
Coding
Digital Audio Coding

sebastien.boisgerault@mines-paristech.fr

Binary Data

00101010
01101010
00101010

bit

byte (octet)

bit: - Binary digIT (J. Tukey, 1948)
 - information unit (C. Shannon)

Binary Numbers
decimal binary hexadecimal

base

digits

dec. bin. hex.
TEN:

Integer Literals

>>> 42
42
>>> 0b101010
42
>>> 0x2a
42

>>> print 42
42
>>> print bin(42)
0b101010
>>> print hex(42)
0x2a

Binary Arithmetic I

>>> 42 << 3
336
>>> 42 >> 3
5

>>> 42 | 7
47
>>> 42 & 7
2
>>> 42 ^ 7
45

Binary Arithmetic II
>>> print bin(0b101010 << 3)
0b101010000
>>> print bin(0b101010 >> 3)
0b101

>>> print bin(0b101010 | 0b000111)
0b101111
>>> print bin(0b101010 & 0b000111)
0b10
>>> print bin(0b101010 ^ 0b000111)
0b101101

| : or
& : and
^ : xor

logical

<< : left shift
>> : right shift

shifts

Integer Types

NumPy: fixed-size + signed/unsigned

Python (2.x): unbounded integers

>>> 2 ** 12
4096

>>> 2**24
16777216

int
>>> 2 ** 36
68719476736L

long

>>> int8(255)
-1
>>> uint8(-127)
129

>>> int8(-127)
-127
>>> uint8(255)
255

>>> int16(255)
255
>>> int16(-127)
-127

Unsigned 8-bit Integers
Range: 0-255, NumPy type: uint8.

n

42

298

0

255

bin(n)

0b101010

0b100101010

0b0

0b11111111

00101010

bit layout

00101010

00000000

11111111

uint8 array to bitstream

def write_uint8(stream, integers):
 integers = array(integers)
 for integer in integers:
 mask = 0b10000000
 while mask != 0:
 stream.write((integer & mask) != 0)
 mask = mask >> 1

Byte Order

00000001 00101010

00101010 00000001

Given that 298 is 0b100101010,
how do we describe uint16(298) ?

big endian
most significant bits first

little endian
least significant bits first

Endianness
The terms “big-endian” and “lile-endian”

come from Gulliver’s Travels by Jonathan Swi.

Swi’s hero Gulliver finds himself in the midst of
a war between the empire of Lilliput, where people
break their eggs on the smaller end per a royal
decree and the empire of Blefuscu, which follows
tradition and breaks their eggs on the larger end.

Endianness

>>> BitStream(298, uint16)
0000000100101010

>>> uint16(298).newbyteorder()
10753
>>> BitStream(10753, uint16)
0010101000000001

The bitstream default is big-endian:

but lile-endian is possible too:

Signed Integers

1 0101010
int8(-42)

Bit layout of signed 8-bit integers
First design:
 - first bit for the sign of n,
 - the 7 following bits for abs(n).

Issue: 0 has two distinct bit layouts.
The range would be -127 to + 127.

Signed Integers

1 1010110

0 0000111

1 1011101
+

With two's complement model,
arithmetic operations are easy:

Example: -42 + 7 = -35

Text Strings & ASCII
Binary data may be represented by
strings, the class historically used
to store text.

>>> ord('A')
65

>>> chr(65)
'A'

Indeed, ASCII characters have
255 possible ordinal values.

Text Strings & ASCII
Printable characters are in the range
20-7F. Outside this range, escape
sequences \x?? may be used

>>> name = 'S\xc3\xa9bastien'

where ?? denote the ordinal value
of the character in hexadecimal.

Information Theory
relies on a probabilistic modeling

of information sources or channels.

it formalizes the relationships between:
 - event likelyhood and information content,
 - the mean information content of a source,
named entropy and the number of bits required
for the source coding.

events

probabilityuniverse

Info. Content Axioms
Positive

Additive

Neutral

Normalized

Information Content

C. Shannon

Entropy
Let be a source (discrete random variable).
The entropy of is the mean info. content of .

Explicitely, with :

Entropy Maximum

Entropy is measured in bits.

Among sources with values, the entropy is
maximal if .
Then, we have:

The entropy of a -state system whose
states are equally likely is .

Application of Entropy
Password Strength

"Through 20 years of effort, we have successfully
 trained everyone to use passwords that are hard
 for humans to remember, but easy for computers
 to guess."
 Randall Munroe, http://xkcd.com/936/

Tr0ub4dor&3
password

correct horse battery staple
passphraseor

Password

Passphrase

Alphabet

countable set of symbols

Examples:
 - : the non-negative integers,
 - : the binary digits,
 - leers, digits and punctuations marks,
 - the english words.

Codes
Variable-length, binary, symbol code:

Usually implied: non-ambiguous:

Extended as a stream code:

UTF-8
One of the most popular Unicode encoding.
Compatible with ASCII (U+0 - U+7F).

Example:
 U+2203 00100010 00000011
 11100010 10001000 10000011

Stream Codes
Symbols codes shall be designed so that
their stream code is non-ambiguous too.
Such stream codes are self-delimiting.

The simplest self-delimiting codes are
prefix(-free) codes:

Self-delimiting Codes
Examples:

ambiguous stream code: consider .

self-delimiting, but not prefix: is a prefix of .

prefix code (unary coding).

Kraft's Inequality
Let be an alphabet and be a family
of positive lengths. There exist a self-delimiting
stream code on such that

if and only if we have

Moreover, if the inequality holds, the code can
be selected prefix-free.

Brainf*ck
A Turing-complete programming language with
only 8 commands (Urban Müller, 1993):

"Hello World!" program:

Code Length
Spoon code: Fork code:

"Hello World!" binary code:
 - Spoon: 245 bits,
 - Fork: 333 bits (+36%).

Optimal Code Length

Every prefix code satisfies:

Moreover, there is a prefix code such that:

Let be a random symbol in , a code for .
The average code (bit-)length of is:

Huffman: Data Structures

{'a': 0.5, 'b': 0.3, 'c': 0.2}
Weighted Alphabets:

Weighted Binary Trees:
 - terminal nodes:

 - non-terminal nodes:
('a', 0.5)

([node1, node2], 0.5)

Huffman: Node Helpers
class Node(object):
 "Manage nodes as (symbol, weight) pairs"
 @staticmethod
 def symbol(node):
 return node[0]
 @staticmethod
 def weight(node):
 return node[1]
 @staticmethod
 def is_terminal(node):
 return not isinstance(Node.symbol(node), list)

Huffman's Algorithm
class Huffman(object):
 @staticmethod
 def make_binary_tree(alphabet):
 nodes = alphabet.items()
 while len(nodes) > 1:
 nodes.sort(key=Node.weight)
 node1, node2 = nodes.pop(0), nodes.pop(0)
 node = ([node1, node2],
 Node.weight(node1) + Node.weight(node2))
 nodes.insert(0, node)
 return nodes[0]

Rice Coding
Consider a set of non-negative integers ,
that almost fit into a -bit fixed-size coding.

The Rice coding with parameter of

almost achieves a coding in bits.
If , we end up with unary coding.

unaryf ixed-size

Rice Coding - Example
 most of the time,
 is a sensible choice.

Geometric Distributions
Optimal Code
Compute .

If the unary code is optimal.

Otherwise, divide by

and concatenate the two codes:

N.B.

Unary Coder
def unary_symbol_encoder(stream, symbol):
 bools = symbol * [True] + [False]
 return stream.write(bools) def unary_symbol_decoder(stream):

 count = 0
 while stream.read(bool) is True:
 count += 1
 return count

unary_encoder = stream_encoder(unary_symbol_encoder)
unary_decoder = stream_decoder(unary_symbol_decoder)
class unary(object):
 pass
bitstream.register(unary, reader=unary_encoder, writer=unary_decoder)

Unary Coder: usage

>>> stream = BitStream()
>>> stream.write([0,1,2,3], unary)
>>> print stream
0101101110
>>> stream.read(unary, 4)
[0, 1, 2, 3]

Rice Codec Parameters

class rice(object):
 "Rice codec tag type"

 def __init__(self, b, signed):
 self.b, self.signed = b, signed

 def from_frame(frame, signed):
 "Return a rice tag from a sample frame."
 ...

number of bits used for
the fixed-width encoding.

shall we encode
the data sign ?

Rice Codec
def rice_symbol_encoder(rice_tag):
 def encoder(stream, symbol):
 if rice_tag.signed:
 stream.write(symbol < 0)
 symbol = abs(symbol)
 l = 2 ** rice_tag.b
 remain, fixed = divmod(symbol, l)
 fixed_bits = []
 for _ in range(rice_tag.b):
 fixed_bits.insert(0, bool(fixed % 2))
 fixed = fixed >> 1
 stream.write(fixed_bits)
 stream.write(remain, unary)
 return encoder

def rice_symbol_decoder(rice_tag):
 def decoder(stream):
 if rice_tag.signed and stream.read(bool):
 sign = -1
 else:
 sign = 1
 fixed_number = 0
 for _ in range(rice_tag.b):
 bit = int(stream.read(bool))
 fixed_number = (fixed_number << 1) + bit
 l = 2 ** rice_tag.b
 remain_number = l * stream.read(unary)
 return sign * (fixed_number + remain_number)
 return decoder

Rice Codec: usage
>>> data = [0, 8, 0, 8, 16, 0, 32, 0, 16, 8, 0, 8]
>>> rice_tag = rice.from_frame(data, signed=False)
>>> rice_tag.b
3
>>> stream = BitStream()
>>> stream.write(data, rice_tag)
>>> stream
000000010000000010000110000000011
110000000011000010000000010
>>> stream.read(rice_tag, 12)
[0, 8, 0, 8, 16, 0, 32, 0, 16, 8, 0, 8]

Rice Coder: test
>>> for b in range(7):
 . . . stream = BitStream(data, rice(b=b, signed=False))
 . . . print "rice b={0}: {1} bits".format(b, len(stream))
 . . .
rice b=0: 108 bits
rice b=1: 72 bits
rice b=2: 60 bits
rice b=3: 60 bits
rice b=4: 64 bits
rice b=5: 73 bits
rice b=6: 84 bits

