CodingDigital Audio Coding

SEBASTIEN.BOISGERAULT@MINES-PARISTECH.FR

bit: - Binary digIT (J. Tukey, 1948) - information unit (C. Shannon)

Binary Numbers

	DECIMAL	BINARY	H
BASE	10	2	
DIGITS	$0, 1, \cdots, 9$	0, 1	

 $10 \longleftarrow 1010 \longleftarrow A$ **TEN:** DEC. BIN.

> $10 = 1 \times 10^1 + 0 \times 10^0$ $10 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ $10 = 10 \times 16^{0}$

HEXADECIMAL

Integer Literals

>>> 42 42 >>> 0b101010 42 >>> 0x2a 42

>>> print 42 42 >>> print bin(42) 0b101010 >>> print hex(42) **Ox2a**

Integer Arithmetic

>>> 2 + 2 4 >>> 2 - 1 >>> 3 * 2 6

>>> 5 // 2 2 >>> 5 % 2 25

>>> 5 ** 2

Binary Arithmetic I

>>> 42 << 3 336 >>> 42 >> 3

Binary Arithmetic II

>>> print bin(0b101010 << 3) Ob101010000 >>> print bin(0b101010 >> 3) 0b101

LOGICAL

- : or
- & : and
- **^ : XO**

>>> print bin(0b101010 | 0b000111) Ob101111 **0b10** 0b101101

SHIFTS << : left shift >> : right shift

>>> print bin(0b101010 & 0b000111) >>> print bin(0b101010 ~ 0b000111)

NumPy: FIXED-SIZE + SIGNED/UNSIGNED >>> int8(-127) >>> int8(255) >>> int16(255) -127 255 -1 >>> uint8(255) >>> uint8(-127) >>> int16(-127) 255 129 -127

long → >>> 2 *** 36 68719476736L

Unsigned 8-bit Integers Range: 0-255, NumPy type: uint8.

Γ	bin(n)	BIT I
0	obo	
42	0b101010	001
255	Ob1111111	
298	0b100101010	001

uint8 array to bitstream

def write_uint8(stream, integers): integers = array(integers) for integer in integers: mask = 0b10000000while mask != 0: stream.write((integer & mask) != 0) mask = mask >> 1

Byte Order Given that 298 is 0b100101010, how do we describe uint16(298)? 00 0 1 0 big endian most significant bits first 000 0 0 0 little endian least significant bits first

Endianness

The terms "big-endian" and "little-endian" come from Gulliver's Travels by Jonathan Swift.

Swift's hero Gulliver finds himself in the midst of a war between the empire of Lilliput, where people break their eggs on the smaller end per a royal decree and the empire of Blefuscu, which follows tradition and breaks their eggs on the larger end.

"I lay all this while, as the reader may believe, in great uneasiness."- Page 8.

Endianness The **bitstream** default is big-endian: >>> BitStream(298, uint16) 00000010010101010 but little-endian is possible too: >> uint16(298).newbyteorder() 10753 >>> BitStream(10753, uint16) 001010100000001

Signed Integers Bit layout of signed 8-bit integers First design: - first bit for the sign of **n**, - the 7 following bits for abs(n). int8(-42) $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0$ **Issue:** 0 has two distinct bit layouts. The range would be -127 to + 127.

Signed Integers Second design: when **n<0**, use the 7 remaining bits to code **abs(n)** - 1. int8(-42): [1] [0] [1] [0] [1] [0] [1]The range is -128 to + 127.

Third design -- Two's complement: If **n < 0**, also invert all bits (except sign) int8(-42): [1] [1] [0] [1] [0] [1] [0]

Signed Integers With two's complement model, arithmetic operations are easy:

- Example: -42 + 7 = -35

Text Strings & ASCII Binary data may be represented by strings, the class historically used to store text.

>>> ord('A') Ά 65

Indeed, ASCII characters have 255 possible ordinal values.

>>> chr(65)

Text Strings & ASCII Printable characters are in the range 20-7F. Outside this range, escape sequences \x?? may be used

>> name = 'S\xc3\xa9bastien'

where?? denote the ordinal value of the character in hexadecimal.

Information Theory relies on a probabilistic modeling of information sources or channels. probability universe $(\Omega, \mathfrak{E}, P)$ events

it formalizes the relationships between:

- event likelyhood and information content,

- the mean information content of a source, named entropy and the number of bits required for the source coding.

Info. Content Axioms Positive $I: \mathfrak{E} \to [0, +\infty]$ Additive $I(E_1 \wedge E_2) = I(E_1) + I(E_2)$ if E_1, E_2 independent Neutral $I(E) = F \circ P(E)$ Normalized I(E) = 1 if P(E) = 0.5

Information Content

C. Shannon

Entropy

Let X be a source (discrete random variable). The entropy of X is the mean info. content of X.

$H(X) = \mathbb{E}(I(X))$

Explicitly, with p(x) = P(X = x):

 $H(X) = -\sum p(x) \log_2 p(x)$ \mathcal{X}

Entropy Maximum

Among sources with N values, the entropy is maximal if $p(x_0) = p(x_1) = \cdots = p(x_{N-1})$. Then, we have:

$$H(X) = \log_2 N$$

The entropy of a 2^n -state system whose states are equally likely is n.

Entropy is measured in bits.

Application of Entropy Password Strength

"Through 20 years of effort, we have successfully trained everyone to use passwords that are hard for humans to remember, but easy for computers to guess."

Randall Munroe, http://xkcd.com/936/

password passphrase or Troub4dor&3

correct horse battery staple

Password

Passphrase

Alphabet countable set of symbols

Examples:

- \mathbb{N} : the non-negative integers,
- $-\{0,1\}$: the binary digits,
- letters, digits and punctuations marks,
- the english words.

Symbol Streams finite sequences of symbols

 $\mathcal{A}^* = \{\epsilon\} \cup \mathcal{A}^+$

$a_0a_1\cdots a_{n-1}\in \mathcal{A}^n$

$|a_0a_1\cdots a_{n-1}|=n$

ϵ : empty sequence

Codes Variable-length, binary, symbol code: $c: \mathcal{A} \to \{0, 1\}^+$

Usually implied: non-ambiguous:

c is injective.

Extended as a stream code:

 $c: \mathcal{A}^+ \to \{0, 1\}^+$

 $c(a_0a_1\cdots a_{n-1}) = c(a_0)c(a_1)\cdots c(a_{n-1})$

Unicode

The Unicode Standard (6.3) consists of an alphabet of 110,187 characters among 1,114,112 possible **code points**.

Example:

∃ has the code point U+2203

http://unicode.org/charts/PDF/U2200.pdf

mathematical operators range: U+2200-U+22FF

24	225	226	227	228	229	22A	22B	22C	22D	22E	22F
240	2250	*	\$	¥ 2280	2290	22A0	2 2B0	22C0	22D0	¥ 22E0	22F0
+ 241	2251	2261	≵ 2271	2281	2291	1 22A1	22B1	22C1) 22D1	22E1	• • 22F1
242	2252	#	\$ 2272	2282	2292	22A2	ح 22B2	22C2	A 22D2	4	22F2
243	2253	2263	2 273	D 2283	2293	22A3	D 22B3	U 22C3	U 22D3	4 22E3	E 22F3
≁ 244	2254	≤ 2264	\$ 2274	¢ 2284	2294	22A4	2 2B4	22C4	h 22D4	1 22E4	E 22F4
245	2255	2265	≵ 2275	4	() 2295	 22A5	D _{22B5}	■ 22C5	22D5	22E5	– 22F5
246	2256		2276	2286	O 2296	22A6	0• 22B6	★ 22C6	2 2D6	\$ 22E6	E 22F6
≱	0 2257	2267	2277	D 2287	2297	22A7	——О 22B7	*	> 22D7	22E7	E 22F7
248	(] 2258	2268	\$	\$	2298	22A8	—O 22B8	22C8	22D8		22F8
≯ 249	^ 2259	2269	2279	⊉ 2289	O 2299	22A9	 22B9	22C9	22D9		22F9
24A	2 25A	226A	~ 227A	228 A	() 229A	22AA	T 22BA	22CA	VIA 22DA	4 22EA	
)))	★ 225B	>>> 226B	> 227B	₽ 228B	229B	22AB	V 22BB	> 22CB		₽ 22EB	D 22FB
	Δ 225C	0 226C	¥ 227C	↓ 228C	() 229C	₩ 22AC	Л 22BC	22CC	V 22DC	4 22EC	D 22FC
X	def 225D	* 226D	> 227D	U 228D	O 229D	₩ 22AD	V 22BD	5 22CD		₽ 22ED	D 22FD
С 24E	225E	\$	\$ 227E	↓ 228E	229E	114 224e	L 22BE	V 22CE	V 22DE	■ ■ 22EE) 22FE
^ 24F	? 225F	≯ 226F	2 27F	228F	229F	I⊭ 22AF	2 28F	Å 22CF		■ ■ ■ 22EF	22FF

UTF-8

One of the most popular Unicode encoding. Compatible with ASCII (U+0 - U+7F).

Range	Code Form	at		
U+0 - U+7f	Oxxxxxxx			
U+80-U+7ff	110xxxxx	10xxxxxx		
U+800 - U+ffff	1110xxxx	10xxxxxx	10xxxxxx	
t U+100000 - t U+1ffff	11110xxx	10xxxxxx	10xxxxxx	10xxx
$\mathtt{U+200000}-\mathtt{U+3fffff}$	111110xx	10xxxxxx	10xxxxxx	10xxx
t U+4000000 - t U+7ffffff	1111110x	10xxxxxx	10xxxxxx	10xxx

Example: \longrightarrow U+2203 \longrightarrow 00100010 00000011 $\rightarrow 11100010 \ 10001000 \ 10000011$

XXXX	
xxxx	10xxxxxx
	4.0

10xxxxxx XXXX 10xxxxxx

Stream Codes

Symbols codes shall be designed so that their stream code is non-ambiguous too. Such stream codes are self-delimiting.

- The simplest self-delimiting codes are prefix(-free) codes:
 - $\forall c_1, c_2 \in \{0, 1\}^+, c_1 \in \text{range } c \implies c_1 c_2 \notin \text{range } c$

Self-delimiting Codes Examples: $A = \{0, 1, 2, 3\}$

 $c: 0 \to 0, 1 \to 1, 2 \to 10, 3 \to 11$

ambiguous stream code: consider 10.

 $c: 0 \rightarrow 0, \ 1 \rightarrow 01, \ 2 \rightarrow 011, \ 3 \rightarrow 0111$

self-delimiting, but not prefix: 0 is a prefix of 01.

 $c: 0 \rightarrow 0, 1 \rightarrow 10, 2 \rightarrow 110, 3 \rightarrow 1110$

prefix code (unary coding).

Kraft's Inequality

Let \mathcal{A} be an alphabet and $(l_a), a \in \mathcal{A}$ be a family of positive lengths. There exist a self-delimiting stream code c on A such that

$$\forall a \in \mathcal{A}, \ |c(a)| = l_a$$

if and only if we have

$$K = \sum_{a \in \mathcal{A}} 2^{-l_a} \le 1$$

Moreover, if the inequality holds, the code can be selected prefix-free.

Brainf*ck

A Turing-complete programming language with only 8 commands (Urban Müller, 1993):

> < + - . , []

"Hello World!" program: +++++++ [>+++++>+++ +++++>++>+<<<<--->++. >+.++++++..+++.>++.<<+ +++++++++++->.+++.------.>+.>.

Codes as Trees

Spoon code: table

>	\rightarrow	010
<	\rightarrow	011
+	\rightarrow	1
_	\rightarrow	000
•	\rightarrow	001010
,	\rightarrow	0010110
[\rightarrow	00100
]	\rightarrow	0011

Steven Goodwin, 1998.

	C	ode	Len	g	t
Sp	300ľ	n code:		Foi	rkc
>	\rightarrow	010		>	\rightarrow
<	\rightarrow	011	-	<	\rightarrow
+	\rightarrow	1	-	+	\rightarrow
_	\rightarrow	000		—	\rightarrow
•	\rightarrow	001010		•	\rightarrow
,	\rightarrow	0010110		,	\rightarrow
Γ	\rightarrow	00100	-]	\rightarrow
]	\rightarrow	0011]	\rightarrow

"Hello World!" binary code: - Spoon: 245 bits, - Fork: 333 bits (+36%).

Optimal Code Length

Let A be a random symbol in \mathcal{A} , c a code for \mathcal{A} . The average code (bit-)length of c is:

$$\mathbb{E}|c(A)| = \sum_{a \in \mathcal{A}} p(a)|c(a)|$$

Every prefix code c satisfies:

$$H(A) \le \mathbb{E}|c(A)|$$

Moreover, there is a prefix code c such that:

 $\mathbb{E}|c(A)| < H(A) + 1$

Huffman: Data Structures Weighted Alphabets: {a:0.5, b:0.3, c:0.2}

Weighted Binary Trees: - terminal nodes: (a, 0.5) - non-terminal nodes: ([node1, node2], 0.5)

Huffman: Node Helpers

class **Node**(object): "Manage nodes as (symbol, weight) pairs" (a) static method def **symbol**(node): return node[0] @staticmethod def weight(node): return node [1] **@staticmethod** def is_terminal(node): return not isinstance(Node.symbol(node), list)

Huffman's Algorithm class Huffman(object): **@staticmethod** def make_binary_tree(alphabet): nodes = alphabet.items() while len(nodes) > 1: nodes.sort(key=Node.weight) node1, node2 = nodes.pop(0), nodes.pop(0) node = ([node1, node2], Node.weight(node1) + Node.weight(node2)) nodes.insert(0, node) return nodes [0]

Rice Coding

Consider a set of non-negative integers n, that almost fit into a *b*-bit fixed-size coding.

The Rice coding with parameter b of n

$$n \mod 2^b$$
 $\left\lfloor \frac{n}{2^b} \right\rfloor$

FIXED-SIZE	UNA

almost achieves a coding in b + 1 bits. If b = 0, we end up with unary coding.

 \overline{b}

ARY

Rice Coding - Example

n = 0, 1, 2, 3 most of the time, b = 2 is a sensible choice.

Rice Coding Parameter Heuristic

Define $\theta = \frac{m}{1+m}$ with $m \approx \mathbb{E}n$,

then select

 $b = \max \left| 0, 1 + \left| \log_2 \left(\frac{\log(\phi - 1)}{\log \theta} \right) \right| \right|$ with $\phi = \frac{1 + \sqrt{5}}{2}$.

Geometric Distributions Optimal Code

Compute $l = \min \{i \in \mathbb{N}^* | \theta^i + \theta^{i+1} \leq 1\}.$

If l = 1 the unary code is optimal.

Otherwise, divide n by l

$$n = \lfloor n/l \rfloor \times l + n \bmod l$$

and concatenate the two codes:

 $n \to n \mod l \to \text{Huffman code}$ $n \rightarrow |n/l| \rightarrow \text{unary code}$

N.B. $P(N \mod l = n) \propto \theta^n, n = 0, \cdots, l - 1$

Golomb Power of 2

The Huffman code of $n \mod l$ is almost fixed-length. In particular, if $l = 2^{b}$, it has the fixed length b. Hence, we approximate l as a power of two to replace the Huffman code by a fixed-length code.

This is precisely Rice coding (aka GPO2) !

Unary Coder

def **unary_symbol_encoder**(stream, symbol): bools = symbol * [True] + [False] return stream.write(bools)

- count = 0
- - count += 1
- return count

unary_encoder = stream_encoder(unary_symbol_encoder) unary_decoder = stream_decoder(unary_symbol_decoder) class unary(object):

DSS

bitstream.register(unary, reader=unary_encoder, writer=unary_decoder)

def unary_symbol_decoder(stream):

while stream.read(bool) is True:

Unary Coder: usage

>>> stream = BitStream() >>> stream.write([0,1,2,3], unary) >>> print stream 0101101110 >> stream.read(unary, 4) [0, 1, 2, 3]

Rice Codec Parameters

class **rice**(object): "Rice codec tag type"

shall we encode the data sign?

def __init__(self, b, signed): self.b, self.signed = b, signed

def from_frame(frame, signed): "Return a rice tag from a sample frame."

number of bits used for the fixed-width encoding.

Rice Codec

def rice_symbol_encoder(rice_tag): def **encoder**(stream, symbol): if rice_tag.signed: stream.write(symbol < 0)</pre> symbol = abs(symbol) l = 2 ** rice_tag.b remain, fixed = divmod(symbol, l) fixed_bits = [] for _ in range(rice_tag.b): fixed_bits.insert(0, bool(fixed % 2)) fixed = fixed >> 1 stream.write(fixed_bits) stream.write(remain, unary) return **encoder**

def rice_symbol_decoder(rice_tag): def **decoder**(stream): if rice_tag.signed and stream.read(bool): sign = -1else: sign = 1fixed_number = 0 for _ in range(rice_tag.b): bit = int(stream.read(bool)) fixed_number = (fixed_number << 1) + bit</pre> l = 2 ** rice_tag.b remain_number = I * stream.read(unary) return sign * (fixed_number + remain_number) return **decoder**

Rice Codec: usage

- >>> data = [0, 8, 0, 8, 16, 0, 32, 0, 16, 8, 0, 8] >> rice_tag = rice.from_frame(data, signed=False) >>> rice_tag.b
- 3
- >>> stream = BitStream()
- >>> stream.write(data, rice_tag)
- >>> stream
- 000000100000001000011000000011 >>> stream.read(rice_tag, 12) [0, 8, 0, 8, 16, 0, 32, 0, 16, 8, 0, 8]

Rice Coder: test

- >> for b in range(7):
- stream = BitStream(data, rice(b=b, signed=False)) • • •
- print "rice b={0}: {1} bits".format(b, len(stream)) • • •
- rice b=0: 108 bits rice b=1: 72 bits rice b=2:60 bits rice b=3: 60 bits rice b=4:64 bits rice b=5: 73 bits rice b=6: 84 bits

