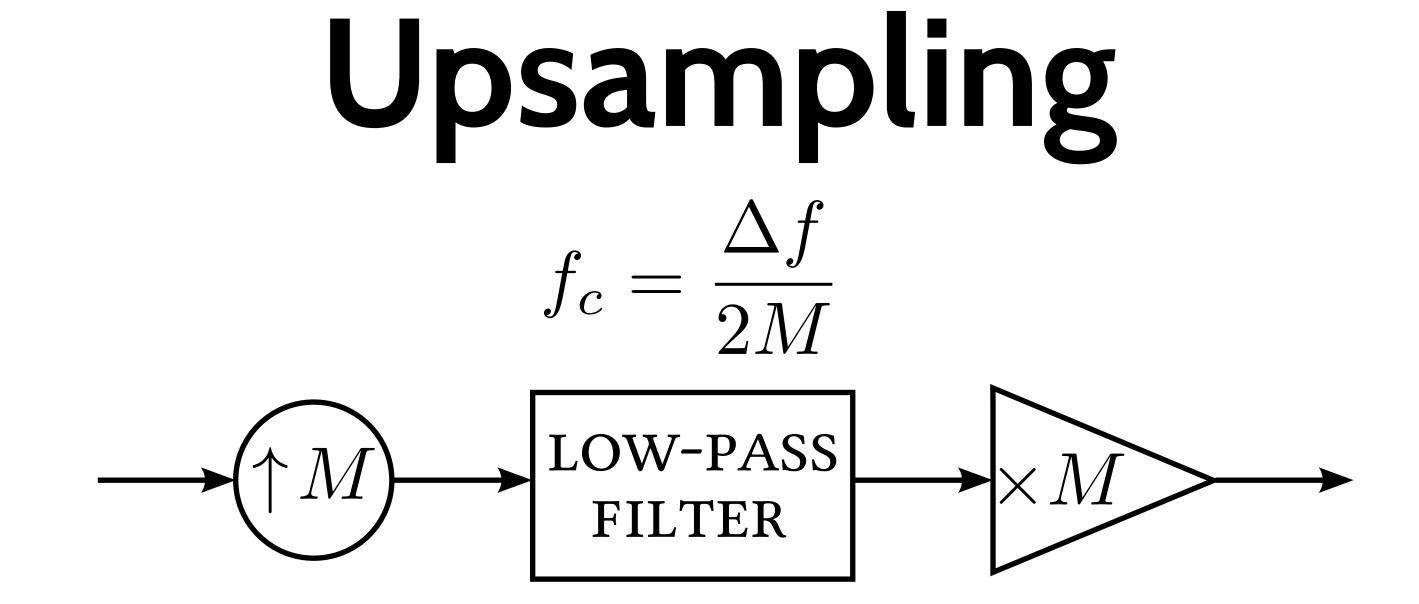
FFT refer to a family of algorithms that perform the DFT with a $\mathcal{O}(N \log N)$ complexity.

FFT Benchmarks

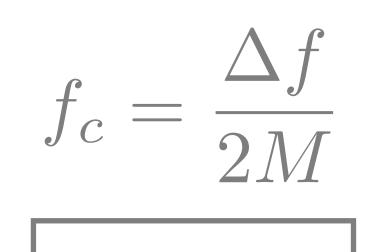




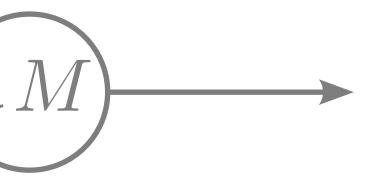




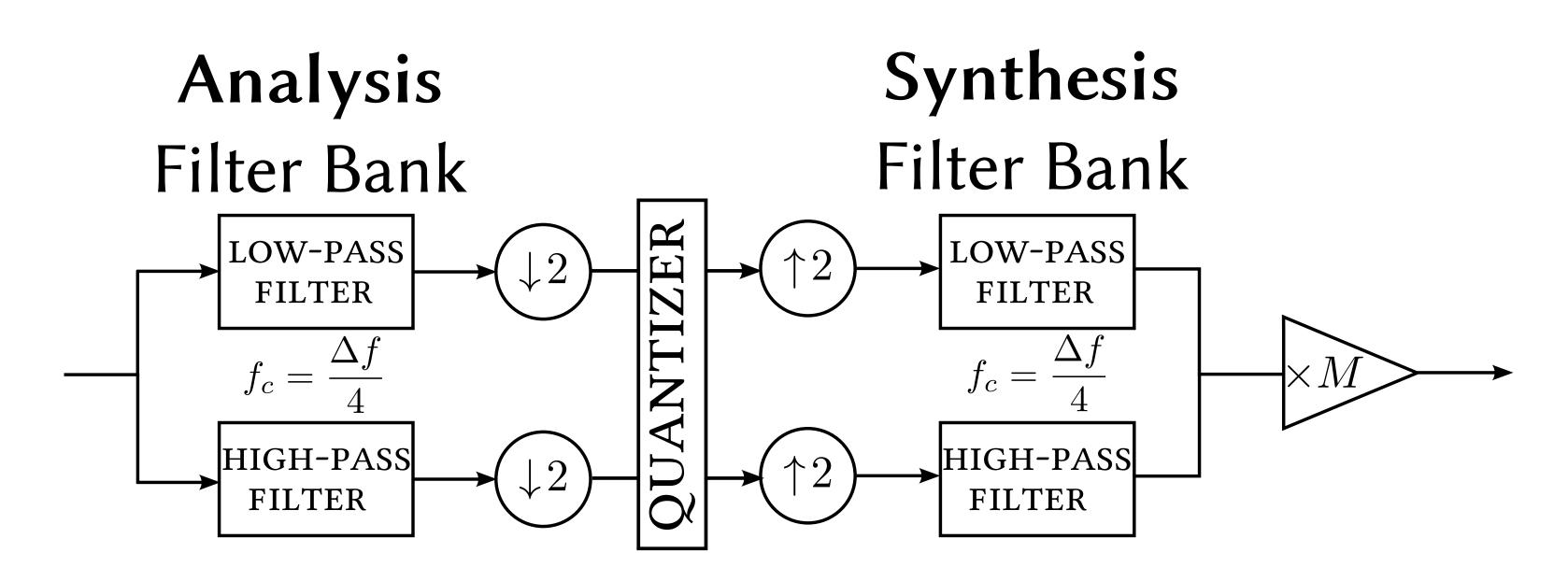
Downsampling



LOW-PASS FILTER

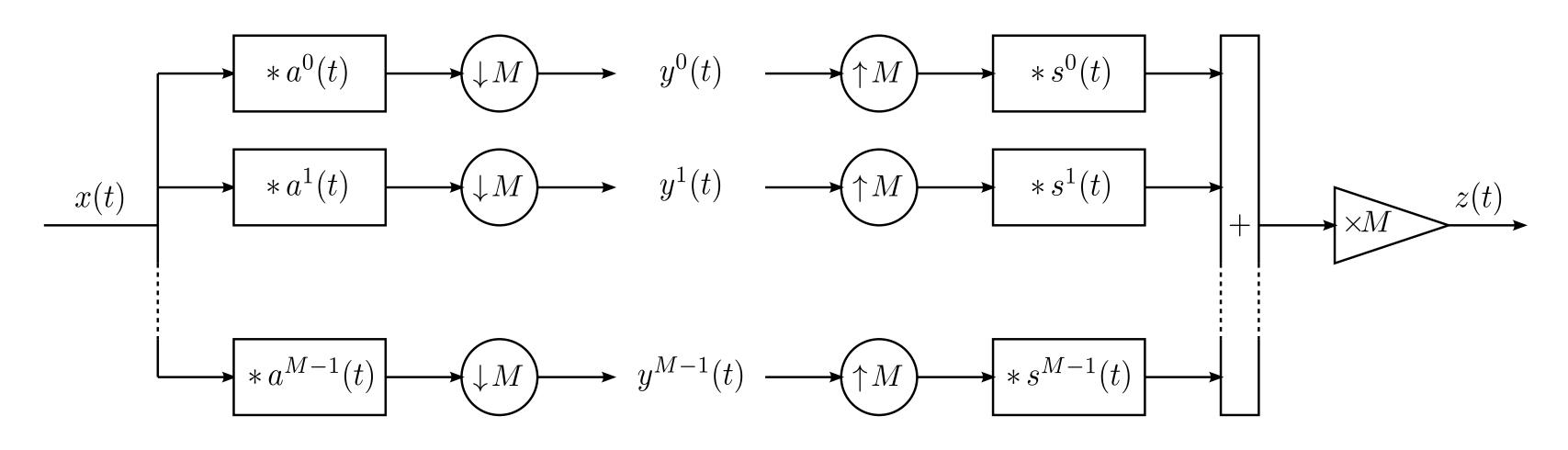


Perfect Reconstruction



If the filters are perfect and there is no quantization, the reconstruction is perfect.

Filter Banks



$$z(f) = \sum_{k=0}^{M-1} \left[\sum_{i=0}^{M-1} s_i(f) a_i(f + k\Delta f/M) \right]$$

$x(f + k\Delta f/M)$

Distortion

The filter banks output satisfies: M-1 $z(f) = x(f) + \sum D_k(f)x(f + k\Delta f/M)$ k=0

where the k-th distortion function D_k is

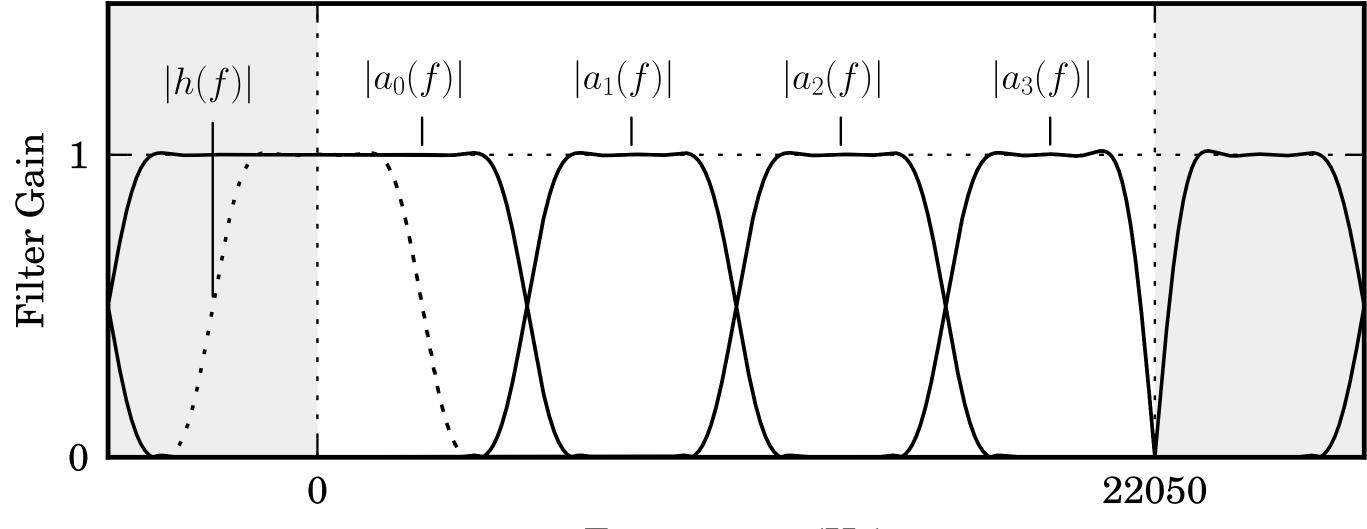
$$D_k(f) = \sum_{i=0}^{M-1} s_i(f) a_i(f + k\Delta f)$$

Perfect reconstruction:

 $\forall k \in \{0, \cdots M - 1\}, \ \forall f \in \mathbb{R}, \ D_k(f) = 0$

 $(M) - \delta_k$

Modulated Filter Banks Pick a lowpass filter with $f_c = \Delta f / 4M$, and a frequency response h(f).



Frequency *f* (Hz)

Modulate the prototype filter by

 $\Delta f_k = (k + 0.5) \times \Delta f / 2M$

Modulated Filter Banks

Example: select a prototype truncated from

$$h(n\Delta t) = \frac{\Delta f}{2M} \operatorname{sinc} \frac{n}{2M}$$

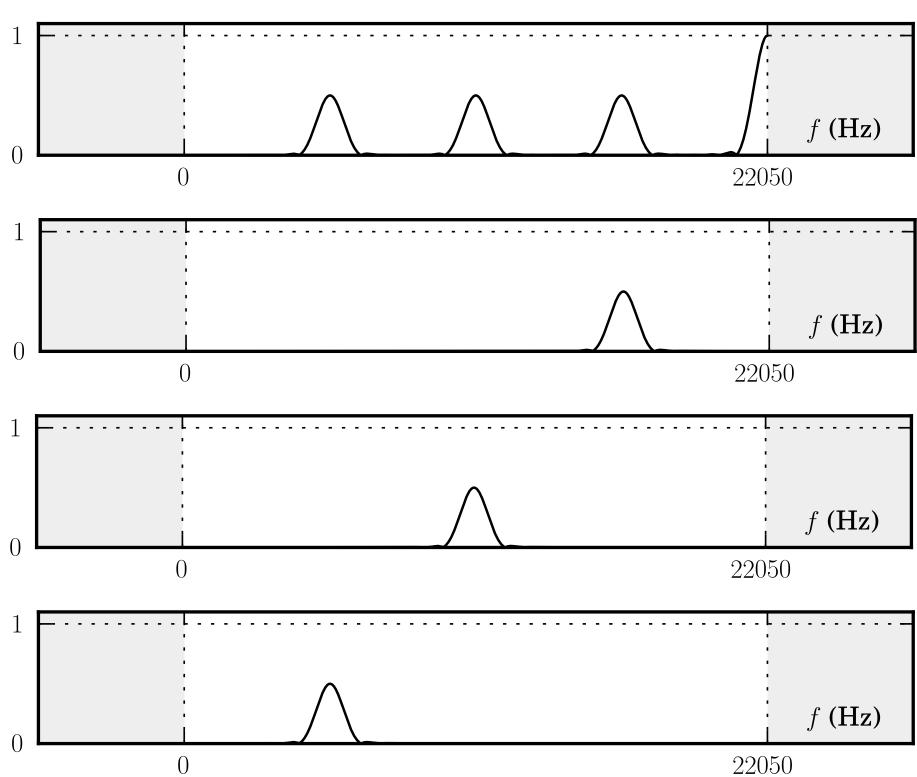
and as

 $\exp(i2\pi\Delta f_k \times n\Delta t) = \exp(i\pi(k+0.5)n/M)$

select

 $a^{k}(n\Delta t) = h(n\Delta t) \times 2\cos\left(\pi(k+0.5)n/M\right)$

Modulated Filter Banks Distortions same analysis and synthesis filters



Pseudo-Quadrature Mirror Filters

1. Use the phase in the modulation:

 $a^{k}(n\Delta t) = h(n\Delta t) \times 2\cos\left(\pi(k+0.5)n/M + \phi_{k}\right)$ $s^k(n\Delta t) = h(n\Delta t) \times 2\cos\left(\pi(k+0.5)n/M - \phi_k\right)$

$$\phi_k = \frac{\pi}{2} \left(\frac{N-1}{M} - 1 \right) \left(k + \frac{\pi}{M} \right)$$

where N is the prototype filter length.

2. Optimize the prototype filter w.r.t. the distortion.

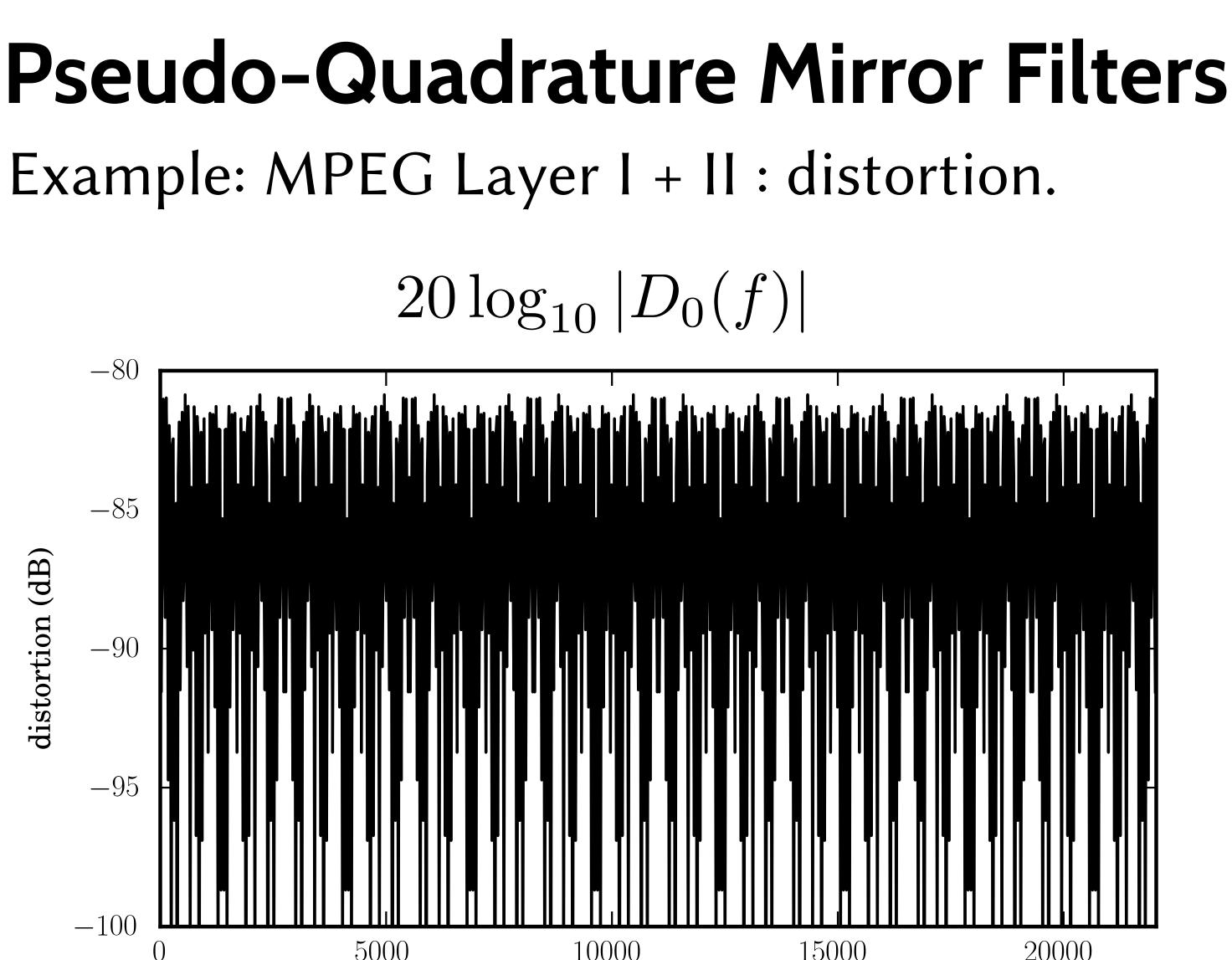
+0.5)

Pseudo-Quadrature Mirror Filters Example: MPEG Layer I + II

0.04		
0.01	MPEG.h0: prototype filter coefficients,	 nrot
	MPEG.M: number of subbands: 32,	prote
0.03	MPEG.N: filters length: 512,	imnı
	MPEG.df: sampling frequency (44100.0),	mpe
	MPEG.dt: sampling period (1.0/44100.0),	
0.02	MPEG.A: analysis filter bank: (M,N) array,	
0.02	MPEG.S: synthesis filter bank: (M, N) array.	
0.01		
0.00		
0.00		
-0.01		
	0 100 200	300

otype filter ulse response

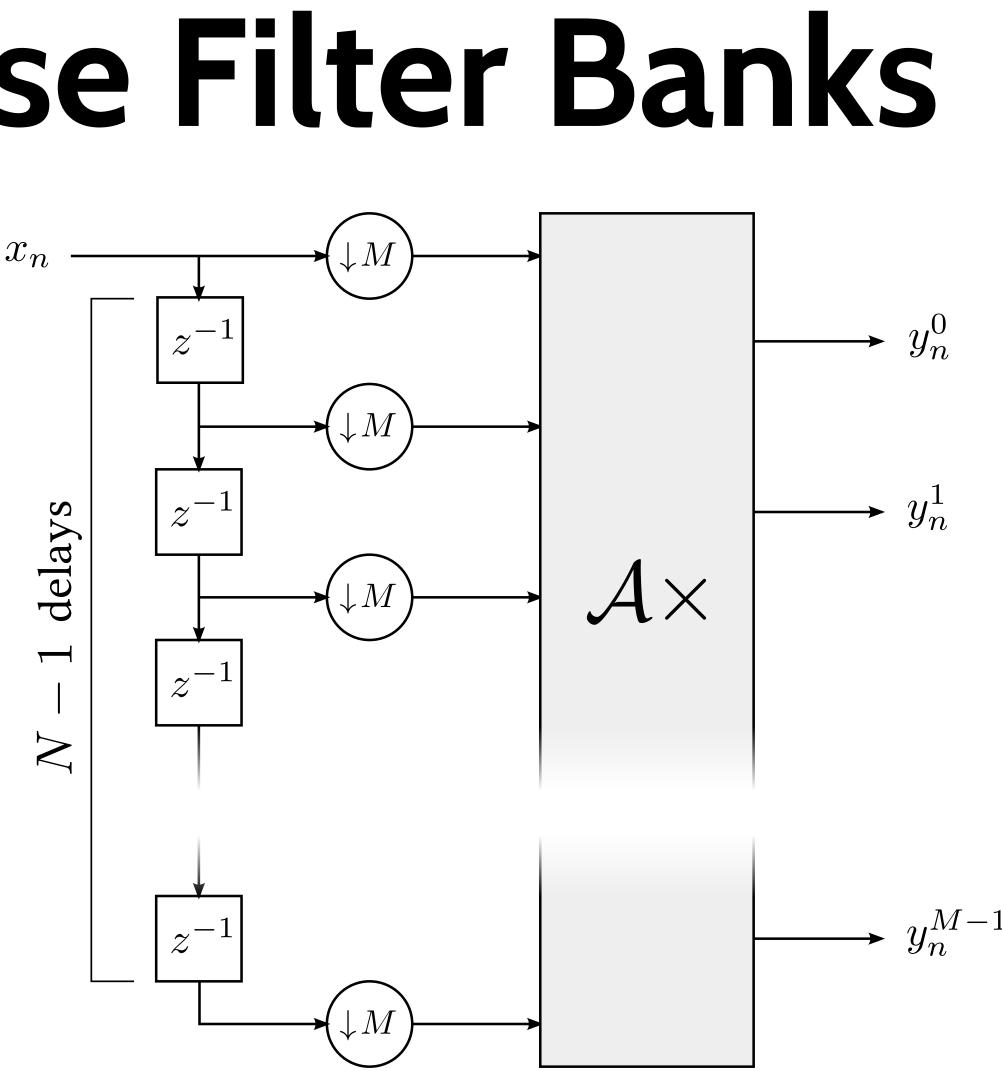
400



frequency (Hz)

Polyphase Filter Banks

class **Analysis**(object): def __init__(self, a, dt=1.0): self.M, self.N = shape(a) self.A = $a \times dt$ self.buffer = zeros(self.N) def __call__(self, frame): buffer = self.buffer buffer[self.M:] = buffer[:-self.M] buffer[:self.M] = frame return dot(self.A, buffer)



Polyphase Filter Banks

class **Synthesis**(object): def __init__(self, s, dt=1.0) self.M, self.N = shape(s) self.S = self.M * dt * s self.buffer = zeros(self.N) def __call__(self, frame): buffer = self.buffer buffer[:] += dot(frame, self.S) output = buffer[-self.M:].copy() buffer[self.M:] = buffer[:-self.M] buffer[:self.M] = zeros(self.M) return output

