
Mines ParisTech, S1916

Digital Audio Coding
by

Sébastien Boisgérault
Sebastien.Boisgerault@mines-paristech.fr

Digital Audio Coding by Sébastien Boisgérault is li-
censed under a Creative Commons Aribution 3.0 Un-
ported License : http://creativecommons.org/licenses/
by/3.0/legalcode.

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

2

Contents

1 Coding 5
1.1 Binary Data . 5

1.1.1 Bits . 5
1.1.2 Bytes and Words . 7
1.1.3 Integers . 9

1.2 Information eory and Variable-Length Codes 12
1.2.1 Entropy from first principles. 13
1.2.2 Alphabets, Symbol Codes, Stream Codes 16
1.2.3 Optimal Length Coding . 22
1.2.4 Golomb-Rice Coding . 27

2 antization 33
2.1 Principles of Scalar antization . 33

2.1.1 antizers . 33
2.1.2 Uniform antization . 36
2.1.3 antization of Random Variables 36
2.1.4 Implementation of Non-Uniform antizers 37

2.2 Logarithmic antization . 38
2.2.1 e µ-law antizer. 39
2.2.2 IEEE754 Floating-Point Numbers and A-law 41

2.3 Signal-to-Noise Ratio . 43

3 Linear Prediction 47
3.1 Prediction Principles . 47

3.1.1 Polynomial Prediction . 47
3.1.2 Optimal Linear Prediction . 48
3.1.3 Finite Impulse Response (FIR) Filters 52
3.1.4 Auto-Regressive (AR) Filters 53
3.1.5 Transfer Function, Stability and Frequency Response 54

3.2 Voice Analysis and Synthesis . 56
3.2.1 e TIMIT corpus . 56
3.2.2 Voice Analysis and Compression 58
3.2.3 Linear Prediction Coding . 65

4 Spectral Methods 67
4.1 Signal, Spectrum, Filters . 67

4.1.1 Convolution and Filters . 70
4.2 Finite Signals . 72

3

4 CONTENTS

4.2.1 Design of Low-Pass Filters . 73
4.2.2 Spectrum Computation . 74

4.3 Multirate Signal Processing . 78
4.3.1 Decimation and Expansion 78
4.3.2 Downsampling and Upsampling 81
4.3.3 Ideal Filter Banks and Perfect Reconstruction 83
4.3.4 Filter Banks and Perfect Reconstruction 84
4.3.5 Cosine Modulated Filter Banks 84
4.3.6 Polyphase Representation of Filters Banks 85

4.4 Psychoacoustics - Perceptual Models 90
4.4.1 Acoustics - Physical Values 90
4.4.2 reshold in iet . 91
4.4.3 Simultaneous Masking . 92
4.4.4 Spreading Functions . 94
4.4.5 Implementation - Bit Allocation Strategies 94

Chapter 1

Coding

1.1 Binary Data
Digital audio data – stored in a file system, in a compact disc, transmied over a
network, etc. – always end up coded as binary data, that is a sequence of bits.

1.1.1 Bits

Binary Digits and Numbers

e term “bit” was coined in 1948 by the statistician John Tukey as a contraction of
binary digit. It therefore refers to a numeral symbol in base 2: either 0 and 1. Several

Figure 1.1: John Wilder Tukey (June 16, 1915 – July 26, 2000) was an American
statistician best known for development of the FFT algorithm and box plot - source:
http://en.wikipedia.org/wiki/John_Tukey.

binary digits may be used to form binary numbers in order to represent arbitrary
integers. In the decimal system (base 10), “42” denotes 4× 101 + 4× 100 ; similarly,
in base 2,

b0b1 · · · bn−1 where bi ∈ {0, 1}

represents the integer

b0 × 2n−1 + b1 × 2n−1 + · · ·+ bn−1 × 20.

5

http://en.wikipedia.org/wiki/John_Tukey

6 CHAPTER 1. CODING

As an example the number 42 (decimal representation), equal to 1 × 25 + 0 × 24 +
1× 23 + 0× 22 + 1× 21 + 0× 20, has the binary representation 101010.

Figure 1.2: http://xkcd.com/953/

e term “digit” used in the conctruction of “bit” is somehow self-contradictory
as the etymology of “digit” refers to the base ten:

e name “digit” comes from the fact that the 10 digits (ancient Latin
digita meaning fingers) of the hands correspond to the 10 symbols of the
common base 10 number system, i.e. the decimal (ancient Latin adjective
dec. meaning ten) digits. http://en.wikipedia.org/wiki/Numerical_digit

In P, the decimal notation is obviously available to define number lierals,
but we also may use the prefix 0b to define a number with its binary representation.
e built-in function bin returns the binary representation of a number as a string:

>>> 42
42
>>> 0b101010
42
>>> bin(42)
’0b101010’

Note that there is not a unique binary representation of an integer: one can add as
many leading zeros without changing the value of the integer. e function bin uses a
canonical representation of the binary value that uses the minimum number of digits
necessary to represent the binary value … except for 0 which is represented as 0b0

and not 0b ! Except for this particular value, the first binary digit (aer the prefix 0b)
will always be1. However, sequences of bits beginning with (possibly) multiple 0’s are
valid: 0b00101010 is a valid definition of 42. Finally, note that negative integers may
also be described within this system: −42 is for example denoted as -0b101010. Several
arithmetic operators in P (operation on numbers), for example <<, >>, |, ˆ, &, are
far simpler to understand when their integer arguments are in binary representation.
Consider:

http://xkcd.com/953/
http://en.wikipedia.org/wiki/Numerical_digit

1.1. BINARY DATA 7

>>> print 42 << 3
336
>>> print 42 >> 2
10
>>> print 42 | 7
47
>>> print 42 ˆ 7
45
>>> print 42 & 7
2

versus

>>> print bin(0b101010 << 3)
0b101010000
>>> print bin(0b101010 >> 2)
0b1010
>>> print bin(0b101010 | 0b111)
0b101111
>>> print bin(0b101010 ˆ 0b111)
0b101101
>>> print bin(0b101010 & 0b111)
0b10

To summarize:

• << n is the le shi by n: bits are shied on the le by n places, the holes being
filled with zeros,

• >> n is the right shi by n: bits are shied on the right by n places, bits in excess
being dropped,

• | is the bitwise or: the bits of the two binary numbers are combined place-by-
place, the resulting bit being 0 if both bits are 0, and 1 otherwise,

• ˆ is the bitwise exclusive or (xor): the bits of the two binary numbers are com-
bined place-by-place, the resulting bit being 1 if exactly one of the bits is 1, and
0 otherwise,

• & is the bitwise and: the bits of the two binary numbers are combined place-by-
place, the resulting bit being 1 if both bits are 1, and 0 otherwise,

1.1.2 Bytes and Words

In many application contexts, we consider binary data as sequences of groups of a
fixed number of bits named bytes. Consider for example that every data in computer
memory is accessed through pointers and that a pointer gives the location of a byte,
not of an individual bit. All the same, filesystems store data into files that contain an
entire number of bytes. Despite several historical choices of the size of the byte (due
to different hardware architectures), nowadays, the de facto size for the byte is 8 bits,
that is the byte is an octet. In the sequel, we will drop the octet term entirely and use
byte instead.

Bytes are sometimes grouped into even larger structures, called words, that may
group 2, 3, 4, etc. bytes. e choice of the size of a word oen reflect the design of a
specific hardware architecture1.

Alternate Representations - Hexadecimal and ASCII

e hexadecimal representation of an integer uses the base 16. As a consequence, any
byte may be represented by an hexadecimal number with two digit. is representa-
tion, being more compact than the binary, oen makes binary data easier to interpret
by human beings. e 10 first hexadecimal digits are represented by the symbols 0,
1, 2, 3, 4, 5, 6, 7, 8, 9 and the 5 following (that correspond to the decimal value 10, 11,
12, 13, 14, 15) are a, b, c, d, e, f (sometimes capitalized).

As an example, here is the representation of a few numbers in decimal, binary and
hexadecimal form:

1http://en.wikipedia.org/wiki/Word_(computer_architecture)

http://en.wikipedia.org/wiki/Word_(computer_architecture)

8 CHAPTER 1. CODING

decimal binary hexadecimal
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9

10 1010 A
11 1100 B
15 11111 F
16 100000 10
42 101010 2A

Figure 1.3: decimal, binary and hexadecimal representation of several small integers.

Integer literals in hexadecimal notation are supported in P with the 0x pre-
fix. For example

>>> 0x10
16
>>> 0xff
255
>>> 0xcaffe
831486

In P 2.x, binary data is also naturally represented as strings, instances of
the type str ; reading data from file objects or writing into them is made via a string
representation. String are therefore used as the same time to describe text – even if in
this case the unicode strings of type unicode are more appropriate – and binary data.

Strings are delimited with quotes. Within the quotes, a byte may be denoted a
symbol (leer, digits, punctuation marks, etc.) – in which case the byte value is the
ASCII code of the symbol – or by an escape sequence \x??where ?? is the hexadecimal
representation of the byte. e laer case is handy when the symbol that would
represent the byte is not printable. For example, ”S\xc3\xa9bastien” is the string that
represent the text ”Sébastien” in the utf-8 text encoding: the e acute does not belong
to the set of ASCII printable characters and is represented by the combination of the
bytes 0xc3 and 0xa9.

Consider the string made of all characters whose code increases from 0 to 255.
We write it to a file and use the canonical output of the hexdump command to display
to file content. e middle columns contain the hexadecimal representation of the
data and the right column the character representation. e symbols outside of the
printable characters range (hexadecimal 20 to 7F) are replaced with dots.

>>> string = ””.join([chr(i) for i in range(256)])
>>> file = open(”file.txt”, ”w”)
>>> file.write(string)
>>> file.close()
>>> import os
>>> e = os.system(”hexdump -C file.txt”)

1.1. BINARY DATA 9

00000000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
00000010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f |................|

00000020 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f | !”#$%&’()*+,-./|
00000030 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f |0123456789:;<=>?|
00000040 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f |@ABCDEFGHIJKLMNO|
00000050 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f |PQRSTUVWXYZ[\]ˆ_|
00000060 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f |‘abcdefghijklmno|
00000070 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f |pqrstuvwxyz{|}˜.|
00000080 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f |................|
00000090 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f |................|
000000a0 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af |................|
000000b0 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf |................|
000000c0 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf |................|
000000d0 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df |................|
000000e0 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef |................|
000000f0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff |................|

e character representation of most binary data that is not text is going to be
meaningless, apart from text tags used to identify the nature of the file, or specific
chunks of text data within a heterogeneous data content. For example, the hexdump of
the start of a WAVE audio file may look like:

>>> e = os.system(r”hexdump -C -n160 You\ Wanna\ Have\ Babies.wav”)
00000000 52 49 46 46 d8 cf 06 00 57 41 56 45 66 6d 74 20 |RIFF....WAVEfmt |
00000010 10 00 00 00 01 00 02 00 44 ac 00 00 10 b1 02 00 |........D.......|
00000020 04 00 10 00 4c 49 53 54 18 00 00 00 49 4e 46 4f |....LIST....INFO|
00000030 49 41 52 54 0c 00 00 00 4a 6f 68 6e 20 43 6c 65 |IART....John Cle|
00000040 65 73 65 00 64 61 74 61 94 cf 06 00 28 ff 2b ff |ese.data....(.+.|
00000050 2b ff 2f ff 34 ff 37 ff 3f ff 3e ff 46 ff 41 ff |+./.4.7.?.>.F.A.|
00000060 48 ff 43 ff 41 ff 3f ff 32 ff 30 ff 15 ff 13 ff |H.C.A.?.2.0.....|
00000070 f1 fe f0 fe cf fe d1 fe bf fe c1 fe c1 fe c1 fe |................|
00000080 cd fe d0 fe de fe e4 fe f5 fe f9 fe 0c ff 0f ff |................|

00000090 24 ff 26 ff 35 ff 35 ff 38 ff 3b ff 2c ff 32 ff |$.&.5.5.8.;.,.2.|
000000a0 1c ff 22 ff 13 ff 16 ff 1b ff 1a ff 36 ff 38 ff |..”.........6.8.|
000000b0 5f ff 65 ff 94 ff 96 ff ce ff ca ff ff ff 00 00 |_.e.............|
000000c0 2b 00 2e 00 4b 00 4e 00 59 00 5e 00 57 00 5b 00 |+...K.N.Y.ˆ.W.[.|
000000d0 4a 00 4c 00 43 00 41 00 43 00 42 00 4b 00 4f 00 |J.L.C.A.C.B.K.O.|
000000e0 59 00 5a 00 64 00 62 00 63 00 64 00 5b 00 5d 00 |Y.Z.d.b.c.d.[.].|
000000f0 4f 00 4d 00 3d 00 38 00 1c 00 1b 00 f5 ff fa ff |O.M.=.8.........|
00000100 ce ff d4 ff a8 ff ae ff 7e ff 84 ff 4c ff 52 ff |........˜...L.R.|
00000110 18 ff 1b ff ee fe f0 fe d6 fe d8 fe d0 fe d0 fe |................|
00000120 cd fe cf fe c8 fe ca fe c4 fe c0 fe c8 fe c3 fe |................|
00000130 d4 fe d3 fe e8 fe ea fe fd fe ff fe 08 ff 08 ff |................|
00000140

1.1.3 Integers

NP provide 8 different types to describe integers: uint8, uint16, uint32, uint64, int8,
int16, int32 and int64. e digits at the end of the type name denote the size in bits of
the representation: all these representations are fixed-size and use an entire number
of bytes so that they may be handled efficiently by the hardware. e type whose
name start with a “u” are unsigned, they represent only non-negative integers ; the
others are signed, they may represent negative integers as well.

We will explain how these types represent integers as binary data. We will use
the bitstream library to illustrate this ; more specifically, we will only use its ability to
handles bits as sequence of booleans and build on top of that the functions needed to
manage the integer types.

10 CHAPTER 1. CODING

Unsigned Integers

enon-negative integers thatmay be described in one byte are in the range 0, 1, . . . , 255.
Writing them in a binary stream one bit at a time may be done like that:

def write_uint8(stream, integers):
integers = array(integers)
for integer in integers:

mask = 0b10000000
while mask != 0:

stream.write((integer & mask) != 0)
mask = mask >> 1

e use of the statement integers = array(integers) ensures that single integers, lists
of integers and array of integers will all be handled as arrays.

Reading unsigned 8-bit integers from a stream is even simpler:

def read_uint8(stream, n=None):
if n is None:

integer = 0
for _ in range(8):

integer = (integer << 1) + int(stream.read(bool))
return integer

else:
return array([read_uint8(stream) for _ in range(n)], uint8)

is code can easily be generalized to handle 16-bits or 32-bits integers.
e bitstream library actually supports these types already, with quite a few extra

features – error handling, efficient vectorization, and static typing for extra perfor-
mance via C2.

If that was not already done, we could register the above encoder and decoder via

bitstream.register(uint8, reader=read_uint8, writer=write_uint8)

e following P session demonstrates a few ways to write 8-bits unsigned to
streams and read them from streams.

>>> stream = BitStream()
>>> stream.write(uint8(0))
>>> stream.write(15, uint8)
>>> write_uint8(stream, 255)
>>> print stream
000000000000111111111111
>>> stream.write([0, 15], uint8)
>>> stream.write([uint8(255), uint8(0)])
>>> stream.write(array([15, 255], uint8))
>>> print stream
000000000000111111111111000000000000111111111111000000000000111111111111
>>> stream.read(uint8)
0
>>> stream.read(uint8, 2)
array([15, 255], dtype=uint8)
>>> stream.read(uint8, inf)
array([0, 15, 255, 0, 15, 255], dtype=uint8)

e first form to write integers – stream.write(uint8(0)) – automatically detects the
type of the argument, the second – stream.write(15, uint8) – uses an explicit type ar-
gument and is slightly faster. e third one that calls the writer directly and bypasses
the call to stream.write – write_uint8(stream, 127) – is again slightly faster. But the real
way tomake a difference performance-wise is to vectorize these calls andwrite several

2http://cython.org/

http://cython.org/

1.1. BINARY DATA 11

integers at once, either lists of integers – as in the calls to stream.write([0, 15], uint8)

or stream.write([uint8(255), uint8(0)]) – or beer yet write NP arrays with data
type uint8 as in the call stream.write([15, 255], uint8).

Reading such integers from a stream may be done one integer at at time – as in
the call stream.read(uint8) – or many at the same time, the data being packed into
NP arrays – as in stream.read(uint8, 2), the second argument being the number
of integers. e number may be numpy.inf to read integers until the end of the stream.

Signed Integers

A first approach to the coding of 8-bit signed integers would be to use the first bit to
code the sign and the remaining 7 bits to code the absolute value of the integer.

def write_int8(stream, integers):
integers = array(integers)
for integer in integers:

stream.write(integer < 0)
integer = abs(integer)
mask = 0b1000000
while mask != 0:

stream.write((integer & mask) != 0)
mask = mask >> 1

stream.write

In this scheme, the code 1000000 is never used (it would correspond to−0), and there-
fore we could code 255 different integers, from−127 to 127. By shiing the negative
values by 1 we could use all 8-bit codes and therefore encode the −128 to 127 range.
e modification would be:

def write_int8(stream, integers):
integers = array(integers)
for integer in integers:

if integer < 0:
negative = True
integer = - integer - 1

else:
negative = False

stream.write(negative)
mask = 0b1000000
while mask != 0:

stream.write((integer & mask) != 0)
mask = mask >> 1

e actual standard coding of 8-bit signed integers uses a slightly different scheme
called two’s complement: conceptually, we encode the integer as in the previous
scheme but as a last step, the bits other than the sign bits are inverted – 0 for 1, 1,
for 0 – for the negative numbers. A careful examination of the code below shows
that it implements effectively the desired scheme ; the line 2**8 - integer - 1 actually
explains the name of this scheme:

def write_int8(stream, integers):
integers = array(integers)
for integer in integers:

if integer < 0:
integer = 2**8 - integer - 1

mask = 0b10000000
while mask != 0:

stream.write((integer & mask) != 0)
mask = mask >> 1

12 CHAPTER 1. CODING

e motivation behind two’s complement schemes is that addition correctly works
between signed integers, without any special handling of the bit sign3. Let’s see the
result of this encoding on a few examples:

>>> BitStream(0, int8)
00000000
>>> BitStream(127, int8)
01111111
>>> BitStream(-128, int8)
10000000
>>> BitStream(-127, int8)
10000001
>>> BitStream(-3, int8)
11111101
>>> BitStream(-2, int8)
11111110
>>> BitStream(-1, int8)
11111111

Network Order

Consider the integer 3882 ; we need at least two bytes to encode this number in an
unsigned fixed multi-byte scheme. e bitstream modulde represents this integer as
0000111100101010: the integer 3882 is equal to 15 × 28 + 42. We have encoded the
8-bit unsigned integer 15 – the most significant bits 00001111 – first and then the
least significant bits 00101010. is scheme is called the big endian ordering and this
is what the bitstream module support by default. e opposite scheme – the little
endian ordering – would encode 42 first and then 15, and then the bit content would
be 0010101000001111.

NP provides a handy method on its multi-byte integer types: newbyteorder. It
allows to switch from a lile endian representation to a big endian and reciprocally.
See for example:

>>> BitStream(uint16(42))
0000000000101010
>>> BitStream(uint16(42).newbyteorder())
0010101000000000
>>> BitStream(uint32(42))
00000000000000000000000000101010
>>> BitStream(uint32(42).newbyteorder())
00101010000000000000000000000000

So reading an integer encoded in lile endian representation is done in two steps: read
it (as if it was encoded with the big endian representation) and then use the method
newbyteorder on the result.

1.2 Information eory and Variable-Length Codes

In this section, we introduce the modelling of sources or annels as random gener-
ators of symbols and measure the quantity of information they have. We’ll see later
– as anyone can guess – that such a measure directly influences the size of the binary
data necessary to encode such sources.

3see for example http://en.wikipedia.org/wiki/Two’s_complement

http://en.wikipedia.org/wiki/Two's_complement

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 13

1.2.1 Entropy from first principles.

e (Shannon) information content of an event E is:

I(E) = − log2 P (E) (1.1)

0.00 0.25 0.50 0.75 1.00
probability P (E)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

I(E) = − log2 P (E)

Shannon information content

Figure 1.4: Claude E. Shannon (April 30, 1916 – February 24, 2001) was an Ameri-
can mathematician, electronic engineer, and cryptographer known as “the father of
information theory”.

is expression may actually be derived from a simple set of axioms:

• Positivity: the information content has non-negative – finite or infinite – val-
ues,

• Neutrality: the information content of an event only depends on the probabil-
ity of the event,

• Normalization: the information content of an event with probability 1/2 is 1,

• Additivity: the information content of a pair of independent events is the sum
of the information content of the events,

e positivity of the information content is a natural assumption. e value +∞
has to be allowed for a solution to the set of axioms to exist: it does correspond to
events whose probability is 0 ; they are so unlikely that their occurence brings an
infinite amount of information. More generally, it’s easy to see, given the expres-
sion of (1.1) that the less likely an event is, the bigger its information content is: e
additivity axiom is also quite natural but one shall emphasize the necessity of the in-
dependence assumption. On the contrary, consider two events E1 and E2 that are
totally dependent: if the first occurs, we know for sure that the second also will. en
P (E1 ∧E2) = P (E1)× P (E2|E1) = P (E1) and therefore, the information content
I(E1) is equal to I(E1 ∧ E2): the occurence of the second event brings no further
information.

e normalization axiom is somehow arbitrary: we could have selected any finite
positive value instead of 1, but this convention is themost convenient in the context of
binary data. is axiom basically says that the probability that a random bit – whose
values 0 and 1 are equally likely – is 1 (or 0 for that maer) is 1. So if we imagine a

14 CHAPTER 1. CODING

memory block of n bits whose values is random and independent, for any sequence
of n values in {0, 1}, the probability that the memory block has that precise state is
n × 1 = n. With this convention, the information content unit corresponds to the
number of bits ! erefore, it makes sense to use the word “bit” as a basic measure of
information content ; Shannon use the word with this meaning as soon as 1948, the
year Tukey invented it.

Let’s now prove that the first four fundamental axioms imply that the information
content of an event is given by the formula (1.1).

Proof. Let f : [0, 1] → [0,+∞] be such that for any event E, we have I(E) =
f(P (E)). Let E1 and E2 be independent events with p1 = P (E1) and p2 = P (E2).
As P (E1 ∧ E2) = p1 × p2, we have

f(p1 × p2) = I(E1 ∧ E2) = I(E1) + I(E2) = f(p1) + f(p2).

Hence the function g = f ◦ exp is additive: for any x, y ∈ [−∞, 0], g(x + y) =
g(x) + g(y). As g takes non-negative values, g is non-increasing. Moreover, as
g(− log 2) = f(1/2) = 1, it is finite on (−∞, 0] and satisfies g(−∞) = +∞
and g(0) = 0. It is also continous on (−∞, 0]. As g(−p/q) = p/q × g(−1) for
any (p, q) ∈ N × N∗, by continuity, g(x) = −xg(−1): g is homogeneous. Pre-
cisely, g(x) = −(x/log 2)g(− log 2) = −x/log 2 and therefore f(p) = g ◦ log(p) =
−log p/log 2 = − log2 p.

Let X be a discrete random variable. e entropy of X is the mean information
content among all possible outcomes

H(X) = E [x 7→ I(X = x)] , (1.2)

or explicitly

H(X) = −
∑
x

P (X = x) log2 P (X = x) (1.3)

If X takes N possible different values x1 to xN , we can show that the entropy is
maximal if

P (X = x1) = · · · = P (X = xN) = 1/N

that is, if the variable X is “totally random”, all of its values being equally likely. In
this case, we have

H(X) = log2N

In particular, if the random variable X with values in {0, 1, · · · , 2n − 1} is a model
for the state of a memory block of n bits where all states are equally likely, then

H(X) = n

so once again, it makes sense to aach to the entropy a unit named “bits”.

Password Strength measured by Entropy

Given that entropy measures the quantity of information of a random symbol source,
it is an interesting tool to measure the strength of a password. Let’s measure the
entropy aached to the first password generation method described in figure 1.5; the
algorithm generates passwords such as

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 15

$./password.py 5
Ablatival8’
Horseplay>4
greff0tome1*
beelzebub)4
Conta¡nments5.

Figure 1.5: ”Tr0ub4dor&3” or ”correct horse battery staple” ? (http://xkcd.com/
936/)

Here are the steps that are reproduced:

• long and uncommon base word. Pick at random an english word of at least 9
leers. e words.py utility gives us the number of such words:

$./words.py ”len(word) >= 9”
67502

At this stage, your pick may be:

”troubador”

If every word in the dictionary has the same chance to be picked, the entropy
of your word generator so far is:

>>> log2(67502)
16.042642627599378

http://xkcd.com/936/
http://xkcd.com/936/

16 CHAPTER 1. CODING

So far our estimate closely matches the one from fig. 1.5 (16 grey “bit boxes”
aached to the base random word).

• caps ? Capitalize the word – or don’t – and that randomly (each strategy is
equally likely and independent of the previous pick).

You password at this stage may be:

”Troubador”

and the corresponding entropy:

>>> log2(67502) + 1
17.042642627599378

• common substitutions. Let’s pretend that there is a flavor of the “leetspeak”
language (see http://en.wikipedia.org/wiki/Leet) where every leer is uniquely
represented by an alternate symbol that is unique and not a leer. For example
a → 4, b → 8, c → (, e → 3, l → 1, o → 0, i → !, t → 7, x → %, etc. so that
leet for example is represented as 1337. Replace leers in position 3, 6 and 8
by their corresponding leetspeak number – or don’t do it – randomly, the two
options being equally likely and independent of the previous steps.

You password at this stage may be:

”Tr0ub4dor”

and the corresponding entropy:

>>> log2(67502) + 1 + 3
20.042642627599378

• punctuation and numeral. Pick at random a non-leer, non-digit symbol among
printable characters in the US-ASCII set. ere are 127 US-ASCII characters,
95 of them are printable (codes 0x20 to 0x7E, see http://en.wikipedia.org/wiki/
ASCII#ASCII_printable_characters), that makes 95minus 10 digits minus 2×26
leers – lower and upper case – that is 33 possible symbols. Add a random digit
symbol and optionally swap the punctuation and digit symbols at random.

You password at this stage may be:

”Tr0ub4dor&3”

and the corresponding entropy:

>>> log2(67502) + 1 + 3 + log2(33) + log2(10) + 1
29.408964841845194

1.2.2 Alphabets, Symbol Codes, Stream Codes

An alphabet is a countable set of distinct symbols, meant to represent information.
For example, the leers ”a” to ”z”, all unicode glyphs, the words of the English lan-
guage, the non-negative integers, the binary values 0 and 1, etc.

LetA be an alphabet andn ∈ N. We denoteAn the set of alln-upleswith elements
in A, A+ the set of all such non-empty n-uples when n varies and A∗ the set of all
such n-uples, including the (empty) 0-uple denoted ε.

An =

n terms︷ ︸︸ ︷
A× · · · × A, A+ =

+∞∪
n=1

An, A∗ = {ε} ∪ A+ (1.4)

http://en.wikipedia.org/wiki/Leet
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 17

Elements of An are most of the time denoted without the commas and parentheses,
by simple juxtaposition of the symbols of the tuple as in

a0a1 · · · an−1 ∈ An (1.5)

We also talk about sequences and (finite) streamswhen we refer to such n-uples. e
length of a stream a0 · · · an is the number of symbols that it contains:

|a0 · · · an−1| = n (1.6)

A (variable-length) (binary) symbol code c is an mapping from an alphabetA to the
set of non-empty finite binary streams {0, 1}+. e code is of fixed lengthn if c(a) has
length n for any a ∈ A. We usually require the code to be injective, sometimes using
the term non-ambigous code to emphasize this property. e elements of {0, 1}+
are named (binary) codes, and valid codes if they belong to the range of c. Such
mappings are characterized by:

c : A → {0, 1}+ such that c(a) = c(b) =⇒ a = b (1.7)

e non-ambiguity assumption makes the code uniquely decodable: given c(a), a is
identified uniquely and may be recovered. Symbol codes are usually defined to form
stream codes: the mapping c is extended from A to A+ by

c(a0a1 · · · an−1) = c(a0)c(a1) · · · c(an−1) (1.8)

e resulting mapping is still a code – with symbols in the alphabet A+ instead of
A) – only if the extended mapping is still non-ambiguous or bf self-delimiting, that
is, the unique decodability is preserved by the extension to streams. In order for the
stream code is non-ambiguous, the lengths of the valid codes have to satisfy the Kra
inequality:

K(c) =
∑
a∈A

2−|c(a)| ≤ 1 (1.9)

A converse statement also holds, see 1.2.1.

Proof. Let c be a symbol code for A whose stream code is non-ambiguous. For any
integer n, we have

K(c)n =
∑
a0∈A

· · ·
∑

an−1∈A

2−(|c(a0)|+···+|c(an−1)|) =
∑
a∈An

2−|c(a)|

Assume than A is finite and let L be an upper bound for the code length of symbols
inA. For any integer l, there are at most 2l distinct binary stream codes whose length
is l and therefore

K(c)n =
nL∑
l=n

∑
a∈An,|c(a)|=l

2−l ≤
nL∑
l=n

2l × 2−l = n(L− 1) + 1

Passing to the limit on n yieldsK(c) ≤ 1. If A is countable andK(c) > 1, there is a
finite subset A′ of A such that c′ = c|A′ satisfies K(c′) > 1. Hence, c′ is ambiguous
as a stream code and therefore c also is.

18 CHAPTER 1. CODING

Prefix Codes

Unique decodability is necessary for a code to be useful. Still it does not make the
code easy to use. Consider for example the alphabetA = {0, 1, 2, 3} and the mapping
A → {0, 1}+

0 → 0, 1 → 01, 2 → 011, 3 → 0111 (1.10)

It is a code and we can convince ourselves that it is uniquely decodable. However
decoding a stream requires lookahead: consider the stream that start by 010110 · · ·
and imagine a process that lets you discover the symbols one by one. At the first step,
0, you don’t know what the original first symbol is: it could be 0, or it could be the
partial code for any of the original symbols. So, you have to pick the second symbol,
and you can rule out 0 but you still can’t decide, the first symbol could be 1, or 2 or
3. Only the third symbol gives you the solution: the stream starts with 010 and it can
be the case only of the first symbol was 1 (with code 01).

Given a possible symbol, here, with one step at most we can decide if a code is
complete or partial but generally we can build uniquely decodable codes for which
this limit is arbitrarily large. Consider on the contrary the code

0 → 0, 1 → 10, 2 → 110, 3 → 1110 (1.11)

As soon as you receive a 0, the code is complete and you know that you can decode
a symbol. Conversely, if you receive a 1, you know that you have to keep on reading
the bit stream to decode a new symbol. So the decoding process is easy.

Codes that require no look-ahead and are therefore easy to decode are called prefix
codes: there is no valid code, that, completedwith extra bits, would form another valid
code.

So prefix codes make streaming non-ambiguous and easy. However are they gen-
eral enough ? e answer is yes: if the Kra inequality is satisfied for a code length
function, there is non-ambiguous code that correspond to these lengths, and this code
can always be selected to be prefix code. We’ll prove this result later aer we have
studied the suitable representation of prefix codes.

Example of variable-length code: Unicode and utf-8.

Unicode is a computing industry standard for the consistent encoding,
representation and handling of text expressed in most of the world’s writ-
ing systems. e Unicode Consortium, the nonprofit organization that
coordinates Unicode’s development, has the ambitious goal of eventu-
ally replacing existing character encoding schemes with Unicode and its
standard Unicode Transformation Format (UTF) schemes, as many of the
existing schemes are limited in size and scope and are incompatible with
multilingual environments. http://en.wikipedia.org/wiki/Unicode

Unicode was developed in conjunction with the Universal Character Set standard and
published in book form as e Unicode Standard. As of 2011, the latest version of
Unicode is 6.0 and consists of an alphabet of 249,031 characters or graphemes among
1,114,112 possible code points. Code points are designated by the symbol U+X where
X is the hexadecimal representation of an integer between 0 to 10ffff. Unicode can
be implemented by different character encodings with the most commonly used en-
coding being UTF-8. UTF-8 uses one byte for any ASCII characters whose code point
is between U+00 and U+7f, and up to four bytes for other characters. e coding

http://en.wikipedia.org/wiki/Unicode

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 19

process is the following: first, if the code point is in the range U+0 – U+7f, the UTF-8
code is 0 followed by the code point binary representation. Otherwise, the code point
binary representation requires more than 7 bits. e UTF-8 code then begins with the
unary representation of the number of bytes used to represent the code point given
that all bits of the first byte not used by the unary coding may be used and that beyond
the first byte, every byte start with 10 which leaves 6 usable bits. at is, if the code
point binary representation needs n bits, the number of bytes N uses by the UTF-8
encoding is

N = 1 if n ≤ 7,

⌊
n− 1

5

⌋
if 8 ≤ n ≤ 31. (1.12)

e following table summarize the utf-8 code layout.
Range Code Format
U+0 – U+7f 0xxxxxxx

U+80 – U+7ff 110xxxxx 10xxxxxx

U+800 – U+ffff 1110xxxx 10xxxxxx 10xxxxxx

U+100000 – U+1fffff 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

U+200000 – U+3ffffff 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

U+4000000 – U+7fffffff 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

As an example, let’s consider the code point U+2203 that represents the character
∃. It is an element of the mathematical operators whose range is U+2200–U+22ff (see
http://www.unicode.org/charts/PDF/U2200.pdf). Being in the range U+0800 – U+ffff,
it needs 3 bytes to be represented in utf-8. e binary representation of 2203 – as a
hexadecimal number – is

00100010 00000011

We should fit those 16 bits into the 16 x slots of the following paern. No zero padding
(adding zeros on the le) is necessary.

1110xxxx 10xxxxxx 10xxxxxx

So, we split the binary representation into

0010 001000 000011

and intertwin the result to obtain

11100010 10001000 10000011

or in hexadecimal
e2 88 83

is is confirmed by the output of the following P interactive session:

>>> exists = u”\u2203”
>>> print exists
∃
>>> exists.encode(”utf-8”)
’\xe2\x88\x83’

e utf-8 coding may be used in music format to store text information. But given
that it really applies to integers, the code point interpretation is sometimes dropped
entirely. For example, the FLAC format (http://flac.sourceforge.net/format.html) uses
a “utf-8” coding to store sample number and frame number for variable block sizes.

http://www.unicode.org/charts/PDF/U2200.pdf
http://flac.sourceforge.net/format.html

20 CHAPTER 1. CODING

Prefix Codes Representation

Prefix codes may seem to be hard to design. But as a maer of fact suitable represen-
tations of such structures make the process quite easy: binary trees and arithmetic
representations are here the key structures.

Binary Trees. Binary trees are sets of nodes organised in a hierarchical structure
where each node has at most two children. Formally, a binary tree is a pair (N, ↓)
where N is a set of elements called nodes and ↓ is the ildren mapping, a partial
application

· ↓ · : dom(↓) ⊂ N× {0, 1} → N (1.13)

such that there exist a unique root node r

∃ ! r ∈ N, ∀n ∈ N, ∀ i ∈ {0, 1}, r 6= n ↓ i, (1.14)

nodes are not shared

n ↓ i = n′ ↓ i′ =⇒ i = i′ ∧ b = b′ (1.15)

and there is no cycle

n0 ↓ i0 = n1, · · · , np−1 ↓ ip−1 = np =⇒ (ni = nj =⇒ i = j) (1.16)

A node n is terminal (or is a leaf node) if it has no children:

(n, 0) 6∈ dom(↓) and (n, 1) 6∈ dom(↓) (1.17)

e depth |n| of a node n ∈ N is the unique non-negative integer d defined by

∃ (b0, · · · , b|d|−1) ∈ {0, 1}|d|, r ↓ b0 ↓ · · · ↓ b|d|−1 = n. (1.18)

Codes are Binary Trees. Let A be a finite alphabet and c a binary code on A. Let
N be the subset of {0, 1}∗ of all prefixes of valid codes, that is

N = {b ∈ {0, 1}∗, ∃ b′ ∈ {0, 1}∗, ∃ a ∈ A, c(a) = bb′} (1.19)

We define the children mapping · ↓ · by:

b0 · · · bn−1 ↓ bn = b0 · · · bn−1bn (1.20)

provided that b0 · · · bn−1 and b0 · · · bn−1bn both belong to N. With this definition,
(N, ↓) is a binary tree whose root is ε and the depth of a node is the length of the bit
sequence so that the notation used in both contexts |b0 · · · bn−1| is not ambiguous.
We also define a partial label mapping S on N with values in A by

S(b0 · · · bn−1) = a if c(a) = b0 · · · bn−1 (1.21)

S is a one-to-one mapping from its domain to A.
Conversely, given a tree (N, ↓) and a one-to-one partial label mapping S with

values in A, we may define uniquely a code: let r be the root node ; for any a ∈ A,
there is a unique sequence b0 · · · bn−1 such that

S(r ↓ b0 ↓ b1 ↓ · · · ↓ bn−1) = a, (1.22)

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 21

so that we may set
c(a) = b0 · · · bn−1 (1.23)

In other words, c(a) is the path from the root node to the node whose label is a.
Binary trees used in this context are usually trimmed down so that all terminal

nodes inN are labelled – belong to the domain of S; extra nodes are useless to define
the code c. We say that those trees are compact with respect to S and that (N, ↓, S)
is a (compact, binary, labelled) tree representation of the code c. Among such trees,
the ones that correspond to prefix codes are easy to spot: only their terminal nodes
are labelled.

Arithmetic representation. Let b0 · · · bn−1 ∈ {0, 1}n. e (binary) fraction rep-
resentation – denoted 0.b0 · · · bn−1 – of this bit sequence is

0.b0 · · · bn−1 =

n−1∑
i=0

bi × 2−i+1 (1.24)

To any such bit sequence b we may associate an interval in [0, 1) by:

b = b0 · · · bn−1 → I(b) = [0.b0 · · · bn−1, 0.b0 · · · bn−11) (1.25)

We may notice that I(b) is the only interval that contains all binary fractions (whose
denominator is a power of two) whose first bits as a binary fraction are b0, · · · , bn−1.
In other words, it contains the fraction representation of all codes of which b0 · · · bn−1

is a prefix. As a consequence, for any prefix code c on A the intervals I(c(a)), a ∈ A
are non-overlapping:

∀ (a, a′) ∈ A2, a 6= a′ =⇒ I(a) ∩ I(a′) = ∅ (1.26)

is property is actually necessary and sufficient for codes to be prefix codes. We use
that crucial property to proof the converse of Kra’s theorem, namely:

Proposition 1.2.1 Given an alphabetA and a list of code lengths (la), a ∈ A such that

K =
∑
a∈A

2−la ≤ 1

there is a prefix code c such that

∀ a ∈ A, |c(a)| = la

Proof. Let’s order all symbols in A in a sequence a0, a1, · · · . Given the lengths
la, a ∈ A, we define the sequence of binary fractions and intervals xa0 = 0, xan =
xan−1 + 2−lan−1 and I(an) = [xan , xan+1). At any step n of this process, xan =∑n−1
i=0 2−lai ≤ 1 because Kra’s inequality holds. We may therefore define the code

c by

c(an) = b0 · · · bp−1 with I(an) = [0.b0 · · · bp−1, 0.b0 · · · bp−11) (1.27)

By construction these intervals are non-overlapping and consequently what we have
build is a prefix code.

22 CHAPTER 1. CODING

1.2.3 Optimal Length Coding

Given an alphabet and random symbol in it, we explain in this section what bounds
exist on codes average bit length and how we can build a code that is optimal for this
criteria.

Average Bit Length – Bounds

Let A be an alphabet, A a random symbol in A and c a code on A. We define the
(average) (bit) length of the code as:

E|c(A)| =
∑
a∈A

p(a)|c(a)| (1.28)

where as usual p(a) = P (A = a). Let (N, ↓, S) is a tree representation of c and define
the weight w(n) = p(c−1(n)). e weighted tree t = (N, ↓, S, w) has a (weighted)
depth |t| given by

|t| =
∑

n∈domS

w(n)|n| (1.29)

that is equal to E|c(A)|.
We know from the previous section that we can restrict our search to prefix codes.

For such codes, the entropy H(A) provides bounds on the expected length. Specifi-
cally, we have:

Proposition 1.2.2 Every prefix code c for A satisfies

H(A) ≤ E |c(A)|. (1.30)

Moreover there exist a prefix code c for A such that

E |c(A)| < H(A) + 1. (1.31)

e inequality (1.30) may usefully be detailled. First, to the code c we have to
associate a set of implicit probabilities q(a), a ∈ A, by

q(a) ∝ 2−|c(a)|,
∑
a∈A

q(a) = 1 (1.32)

Let p(a) = P (A = a). We define the (Kullba-Leibler) divergence of the probability
distributions p and q by:

DKL(p||q) =
∑
a∈A

p(a) log2
p(a)

q(a)
≥ 0 (1.33)

with the two conventions that if there is a a ∈ A such that q(a) = 0 and p(a) 6= 0

then DKL(p||q) = +∞ and that p(a) log2
p(a)
q(a) = 0 when p(a) = 0. e positivity of

the divergence is called the Gibbs inequality. It results from a convexity argument4

and moreover
DKL(p||q) = 0 iff ∀ a ∈ A, p(a) = q(a) (1.34)

4e function x 7→ log2 x being strictly concave, we have

DKL(p||q) =
∑

a∈A, p(a)6=0

p(a)

(
− log2

q(a)

p(a)

)
≥ − log2

 ∑
a∈A, p(a) 6=0

p(a)
q(a)

p(a)

 = 0

with equality only when p(a) = q(a) for every a.

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 23

ese terms being given, we have the equality (proved below)

H(a) = E|c(A)| −DKL(p||q)− log2K(c) (1.35)

where K(c) ≤ 1 is defined in the Kra inequality (1.9). e equality case in the
inequality (1.30) happens if and only if

∀ a ∈ A, |c(a)| = − log2 p(a) (1.36)

a condition for which we may find a code c if and only if the probability p satisfies

∀ a ∈ A, p(a) ∈ 2−N (1.37)

Proof. e mean code length satisfies

E|c(A)| =
∑
a∈A

p(a)|c(a)| = −
∑
a∈A

p(a) log2 2
−|c(a)|

Given the definition of the implicit probability

q(a) =
2−|c(a)|∑
a∈A 2−|c(a)| =

2−|c(a)|

K(c)
,

we end up with

E|c(A)| = −
∑
a∈A

p(a) log2 q(a)− log2K(c)

= −
∑
a∈A

p(a) log2 p(a)−
∑
a∈A

p(a) log2
q(a)

p(a)
− log2K(c)

= H(A) +DKL(p||q)− log2K(c) ≥ H(A)

For any a ∈ A, we define l(a) = d− log2 p(a)e. As we have∑
a∈A

2−l(a) ≤
∑
a∈A

2log2 p(a) =
∑
a∈A

p(a) = 1

there is a prefix code c that satisfies |c(a)| = l(a) for any a ∈ A. Moreover

E|c(A)| =
∑
a∈A

p(a)l(a) <
∑
a∈A

p(a)(− log2 p(a) + 1) = H(A) + 1.

Algorithm and Implementation of Huffman Coding

We represent (finite) alphabets and the probability distribution of a random symbol
as a single P dictionary, for example

A = {‘a’, ‘b’, ‘c’} and p(‘a’) = 0.5, p(‘b’) = 0.3, p(‘c’) = 0.2

as

24 CHAPTER 1. CODING

{’a’: 0.5, ’b’: 0.3, ’c’: 0.2}

Probabilities will be used relative weights: instead we could define the dictionary as

{’a’: 5, ’b’: 3, ’c’: 2}

and the code resulting from the Huffman algorithmwould be the same. e algorithm
we implement uses weighted binary trees where:

• terminal nodes are symbol/weight pairs such as (’a’, 1.0),

• non-terminal nodes are children/weight pairs where children is a list of (termi-
nal or non-terminal) nodes, such as ([(’c’: 0.2), (’a’: 0.5)], 0.7).

Handling of these structures is made through a small set of helper functions:

class Node(object):
”Function helpers to manage nodes as (symbol, weight) pairs”

@staticmethod
def symbol(node):

return node[0]

@staticmethod
def weight(node):

return node[1]

@staticmethod
def is_terminal(node):

return not isinstance(Node.symbol(node), list)

e Huffman algorithm is the following: we create a list of symbol/weight nodes
from the initial dictionary and repeat the following steps:

1. pick up two nodes with the least weights, remove them from the list,

2. insert into the list a non-terminal nodes with those two nodes as children and
a weight that is the sum of their weights„

3. stop when there is a single node in the list: this is the root of the binary tree

Note that this algorithm is not entirely deterministic if at any step, the lowest weight
correspond to three nodes or more.

Here is the corresponding implementation in make_binary_tree; note that in the
othermethods of the huffman class, we also create a symbol to code dictionary (self.table)
from the binary tree to simplify the coding and decoding of symbols – not all func-
tions are given in this chunk of code ; the symbol_encoder and symbol_decoder create
(symbol) coders and decoders from the symbol to code tables and stream_encoder and
stream_decoder create stream coder and encoder from those.

class huffman(object):
def __init__(self, weighted_alphabet):

self.weighted_alphabet = weighted_alphabet
self.tree = huffman.make_binary_tree(weighted_alphabet)
self.table = huffman.make_table(self.tree)
self.encoder = stream_encoder(symbol_encoder(self.table))
self.decoder = stream_decoder(symbol_decoder(self.table))

@staticmethod

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 25

def make_binary_tree(weighted_alphabet):
nodes = weighted_alphabet.items()
while len(nodes) > 1:

nodes.sort(key=Node.weight)
node1, node2 = nodes.pop(0), nodes.pop(0)
node = ([node1, node2], Node.weight(node1) + Node.weight(node2))
nodes.insert(0, node)

return nodes[0]

@staticmethod
def make_table(root, table=None, prefix=None):

if prefix is None:
prefix = BitStream()

if table is None:
table = {}

if not Node.is_terminal(root):
for index in (0, 1):

new_prefix = prefix.copy()
new_prefix.write(bool(index))
new_root = Node.symbol(root)[index]
huffman.make_table(new_root, table, new_prefix)

else:
table[Node.symbol(root)] = prefix

return table

As usual, the coder and decoder are registered for use with the BitStream instances.

bitstream.register(huffman, reader=lambda h: h.decoder, writer=lambda h: h.encoder)

Optimality of the Huffman algorithm

We prove in this section that the Huffman algorithm creates a code whose average
bit length is minimal among all prefix codes (and therefore all non-ambiguous stream
codes).

Switing nodes. Consider a weighted tree t = (N, ↓, S, w) and two of its termi-
nal nodes n1 and n2. Switch the position of these nodes and call the resulting tree t′.
A simple computation shows that the weighted bit length of t′ is given by

|t′| = |t|+ (|n1|t − |n2|t)(w(n2)− w(n1)) (1.38)

Consequently, a tree that has a terminal node with a high probability at a depth larger
than another node with low probability higher in the tree can’t be optimal, because
switching the two nodes would decrease the code average bit length. e same for-
mula also shows that given two terminal nodes n1 and n2 among the ones with the
lowest probability, we can always find an optimal tree with them as siblings at the
greatest depth: at least one optimal tree exist for combinatorial reasons ; for such a
tree, either a node is a leaf, or it has two children nodes; now get at the boom of the
tree: there are two terminal nodes. If they are not the desired nodes, switches that
are neutral to the average bit length will create a new optimal tree with the desired
property.

Length optimality. e proof that the Huffman coding algorithm is optimal is
made by induction on the number of symbols. e check for the basis assumption
is straightforward. Now assume that the result holds for N symbols and pick an
alphabet with N + 1 symbols. Let t be the tree that results from the application of
the Huffman algorithm. Now consider the initial set of symbols and replace the two
with the lowest weight (nodes n1 and n2) with a single one with a weight equal to
the sum of the original symbol weights. Let t′ be the result of the Huffman algorithm

26 CHAPTER 1. CODING

on these N symbols. e average bit length of both trees are related by |t′| = |t| +
(w(n1)+w(n2))(|n1|t−1)−w(n1)|n1|t−w(n2)|n2|t = |t|−w(n1)−w(n2). Now
consider an optimal rearrangement of t? of t that would have n1 and n2 as siblings
at the lowest level (possible by the previous section). Grouping n1 and n2 leads to a
t′? whose length is |t′?| = |t?| − w(n1) − w(n2) and such t′? is a rearrangement of
t′. Hence, as |t| = |t?| − (|t′?| − |t′|) and because by the induction hypothesis t′ is
optimal, |t′?| − |t′| ≥ 0, we have |t| ≤ |t?| and t is optimal.

Example: Brainfu, Spoon and Fork.

Brainfuck5 is an eight-instruction Turing-complete programming language. e eight
instructions are represented by the characters:

> < + - . , []

e language is organised around a single byte pointer p. As an exemple, the instruc-
tion ‘+’ corresponds to the C code fragment “(*p)++;” and ‘.’ to “putchar(*p);”. e
classic “Hello World!” program in Brainfuck is the sequence:

++++++++++[>+++++++>++++++++++>+++>+<<<<-]
>++.>+.+++++++..+++.>++.<<+++++++++++++++.
>.+++.------.--------.>+.>.

Spoon6 is a variant of Brainfuck created in 1998 by Steven Goodwin. It uses binary
encoding of the eight original symbols according to the mapping

> → 010 < → 011 + → 1 - → 000
. → 001010 , → 0010110 [→ 00100] → 0011

e code is a prefix code that was actually designed using Huffman encoding, with
probabilities of each command computed from a set of example programs. You may
notice that the code appears NOT to be optimal as ‘,’ has the longest code and has no
sibling: it could be shortened to 001011. But that’s only because the actual Spoon vari-
ant of Brainfuck introduces two extra reserved codes, 00101110 to dump the memory
(for debug purposes) and 00101111 to stop execution. e full binary tree of the code
– where the corresponding symbols are * and ! – and the arithmetic representation
are displayed in figure 1.6.

e Spoon encoding of the “Hello World!” program is a sequence of 245 bits:

11111111110010001011111110101111111111010111010101
10110110110000011010110010100101001010111111100101
00010101110010100101100101001101111111111111111100
10100100010101110010100000000000000000000010100000
000000000000000000000010100101001010010001010.

As the commands are exactly 8, it is also tempting to define a 3-bit fixed-length en-
coding of the original symbols and let’s call it Fork ! We adopt the mapping:

> → 000 < → 001 + → 010 - → 011
. → 100 , → 101 [→ 110] → 111

5http://www.muppetlabs.com/~breadbox/bf/
6http://web.archive.org/web/20100226062821/http://progopedia.com/dialect/spoon/

http://www.muppetlabs.com/~breadbox/bf/
http://web.archive.org/web/20100226062821/http://progopedia.com/dialect/spoon/

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 27

-

[
.

,
(*) (!)

]

> <

+

Figure 1.6: Spoon coding tree and arithmetic display.

e encoding with Fork of the “Hello World!” program is

01001001001001001001001001001011000001001001001001
00100100000100100100100100100100100100100000100100
10000010001001001001011111000010010100000010100010
01001001001001001010010001001001010000001001010000
10010100100100100100100100100100100100100100100101
00000100010010010100011011011011011011100011011011
011011011011011100000010100000100,

a stream of 333 binary digits, about 36 % less space-efficient than spoon.

1.2.4 Golomb-Rice Coding

Optimality of Unary Coding – Reduced Sources.

Consider the alphabet N of the non-negative integers and a random symbol n in N
such that for any integer i

P (n = i) = P (n > i) (1.39)

Normalization of this probability distribution p(i) = P (n = i) yields

∀ i ∈ N, p(i) = 2−i−1 (1.40)

What is the optimal coding of such a random symbol ? An infinite number of symbols
have a non-zero probability, therefore we can’t apply directly Huffman coding. How-
ever, we can get a flavor of what the optimal coding can be by reducing the random
symbol to a finite alphabet. To do so, we select a threshold m and group together
all the outcomes of n greater or equal to m; the new random symbol based on n
has values in the finite alphabet whose symbols are 0, 1, 2, · · · , m − 1 and the set
{m,m + 1, · · · } of values above m. e probability of the m first m symbols i is

28 CHAPTER 1. CODING

pm(i) = P (n = i) = 2−i−1 and the probability of the last one is

pm(i) = P (n ≥ m) =
+∞∑
i=m

P (n = i) =
+∞∑
i=m

2−i−1 = 2−m

Let’s apply the Huffman algorithm to the resulting symbol, say for m = 2. Here
are the steps that build the Huffman binary tree: the initial list of symbols, sorted by
increasing probability is:

{3, 4, · · · }, 0.125 2, 0.125 1, 0.25 0, 0.5

e nodes {3, 4, · · · } and 2 have the lowest probability of occurence and therefore
shall be grouped. But their probability is the same – 0.125 – and we need to make the
a decision about which one will be taken as the first node of the group. We decide to
go for the infinite set of symbols {3, 4, · · · } first. Somehow it feels the right thing to
do, to have the only compound symbol on the le and all the others on the right …

{2, 3, · · · }, 0.25

{3, 4, · · · }, 0.125 2, 0.125

1, 0.25 0, 0.5

is group has a cumulative probability of 0.25, the same as the symbol 1. ere
is only one extra symbol, 0 and its probability is higher, therefore no reordering is
necessary. We therefore group {2, 3, · · · } (first) and 1.

N, 1.0

{1, 2, · · · }, 0.5

{2, 3, · · · }, 0.25

{3, 4, · · · }, 0.125 2, 0.125

1, 0.25

0, 0.5

ere are only two symbols le, so the algorithm has completed. Let’s look at the
results in terms of coding: we ended up with the code

0 → 1, 1 → 01, 2 → 001, {3, 4, · · · } → 000

From this we can guess what the optimal coding is for the original source, without
the reduction aached to the threshold : it is the unary coding of the integer, or more
precisely here, the variant that uses 0 for the length and 1 as an end symbol.

0 → 1, 1 → 01, 2 → 001, 3 → 0001, 4 → 00001, 5 → 000001, · · ·

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 29

e choice of the variant has no impact on the optimality of the code: unary
coding is the optimal solution for the coding of non-negative integers that occur with
a probability p(i) = 2−i−1. Here is an implementation of unary coding of integer
symbols that uses 0 as an end delimiter instead:

def unary_symbol_encoder(stream, symbol):
return stream.write(symbol * [True] + [False], bool)

def unary_symbol_decoder(stream):
count = 0
while stream.read(bool) is True:

count += 1
return count

Given those symbol encoder and decoder function, the higher-order function stream_encoder

and stream_decoder from the coding module generate a stream encoder and decoder re-
spectively.

unary_encoder = stream_encoder(unary_symbol_encoder)
unary_decoder = stream_decoder(unary_symbol_decoder)

Finally, we define an empty class unary as a type used to register the encoder and
decoder in the bitstream module.

class unary(object):
pass

bitstream.register(unary, reader=unary_decoder, writer=unary_encoder)

Aer that last step, using unary coding and decoding is as simple as:

>>> stream = BitStream()
>>> stream.write([0,1,2,3], unary)
>>> print stream
0101101110
>>> stream.read(unary, 4)
[0, 1, 2, 3]

Optimal Coding of Geometric Distribution - Rice Coding

e same method of source reduction may be applied to analyze optimal code for
more complex distribution, for example the (one-sided) geometric distribution. Such
a distribution is defined by p(i) ∝ θi for a θ ∈ (0, 1); note that the distribution of the
previous sectionwas the special case of θ = 0.5. e normalization of this distribution
leads to

p(i) = (1− θ)θi (1.41)

emethod of reduced source illustrated in the previous sectionmay be used to derive
an optimal coding in the general case. Let’s summarize the findings of [GvV75] ; first,
let l be the unique integer such that

θl + θl+1 ≤ 1 < θl−1 + θl. (1.42)

e optimal coding of the non-negative integer i is made of two codes:

• the unary coding of bi/lc,

• the Huffman coding of i mod l.

30 CHAPTER 1. CODING

e probability distribution needed to perform the second part of the encoding is:

P (i mod l) =
(1− θ)θi

1− θl
.

Note that this distribution is quite flat with respect to the original one. For that reason,
the length of the optimal coding are almost constant for the Huffman part. Precisely,
the length of the coding of 0 ≤ i < l is blog2 lc (if i < 2blog2 l+1c − l) or blog2 lc+ 1
(otherwise). In particular, if l is a power of two, we have 2blog2 l+1c− l = l is therefore
every 0 ≤ i < l is coded with the same length of log2 l.

Rice Coding

Rice coding (orGolomb-Power-Of-Two (GPO2) coding) uses this remark to simplify
the coding at the price of a usually negligible suboptimality: instead of the “true”
integer l, solution of (1.42), we select an approximation of it l′ = 2n that is a power
of two, then perform the coding using this value instead of l. As a consequence, the
Huffman coding of the second part is replaced by a fixed-length encoding of an integer
on n bits.

e remaining issue is to determine a good selection of the Golomb parameter
n ; this issue is described in details in [Kie04]. Initially, we need an estimate of θ –
that is a priori unknown – from experimental data; we can usually derive it from the
mean m f the available values : as the expectation of a one-sided geometric random
variable with parameter θ has an expectation of θ/(1− θ), it makes sense to select

θ =
m

1 +m
(1.43)

Given the golden ratio

φ =
1 +

√
5

2
, (1.44)

we select as the number of bits dedicated to the fixed-length coding the value:

n = max
[
0, 1 +

⌊
log2

(
log(φ− 1)

log θ

)⌋]
. (1.45)

Implementation

We begin with the definition of a rice class that holds the parameters of a given Rice
encoding and also provide a method for the selection of the optimal parameter. e
use of this method is optional: given that Rice coding is very oen applied to distri-
butions of integers that are not geometric, there is no guarantee in general that the
Golomb parameter of this method will be the most efficient selection.

e parameter n in the rice constructor is the Golomb parameter. e optional
signed option may be used to enable the coding of negative integers.

class rice(object):
def __init__(self, n, signed=False):

self.n = n
self.signed = signed

@staticmethod
def select_parameter(mean):

golden_ratio = 0.5 * (1.0 + numpy.sqrt(5))

1.2. INFORMATION THEORY AND VARIABLE-LENGTH CODES 31

theta = mean / (mean + 1.0)
log_ratio = log(golden_ratio - 1.0) / log(theta))
return int(maximum(0, 1 + floor(log2(log_ratio))))

e following encoder and decoder implementations demonstrate how we deal
with signed values: by prefixing the code stream with a bit sign (0 for +, 1 for −)
before we encode the absolute value of the integer. More complex schemes – that in-
tertwin negative and positive values – are possible and may be useful to deal with
two-sided geometric distribution that are not centered around 0 (see for example
[MSW00]). We then encode the fixed-length part of the code and follow with the
unary code.

In the following code, options is meant to be an instance of the rice class, stream is
an instance of BitStream and symbol an integer.

def rice_symbol_encoder(options):
def encoder(stream, symbol):

if options.signed:
stream.write(symbol < 0)

symbol = abs(symbol)
remain, fixed = divmod(symbol, 2 ** options.n)
fixed_bits = []
for _ in range(options.n):

fixed_bits.insert(0, bool(fixed % 2))
fixed = fixed >> 1

stream.write(fixed_bits)
stream.write(remain, unary)

return encoder

def rice_symbol_decoder(options):
def decoder(stream):

if options.signed and stream.read(bool):
sign = -1

else:
sign = 1

fixed_number = 0
for _ in range(options.n):

fixed_number = (fixed_number << 1) + int(stream.read(bool))
remain_number = 2 ** options.n * stream.read(unary)
return sign * (fixed_number + remain_number)

return decoder

Finally, the rice class, its encoder and decoder are registered for integration with the
BitStream instances.

rice_encoder = lambda r: stream_encoder(rice_symbol_encoder(r))
rice_decoder = lambda r: stream_decoder(rice_symbol_decoder(r))
bitstream.register(rice, reader=rice_decoder, writer=rice_encoder)

e following P session demonstrates the basic usage:

>>> data = [0, 8, 0, 8, 16, 0, 32, 0, 16, 8, 0, 8]
>>> rice.select_parameter(mean(data))
3
>>> stream = BitStream()
>>> stream.write(data, rice(3))
>>> stream
000000010000000010000110000000011110000000011000010000000010
>>> stream.read(rice(3), 12)
[0, 8, 0, 8, 16, 0, 32, 0, 16, 8, 0, 8]

On this particular data, the selection of the Golomb parameter was effective if we
consider the following test of possible parameter values between 0 (unary coding)
and 6.

32 CHAPTER 1. CODING

>>> for i in range(7):
... stream = BitStream(data, rice(i))
... print ”rice n={0}: {1} bits”.format(i, len(stream))
...
rice n=0: 108 bits
rice n=1: 72 bits
rice n=2: 60 bits
rice n=3: 60 bits
rice n=4: 64 bits
rice n=5: 73 bits
rice n=6: 84 bits

Chapter 2

antization

antization is a process that maps a continous or discrete set of values into approxi-
mations that belong to a smaller set. antization is a lossy: some information about
the original data is lost in the process. e key to a successful quantization is there-
fore the selection of an error criterion – such as entropy and signal-to-noise ratio –
and the development of optimal quantizers for this criterion.

2.1 Principles of Scalar antization

−1

0

1
original number x

quantized number [x]

Figure 2.1: quantization of a time-varying value by a 4-bit midtread uniform quanti-
zation on [-1.0, 1.0]

2.1.1 antizers

A scalar quantizer [·] is an idempotent mapping from R to a countable subset of R:

|{[x] , x ∈ R}| ≤ |N| and ∀x ∈ R, [[x]] = [x] (2.1)

is definition should be taken with a grain of salt as variants of the real line are
oen used, including the extended real line R∪{−∞,+∞}, the real line with signed

33

34 CHAPTER 2. QUANTIZATION

zeros R ∪ {0−, 0+}, the real line plus the undefined symbol ⊥, or a combination
thereof.

e countability assumption is what makes the quantizer useful as an aempt to
approximate a continous value by a discrete set that can be encoded as an integer.
A quantizer is meant to be split into a forward and inverse quantizer: the forward
quantizer builds from x an integer code that refers to [x] without ambiguity and the
inverse quantizer builds the approximation [x] back from the code.

Formally, a forward quantizer for [·] is a mapping i[·] : R → Z such that [x] = [y]
implies i[x] = i[y]. Because of this property, i[·] may be factored into i[·] = i ◦ [·]
where i : ran [·] → Z. e notation for the forward quantizer is therefore consistent
with the use as f [x] as a shortcut for f([x]). e associated inverse quantizer, denoted
i−1, is a le inverse of i: a mapping whose domain is a subset of Z that contains ran i
and such that

∀x ∈ R, (i−1 ◦ i)[x] = [x] (2.2)

e first step of this quantizer composition partitions the real line into the family of
sets (In)n with

In = {x ∈ R, i[x] = n}, n ∈ ran i

e second step associates to any set into this partition a unique representative ele-
ment. In every practical case we will encounter, the sets In are – possibly unbounded
– intervals, either open, half-open or closed. In this context, we associate to x the
decision values [x]− and [x]+ to be

[x]− = inf {y ∈ R, [x] = [y]} and [x]+ = sup {y ∈ R, [x] = [y]} (2.3)

and the step of the quantization at point x is

∆(x) = [x]+ − [x]− (2.4)

E - integer rounding. e floor function b · c is a scalar quantizer that maps
a real number to the largest previous integer:

∀x ∈ R, bxc ∈ Z and bxc ≤ x < bxc+ 1 (2.5)

A natural forward quantizer for b · c is … itself ! e identity n 7→ n is the corre-
sponding inverse mapping. is quantizer partitions the real-line into the half-open
intervals In = [n, n+ 1) for any i ∈ Z.

e floor function of NP is an finite-precision implementation of this func-
tion. Its argument and return value are (arrays o) 64-bits floating-point numbers.

To obtain a (forward) quantizer with a finite range indexable on 32 bits, we may
modify the initial quantizer specification so that the data outside of the range [−231, 231−
1] – the range of 32-bit signed integers – is clipped:

bxc32 =

∣∣∣∣∣∣
−231 if x ≤ −231

231 − 1 if x ≥ 231 − 1
bxc otherwise.

Given thosemodifications, a suitable finite implementation of the forward and inverse
quantizers is the following code/decode pair:

2.1. PRINCIPLES OF SCALAR QUANTIZATION 35

from numpy import *

def encode(x):
n = floor(x)
n = clip(n, -2**31, 2**31 - 1)
return int32(n)

def decode(n):
return float64(n)

def quantize(x):
return decode(encode(x))

e step function ∆ of this quantization is defined by:

∆(x) =

∣∣∣∣∣∣
+∞ if x < −231 + 1

1 if − 231 + 1 ≤ x < 231 − 1
+∞ if 231 − 1 ≤ x

Other rounding functions may serve as the basis for similar schemes: the ceiling
function d·e (NP function ceil) defined by:

∀x ∈ R, dxe ∈ Z and dxe − 1 < x ≤ dxe (2.6)

Instead of selecting the lower or upper integer approximation of xwe may also select
the nearest:

∀x ∈ R, |x− [x]| = min {|x− n|, n ∈ Z} (2.7)

e value [x] is not defined by this relation when x = n + 1/2, n being an integer.
e NP function round rounds for example such real number to the nearest even
integer.

is example suggests a general interface for quantizers. Such objects would pro-
vide an encode method for the forward quantization, a decode method for the inverse
quantization and would be callable so that quantizer(x) would apply both steps to
the data x. Such objects could inherit the following Quantizer base class:

class Quantizer(object):
”Quantizers Base Class.”
def encode(self, data):

raise NotImplementedError(”undefined forward quantizer”)

def decode(self, data):
raise NotImplementedError(”undefined inverse quantizer”)

def __call__(self, data):
return self.decode(self.encode(data))

We can then rewrite the above integer approximation quantizer as:

class RoundingQuantizer(Quantizer):
def __init__(self, rounding=floor, integer_type=int32):

self.rounding = rounding
self.integer_type

def encode(self, x):
x = array(x)
n = self.rounding(x)
n = clip(n, -2**31, 2**31 - 1)
return n.astype(self.integer_type)

36 CHAPTER 2. QUANTIZATION

def decode(self, n):
n = array(n)
return n.astype(float64)

rounding_quantizer = RoundingQuantizer()

Note that this version of the quantizer is also vectorized: several values grouped
in a NP array may be used as arguments to encode and decode. is is an implicit
requirement that we expect all quantizer classes to follow for convenience.

2.1.2 Uniform antization

A quantizer is uniform in an interval with lower bound a and higher bound b if its
step function is constant in the interval. e size of the step is then directly connected
to the width of the interval and the number N of distinct values of [x] by

∆(x) =
b− a

N
(2.8)

e final option that characterizes the quantizer is the choice of the base rounding
function. A reference implementation is then given by:

class Uniform(Quantizer):
def __init__(self, low=0.0, high=1.0, N=2**8, rounding=round_):

self.low = float(low)
self.high = float(high)
self.N = N
self.delta = (high - low) / self.N
self.rounding = rounding

def encode(self, data):
low, high, delta = self.low, self.high, self.delta
data = clip(data, low + delta/2.0, high - delta/2)
flints = self.rounding((data - low) / delta - 0.5)
return array(flints, dtype=long)

def decode(self, i):
return self.low + (i + 0.5) * self.delta

Note that if the default value of N is selected – or more generally any even value
– [0] 6= 0: the approximation error for 0 is not zero. When this property may be an
issues, odd values of N may be selected – for example 28 − 1 so that 0 is correctly ap-
proximated ; such a quantizer is called amidtread quantizer – opposed to the original
midrise quantizer.

2.1.3 antization of Random Variables

Consider a random variable X with values x ∈ R and a density of probability p(x).
For any [x], we may cosdider the event [X] = [x] whose probability is given by

P ([X] = [x]) =

∫
{y∈R, [y]=[x]}

p(y) dy =

∫ [x]+

[x]−
p(y) dy (2.9)

If the density p is constant on every interval associated to the quantization, this equa-
tion may be simplified into:

P ([X] = [x]) = p(x)×∆(x) (2.10)

2.1. PRINCIPLES OF SCALAR QUANTIZATION 37

0.00 0.25 0.50 0.75 1.00

0

4

8

12

16

x

i[x]

0 4 8 12 16

0.00

0.25

0.50

0.75

1.00

0+

i−1(n)

n

Figure 2.2: a 4-bit uniform quantizer on (0, 1): forward quantization on the le, in-
verse quantization on the right.

More generally, if the quantizer values [x] are dense enough – we say that the high
resolution assumption is satisfied – then this relation holds approximately

e entropy aached to this collection of events is maximal when every event is
equally likely, that is, under this approximation, when the step ∆(x) is proportional
to the inverse of p(x)

∆(x) ∝ 1

p(x)
(2.11)

2.1.4 Implementation of Non-Uniform antizers

Non-uniform quantizers may be – at least conceptually – simply generated from uni-
form quantizers and non-linear transformations. If [·] denotes a uniform quantizer
and f is an increasing mapping, the function [·]f defined by the equation

[x]f = (f−1 ◦ [·] ◦ f)(x) (2.12)

and displayed in figure 2.3 is a nonlinear quantizer. e function f is called the ar-
acteristic function of the quantizer. Depending on the selected range for the uniform
quantizer, it is determined up to an affine transformation. Note that if f is linear or

Figure 2.3: nonlinear quantizer implementation.

affine, that is f(x) = ax+ b, the quantizer [·]f is still uniform – that’s a reason why
uniform quantizers are sometimes called linear quantizers.

Let ∆ be the step of the uniform quantizer et let’s determine what quantization
step ∆f (x) is aached to this scheme. For every value of x, the decision values at-

38 CHAPTER 2. QUANTIZATION

tached to y = f(x) by the uniform quantizer are [y]− and [y]+. Hence, the decision
values for x and the non-linear quantization are

[x]−f = f−1([y]−) et [x]+f = f−1([y]+)

and if the high resolution assumption is satisfied the step ∆f (x) is :

∆f (x) = f−1([y]− +∆)− f−1([y]−) ' (f−1)′(f(x))∆ =
∆

f ′(x)

something that is remembered as

∆f (x) ∝
1

f ′(x)
(2.13)

e proportionaly constant may be easily recovered by noting that when f(x) = x,
[·]f = [·] and therefore ∆(x) = ∆. If we impose moreover f(0) = 0, we find

f(x) ∝
∫ x

0

ds

∆(s)
(2.14)

If the quantizer is to maximize the entropy for the random variable X with density
p(x) we obtain

f(x) ∝
∫ x

0

p(y) dy (2.15)

E. Let’s consider the digital audio signal displayed in figure 2.4.
e uniform quantization on (−1, 1)with step∆ = 10−1 is dense enough so that

the associated histogrammay be considered as a continuous function of the parameter
x. We observe in figure 2.5 that this partition generates – for a large range of values
of x – a counting measure n(x) of a few thousands. e ration n(x)/n where n
is the total number of samples should therefore generate a good approximation of
the density of the signal, considered as a sequence of independent and identically
distributed values.

e logarithm of the histogram is similar to a function of the type −a|x| + b,
a > 0 (cf fig. 2.6). We therefore select p(x) ∝ exp(−a|x|). e optimal quantization
– for the entropy criterion – and the corresponding characteristic function f such
that f(0) = 0 are therefore given by:

∆(x) ∝ ea|x| and f(x) ∝ sgn(x)(1− e−a|x|) (2.16)

2.2 Logarithmic antization

We consider in this section several related quantizers whose characteristic function
is – roughly speaking – the logarithm of their argument.

2.2. LOGARITHMIC QUANTIZATION 39

0 20000 40000 60000 80000 100000 120000 140000 160000
-1.0

-0.5

0.0

0.5

1.0

Figure 2.4: around 20 seconds of audio data (source format: NeXT/Sun .au

−1.0 −0.5 0.0 0.5 1.0
0

5000

10000

15000

20000

25000

30000

Figure 2.5: audio data histogram

2.2.1 e µ-law antizer.

Consider the probability law

p(x) ∝

∣∣∣∣∣∣
1

1 + µ|x|/A
if |x| ≤ A,

0 otherwise.
(2.17)

e threshold A is necessary as otherwise the right-hand side of the equation would
not be summable. e parameter a controls directly the relative probability of low
and high amplitude values as p(±A)/p(0) = 1/(1 + µ). In the limit case µ = 0, we
end up with a uniform probability distribution on [−A,A].

e optimal quantizer for the entropy criterion satisfies (2.15) and therefore the
characteristic function f such that f(0) = 0 satisfies

f(x) ∝ sgn(x) ln
(
1 + µ

x

A

)
. (2.18)

If we limit the range of the quantizer to [−1, 1] (we set A = 1) and enforce the con-

40 CHAPTER 2. QUANTIZATION

−1.0 −0.5 0.0 0.5 1.0
10−1

100

101

102

103

104

105

Figure 2.6: Log plot of the audio data histogram

straint f([−1, 1]) = [−1, 1], we end up with

f(x) = sgn(x)
log (1 + µ|x|)
log(1 + µ)

(2.19)

is quantization scheme is called µ-law and is for example used in the NXT/S
AU audio file format (files with extension .au or .snd). e actual implementation of
the law, specified in the ITU-T G.711 standard – differs slightly from the theoretical
formulas. A reference implementation is given in the code below:

class MuLaw(Quantizer):
”””
Mu-law quantizer
”””
scale = 32768
iscale = 1.0 / scale
bias = 132
clip = 32635
etab = array([0, 132, 396, 924, 1980, 4092, 8316, 16764])

@staticmethod
def sign(data):

”””
Sign function such that sign(+0) = 1 and sign(-0) = -1
”””
data = array(data, dtype=float)
s = numpy_sign(data)
i = where(s==0)[0]
s[i] = numpy_sign(1.0 / data[i])
return s

def encode(self, data):
data = array(data)
s = MuLaw.scale * data
s = minimum(abs(s), MuLaw.clip)
[f,e] = frexp(s + MuLaw.bias)

step = floor(32*f) - 16 # 4 bits
chord = e - 8 # 3 bits
sgn = (MuLaw.sign(data) == 1) # 1 bit

mu = 16 * chord + step # 7-bit coding

2.2. LOGARITHMIC QUANTIZATION 41

mu = 127 - mu # bits inversion
mu = 128 * sgn + mu # final 8-bit coding

return array(mu, dtype=uint8)

def decode(self, i):
i = array(i)
i = 255 - i
sgn = i > 127
e = array(floor(i / 16.0) - 8 * sgn + 1, dtype=uint8)
f = i % 16
data = ldexp(f, e + 2)
e = MuLaw.etab[e-1]
data = MuLaw.iscale * (1 - 2 * sgn) * (e + data)

return data

mulaw = MuLaw()

Note that this code is applied to values between −1 and 1 and uses 8 bits. e most
significant bit encodes the sign; the amplitude of the signal is coded by the 7 remaining
bits. e effective value of µ is approximately 250 but instead of using the expression
log(1+µ|x|), we prefer a piecewise affine approximation of it (see fig 2.7). e values
[x] are then all multiples of 2−13 which limits the additional quantization error when
the original signal is initially encoded with a uniform law using 14 bits or more. To
ease the error correction when transmied the bits other than the sign bit are finally
inverted.

0 32 64 96 128 160 192 224 256
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.7: µ-law forward quantizer

2.2.2 IEEE754 Floating-Point Numbers and A-law

All scientific computing applications use implicitely a quantizer: the quantizer that
represents approximation of real numbers in the floating-point arithmetic. e de-

42 CHAPTER 2. QUANTIZATION

0.00 0.01 0.02 0.03 0.04 0.05
192

200

208

216

224

232

240

248

256

Figure 2.8: µ-law inverse quantizer (partial view)

scription of two types of numbers – single and double (or rather, single and double-
precision numbers) – is detailled in the IEEE 754 standard. In both cases, 1 bit is
allocated to code the sign of the number, m bits for the exponent part and n bits for
the fraction part,

s ∈ {0, 1}, e ∈ {0, · · · , 2m − 1}, f ∈ {0, · · · , 2n − 1} (2.20)

consequently any real number is represented by an integer in {0, · · · , 2m+n+1} ac-
cording to:

n = s× 2m+n + e× 2n + f ∈ {0, · · · , 2m+n+1} (2.21)

e single type is defined by (m,n) = (8, 23) and the double type by (m,n) = (11, 52)
; they are respectively coded on 32 and 64 bits.

We define
e0 = 2m−1 − 1 (2.22)

so that the value of the actual exponent e − e0 range (almost symmetrically) from
2m−1 to −2m−1 + 1. e inverse quantizer aached to the standard floating point
number representation is defined as follows: for an integer n, [x] = i−1(n) is given
by

[x] =

∣∣∣∣∣∣∣∣
NaN if e = 2m − 1 and f 6= 0

(−1)s∞ if e = 2m − 1 and f = 0
(−1)s(1 + f/2n)× 2e−e0 if 0 < e < 2m − 1

(−1)s(f/2n)× 21−e0 if e = 0

(2.23)

e structure of theses inverse quantizers are displayed in the figure 2.2.2; they
are piecewise affine approximation of an exponential with a base of 2, except in the
range e = 0 (the so-called denormalized numbers) where the graph is linear.

e A-law is a variant of the µ-law that has a structure similar the single and
double types of floating point arithmetic but with a base different from 2. Given a
value of A (oen 87.7), the inverse of its characteristic function is defined on [−1, 1]
by

f−1(x) = sgn(x)×
∣∣∣∣ (1 + lnA)|x|/A if |x| < 1

1+lnA
exp(x(1 + lnA)− 1)/A otherwise.

(2.24)

2.3. SIGNAL-TO-NOISE RATIO 43

0 112 128 240 256

−16

0

16

0+

+∞

⊥
0−

−∞

⊥

Figure 2.9: graph of the inverse quantizer for a floating point representation such that
(m,n) = (4, 3).

2.3 Signal-to-Noise Ratio

Computation of the signal-to-noise ratio. For a given sequence of k values xn, the
output [xn] of a quantizer may be interpreted as the sum of the original value and a
perturbation sequence bn = [xn]−xn called a noise. e square of the signal-to-noise
ratio – or SNR – is simply the ratio between the energies of those two values:

SNR2 =

E

(
k−1∑
n=0

x2n

)

E

(
k−1∑
n=0

b2n

) (2.25)

e SNR is oen measured in decibels (dB):

SNR [dB] = 20 log10 SNR = 10 log10 SNR2 (2.26)

When the values xn are independent and follow the same probability law p(x),
this energy is given by

E

(
p−1∑
n=0

x2n

)
= kE

(
x2n
)
= k

∫ +∞

−∞
x2p(x) dx

44 CHAPTER 2. QUANTIZATION

and under a high resolution assumption we have

E(b2n) =

∫ +∞

−∞
([x]− x)2p(x) dx

=
∑
y

∫ y+∆(y)

y

([x]− x)2p(x) dx

'
∑
y

p(y)

∫ y+∆(y)

y

(y +∆(y)/2− x)2 dx

=
∑
y

p(y)
∆(y)3

12

'
∑
y

∫ y+∆(y)

y

∆(x)2

12
p(x) dx

=

∫ +∞

−∞

∆(x)2

12
p(x) dx

=
1

12
E
(
∆(xn)

2
)

Finally

SNR2 = 12
E(x2n)

E(∆(xn)2)
= 12

∫
R
x2p(x) dx∫

R
∆(x)2p(x) dx

(2.27)

In the typical case where the probability density of the signal is uniform on [−A,A]
and the quantization is uniform on this range with a step ∆, we end up with

SNR = 2A/∆ (2.28)

Maximization of the SNR. For a given density of probability, how can we select the
quantization scheme so that the SNR is maximal ? Formulated like that, this problem
is not well-posed because the quantization noise may be made a small as possible with
a decrease of the quantization step. e significant problem is to solve this problem
under a constant bit budget. Without any loss of generality, we may assume that
the signal has values in [−1, 1] and that the characteristic function of the searched
quantization satisfies f([−1, 1]) = [−1, 1]. If we allocate N bits to the quantization
scheme, the step ∆(x) is determined by

∆(x) =
2−N+1

f ′(x)

e SNR then takes the form
SNR = κ2N

where the value of κ depend only from the probability law of the signal and of the
choice of f . In decibels, this equation is wrien as

SNR [dB] ' 6.02×N + κ′ (2.29)

2.3. SIGNAL-TO-NOISE RATIO 45

that is, every extra bit increase the SNR by approximately 6 dB. To maximize the SNR,
we then have to solve

min
f ′

∫ 1

−1

1

f ′(x)2
p(x) dx subject to f(1)− f(−1) = 2

or even, with ψ = f ′

min
ψ
J(ψ) =

∫ 1

−1

1

ψ(x)2
p(x) dx with K(ψ) =

∫ 1

−1

ψ(x) dx = 2

At the optimum, there is a λ ∈ R such that the langrangian L(ψ) = J(ψ) + λK(ψ)
satisfies dL(ψ) = 0, that is

for all δψ : [−1, 1] → R,
∫ 1

−1

(
− 2

ψ(x)3
p(x) + λ

)
(δψ)(x) dx = 0

and that implies

− 2

ψ(x)3
p(x) + λ = 0

and hence

f ′(x) ∝ (p(x))
1
3 (2.30)

46 CHAPTER 2. QUANTIZATION

Chapter 3

Linear Prediction

3.1 Prediction Principles
Prediction relies on the signal past and current values to estimate its future values.
Such process relies on a given class of models, supposed to rule the behavior of the
signal whose parameters shall be identified. is step being achieved, we may com-
pute the prediction error or residual, the difference between the actual signal values
and the predicted values. In the context of data compression, and if the model used for
prediction is accurate, the prediction error has a much smaller range than the original
values and therefore may be coded more efficiently.

3.1.1 Polynomial Prediction

Polynomial prediction is one of the simplest fixed-parameter prediction schemes. Given
m sample values x0, x1, · · · , xm−1, we identify the unique polynomial P of order at
mostm− 1 such that

∀n ∈ {0, 1, · · · ,m− 1}, P (n) = xn

and with it, provide a prediction x̂m for the value xm:

x̂m = P (m)

e polynomial P , given by

P (n) =
m−1∑
n=0

anj
n

is determined by the matrix equality
1 01 02 . . . 0n−1

1 11 12 . . . 1n−1

...
...

... . . .
...

1 (n− 1)1 (n− 1)2 . . . n− 1n−1

a0
a1
...

an−1

 =

x0
x1
...

xn−1

e matrix on the le-hand side is an invertible Vandermonde matrix, therefore the
polynomial coefficients may be obtained from the signal values x0, x1, · · · , xn−1 and
x̂n can be computed.

47

48 CHAPTER 3. LINEAR PREDICTION

e prediction error en = xn− x̂n may be computed efficiently. Consider a signal
xn whose values are stored in the NP array x, and let’s begin with a polynomial
prediction of order 0 or difference coding ; our prediction model is that the signal is
constant. We may compute at once all the prediction errors en = xn − xn−1 for the
signal with

e = diff(x) = [x[1] - x[0], x[2] - x[1], ...]

However, we end up with a vector with only len(x) - 1 values : e0 is undefined and
e[0] would be e1; we would have no information about the first value of the signal
x[0] in e. We therefore add x[0] as the first value of e. is is the same as taking
into account a supposedly zero value x[-1] of the signal, and may by adding 0 to the
beginning of x before applying the difference operator:

e = diff(r_[0, x])

Reconstruction of x from the residual e can be done by computing the cumulative sum
xn =

∑n
i=0 en:

x = cumsum(e)

What about first-order polynomial prediction then ? e formula for x̂n is x̂n =
xn−1 + (xn−1 − xn−2 and the corresponding residual is

en = xn − x̂n = xn − 2xn−1 + xn−2 = (xn − xn−1)− (xn−1 − xn−2).

is residual may therefore by computed as :

e_0 = diff(r_[0, x])
e = diff(r_[0, e_0])

and reconstruction is given as

e_0 = cumsum(e)
x = cumsum(e_0)

is scheme may be generalized to a polynomial prediction of arbitrary order.

3.1.2 Optimal Linear Prediction

Consider the following problem: given a sequence {xn}, get the best linear approxi-
mation x̂n of xn as a linear combinations of them previous samples:

x̂n = a1xn−1 + · · ·+ amxn−m.

Let’s be more precise: if the values x0, x1, · · · , xn−1 are available, we can predict
n−m values and therefore measure the prediction error by the quadratic criterion:

j(a) =

n−1∑
i=m

(xi − a1xi−1 + · · ·+ amxi−m)2 (3.1)

e process that produces the estimates x̂n is known as a Wiener(-Hopf) filter. e
vectors a = (a1, · · · , am) that minimize the quadratic error are therefore solution of

a = argmin
x

‖e‖2, with e = Ax− b (3.2)

3.1. PREDICTION PRINCIPLES 49

where

A =

xm−1 xm−2 . . . x0
xm xm−1 . . . x1
...

...
...

...
xn−2 xn−3 . . . xn−m−1

 and b =

xm
xm+1

...
xn−1

 (3.3)

e analysis of this problem shows that there is a unique solution a = x if A is into
that is if the square matrix AtA is full-rank (m) and the solution is

a = [AtA]−1Atb (3.4)

Indeed, the function j(x) = ‖Ax − b‖2 to minimize is quadratic in x: j : x 7→
1/2xtQx + Lx + c. e Taylor decomposition at the point a yields j(x) = j(a) +
∇j(a)t(x−a)+1/2(x−a)t∇2j(a)(x−a). Any a such that∇j(a) = 0 (here, with the
full rank assumption, there is a unique solution) is a global minimum. A geometrical
analysis would also have worked: a solution a to the minimum problem has to be such
that for any x, the error vector e = b−Aa andAx are orthogonal ; this also yields the
condition (3.4). e same geometrical anaylsis – or a direct computation – yields the
error measure as by the Pythagorean eorem, we have ‖b‖2 = ‖Aa‖2 + ‖Aa− b‖2

‖e‖2 = ‖b‖2 − ‖Aa‖2 (3.5)

e full-rank assumption is not a problem in pratice: it just means that the signal
data is rich enough to discriminate a unique optimal candidate x. If that’s not the
case, instead of [AtA]−1At we could use the pseudo-inverse of A] of A, defined as

A] = lim
ε→0

[AtA+ εI]−1At (3.6)

such that a = A]b provides among the solutions x of the minimisation problem the
one with the smallest norm.

Instead of implementing ourself a solution of the minimization problem, we pro-
vide a reference implementation of the linear prediction problem that uses the NP
function linalg.lstsq that solves this least-square (quadratic) minimization problem:

def lp(signal, m):
”Wiener predictor coefficients”
signal = ravel(signal)
n = len(signal)

A = array([signal[m - arange(1, m + 1) + i] for i in range(n-m)])
b = signal[m:n]
a = linalg.lstsq(A, b)[0]

return a

Estimation of the parameter a as a solution of (3.2 + 3.3) is called the covariance
method. We preseent now a variant of this process, called autocorrelation method,
that is amenable to faster implementations and also has more pleasant properties,
such as the stability of the inverse of error filters (see section (3.1.5)).

Consider the following change: add m zeros at the start of {xn}, add m zeros
at the end, then apply the autocorrelation method. What we are trying to achieve
is to predict ALL the values of xn (even when we don’t have all prior values) and
conversely, for symmetry reasons that will be clearer in a moment, predict the trailing
zeros from significant data as long as there is on usable sample.

50 CHAPTER 3. LINEAR PREDICTION

e implementation of a linear predictor solver that support both methods is sim-
ple:

def lp(signal, m, zero_padding=False):
”Wiener predictor coefficients”
signal = ravel(signal)
if zero_padding: # select autocorrelation method instead of covariance

signal = r_[zeros(m), signal, zeros(m)]
n = len(signal)

A = array([signal[m - arange(1, m + 1) + i] for i in range(n-m)])
b = signal[m:n]
a = linalg.lstsq(A, b)[0]

return a

Note that in the covariance methods, the new A and b are:

A =

0 0 . . . 0 0
x0 0 . . . 0 0
x1 x0 . . . 0 0
...

...
...

...
...

xn−2 xn−m−1

xn−1 xn−m
...

...
...

...
...

0 xn−1 xn−2

0 0 xn−1

and b =

x0
x1
x2
...

xn−1

0
...
0
0

(3.7)

Set xi = 0 if i < 0 or i ≥ n and

cj =

+∞∑
i=−∞

xixi−j (3.8)

We now have

C(m) = AtA =

c0 c1 c2 . . . cm−1

c1 c0 c1 . . . cm−2

...
...

...
...

...
cm−1 cm−2 . . . c1 c0

 and Atb =

c1
c2
...
cm

 (3.9)

e correlationmatrixC(m) = AtA is is now symmetric but alsoToeplitz (or diagonal-
constant) and therefore efficient algorithms to solve the least-square problem exist.
Note also that we could add MORE zeros before or aer the data and that it wouldn’t
change a thing: A and b change but AtA and Atb are the same. In this context, the
set of scalare equations

[AtA]a = Atb (3.10)

are called Wiener-Hopf equatons, Yule-Walker equations or normal equations.
So the autocorrelation method naturally fits into the ”infinite signals” point of

view, strongly related to the convolution operator (see section 4.10). To be more pre-
cise, consider the (causal) signal {xn} defined for ALL n (by seing 0 when not de-
fined) and consider the signal {an} defined in the same way (in particular, a0 = 0).
en, the (possibly) non-zero coeffs of {an} ∗ {xn} and {xn} correspond to the fol-
lowing vectors:

{an} ∗ {xn} → Aa and {xn} → b

3.1. PREDICTION PRINCIPLES 51

so that the minimisation problem we are trying to solve really is:

{an} = argmin ‖{xn} − {hn} ∗ {xn}‖2

among all strictly causal filters hn with hi = 0 if i > m. Or if we introduce the
prediction error filter b0 = 1 and bn = −an,

{rn} = argmin ‖{hn} ∗ {xn}‖2

among causal filters with h0 = 1 and length less or equal to m + 1. is is a causal
deconvolution problem.

Note however, the completion of the signal by 0’s even if the result is questionable:
if the real signal has values outside the window, they are probably not 0. It does not
maer much when the length of the window is big with respect to the prediction
order, but otherwise a the covariance method is probably more accurate.

Additional Properties of the Autocorrelation Method.

Let rn = (1,−a1, · · · ,−am) be the coeffs of the prediction error filter. We are going
to prove that:

c0 c1 c2 . . . cm
c1 c0 c1 . . . cm−1

...
...

...
...

...
cm cm−1 . . . c1 c0

1
−a1
...

−am−1

−am

 =

‖{en}‖2

0
...
0
0

 (3.11)

By the way, that gives us a new way to get the an: get C(m + 1)−1[1, 0, · · · , 0]t
and normalize the result w.r.t. the first coefficient (whose meaning is interesting: the
energy of the residual !). In the sequel, we denote σr = ‖{en}‖.

All the 0 of the equations are a direct consequence ofAAta = Atb. e first coeff
is equal to c0 − [c1, · · · , cm] · a = c0 − (Atb) · a = c0 − b · (Aa) = ‖{xn}‖2 −{xn} ·
({an} ∗ {xn}) = {xn} · {en}. But by the orthogonality condition, this is equal to
{en} · {en} = σ2

r .

Linear Prediction of Unlimited Order - White Noise

Let x0, · · · , xn−1 be a finite sequence of real values. We may extend the definition of
xi for arbitrary values of the index by seing xi = 0 if i does not belong to the original
index range. Nowwemay try to solve the linear prediction problem of unlimited order
by minimizing over all infinite sequences of prediction coefficients ai the quadratic
sum of the prediction error ei:

+∞∑
i=−∞

e2i where ei = xi −
+∞∑
j=1

aixi−j (3.12)

Any solution to this problem satisfies

∀ j > 0,

+∞∑
i=0

eiei−j = 0 (3.13)

52 CHAPTER 3. LINEAR PREDICTION

e prediction error of the unlimited order linear prediction problem is not correlated
at all – it is a white noise.

Proof. Let (x ∗ y)i =
∑+∞
j=−∞ xjyi−j , 〈x, y〉 =

∑+∞
i=−∞ xiyi and ‖x‖ =

√
〈x, x〉.

We denote byL2(Z) the set of infinite sequences x such that ‖x‖ < +∞ and if I ⊂ Z,
by L2(I) the set of sequences x in L2(Z) such that xi = 0 if i 6∈ I . Our minimization
problem may be formalized as

min
a∈A

‖x− a ∗ x‖2 with A = L2(N∗) (3.14)

Let e = x−a∗x be the prediction error ; any solution a is a solution of (3.14) satisfies
∀ δ ∈ L2(N∗), 〈δ ∗ x, e〉 = 0 Let x̄ be the infinite sequence such that x̄i = x−i.
We have 〈δ ∗ x, e〉 = 〈δ, x̄ ∗ e〉 and (x̄ ∗ e)j =

∑+∞
i=−∞ xi−jei. erefore ∀ j >

0,
∑+∞
i=−∞ xi−jei = 0. As any ei is a linear combination of the previous values of x,

this equality yields

∀ j > 0,
+∞∑
i=0

eiei−j = 0

3.1.3 Finite Impulse Response (FIR) Filters

e Wiener-Hopf prediction that produces the sequence of estimates x̂n from the xn
or error filter that outputs en = xn − x̂n are special cases of finite impulse response
(FIR) filters : they associate to an input sequence un an output sequence yn related
by:

yn = a0un + a1un−1 + · · ·+ aN−1un−N+1 (3.15)

A core, real-time implementation for such system is given by:

class FIR(Filter):
def __call__(self, input):

if shape(input):
inputs = ravel(input)
return array([self(input) for input in inputs])

else:
output = self._a[0] * input + dot(self._a[1:], self.state)
if len(self.state):

self.state = r_[input, self.state[:-1]]
return output

where some features, such as the initialization and changes of a, the management of
the filter state, common between finite impulse response filters and auto-regressive
filters (see section 3.1.4) are implemented in the base class Filter. We talk about a
real-time implementation of a FIR because instances of FIR produce the value yn as
soon as un is available. To do this, they need to store a state that contains at the time
n the N − 1 past values un−1, · · · , un−N+1 of the input.

Consider as an example the 4-point moving average filter:

yn =
1

4
(un + un−1 + un−2 + un−3)

Such a filter may be defined and used by the following code:

3.1. PREDICTION PRINCIPLES 53

>>> ma = FIR([0.25, 0.25, 0.25, 0.25])
>>> ma.state
array([0., 0., 0.])
>>> ma(1.0)
0.25
>>> ma(2.0)
0.75
>>> ma(3.0)
1.5
>>> ma(4.0)
2.5
>>> ma([5.0, 6.0, 7.0, 8.0, 9.0, 10.0])
array([3.5, 4.5, 5.5, 6.5, 7.5, 8.5])
>>> ma.state
array([10., 9., 8.])

Once the filter ma is initialized (by default with a zero state), every call to ma shall give
one or several new input values and as many output values are produced.

Note that if we start with a zero state and input a single non-zero value before
sending a sequence of zeros, the filter will output a finite number of (possibly) non-
zero and will then output only zeros: this is actually a defining property of finite
impulse response filters.

>>> ma.state = [0.0, 0.0, 0.0]
>>> ma([1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
array([0.25, 0.25, 0.25, 0.25, 0. , 0. , 0. , 0. , 0.])

In the context of linear prediction, here is how the prediction coefficients a produced
by lp may be used to build the predictor filters and error filters.

>>> a = lp(x, ...)
>>> predictor = FIR(r_[0.0, a])
>>> error = FIR(r_[1.0, -a])

3.1.4 Auto-Regressive (AR) Filters

Autoregressive (AR) filters are – at least formally – inverses of FIR filters. Consider
the equation of an FIR error filter whose input is xn and output en

en = 1.0 · xn − a1xn−1 − · · · − amxn−m

If this equation holds for every value of n, the inverse system that has en as an input
and xn as an output is ruled by:

xn = a1xn−1 + · · ·+ amxn−m + en

erefore we consider the class of autoregressive systems with inputs un and outputs
yn ruled by

yn = a1yn−1 + · · ·+ aNyn−N + un (3.16)

A core implementation is given as

class AR(Filter):
def __call__(self, input):

if shape(input):
inputs = ravel(input)
return array([self(input) for input in inputs])

else:

54 CHAPTER 3. LINEAR PREDICTION

output = dot(self.a, self.state) + input
self.state[-1] = output
self.state = roll(self.state, 1)
return output

e state of such an AR instance is the sequence of N previous values of yn. e
usage of the class AR is similar to FIR. For example, the filter:

yn = 0.5 · yn−1 + un

may be defined and used by

>>> ar = AR([0.5])
>>> ar.state = [1.0]
>>> ar(0.0)
0.5
>>> ar(0.0)
0.25
>>> ar(0.0)
0.125
>>> ar(0.0)
0.0625
>>> ar([1.0, 1.0, 1.0, 1.0])
array([1.03125 , 1.515625 , 1.7578125 , 1.87890625])
>>> ar.state
array([1.87890625])

3.1.5 Transfer Function, Stability and Frequency Response

Transfer Function

e transfer function of a (linear, time-invariant, single-input single output) system
is a (partial) function H : C → C defined in the following way: given z ∈ C and a
complex-valued input signal un = uzn the corresponding output having the structure
yn = yzn, if it exists, satisfies:

y = H(z)u (3.17)

For example, the FIR filter defined by the equation (3.15) has the transfer function

H(z) = a0 + a1z
−1 + · · ·+ aN−1z

−N+1 (3.18)

and the AR filter defined by the equation (3.16) has the transfer function

H(z) =
1

1− a1z−1 − · · · − aNz−N
(3.19)

Stability

A filter is (input-output) stable if all bounded input signals result in bounded outputs.
Stability of filters whose transfer function is rational – such as FIR and AR filters –
is conditioned by the location of their poles, the roots of their transfer functions.
Precisely, such a filter is stable if and only if all its poles have a negative real part.

e classes FIR and AR have a method that return their poles ; its implementation
is based on the numpy.lib.polynomial roots function that computes the roots of a poly-
nomial.

3.1. PREDICTION PRINCIPLES 55

For FIR filters, the situation is simple: as

H(z) = a0 + a1z
−1 + · · ·+ aN−1z

−N+1 =
a0z

N−1 + a1z
N−2 + · · ·+ aN−1

zN−1
,

all N poles are 0 and therefore all FIR filters are stables.

class FIR(Filter):
....
def poles(self):

return zeros(len(self.a))

For AR filters,

H(z) =
1

1− a1z−1 − · · · − aNz−N
=

zN

zN − a1zN−1 − · · · − aN

and therefore the poles are the solution of the polynomial P (z) = zN − a1z
N−1 −

· · · − aN .

class AR(Filter):
...
def poles(self):

return roots(r_[1.0, -self.a])

As an example, consider the two auto-regressive filters ruled by:

yn = 0.5 · yn−1 − 0.5 · yn−2 + un and yn = yn−1 + yn−2 + yn−3 + yn−4 + un

e first one is stable but the second one is unstable:

>>> ar = AR([0.5, -0.5])
>>> ar.poles()
array([0.25+0.66143783j, 0.25-0.66143783j])
>>> max(abs(pole) for pole in ar.poles())
0.70710678118654757
>>> ar = AR([1.0])
>>> ar = AR([1.0, 1.0, 1.0, 1.0])
>>> ar.poles()
array([1.92756198+0.j , -0.77480411+0.j ,

-0.07637893+0.81470365j, -0.07637893-0.81470365j])
>>> max(abs(pole) for pole in ar.poles())
1.9275619754829254

As a maer of fact, we will deal in the next sections with AR filters that are in-
verses of FIR prediction error filters provided by linear prediction. Such filters are
always stable when the autocorrelation method is used but may be unstable with the
covariance method.

Frequency Response

When a filter is stable, it makes sense to ask what output corresponds to a cosine
input with frequency f , amplitude A and phase φ. If the input sequence is scheduled
to produce a new value every ∆t seconds, we have un = A cos 2πfn∆t + φ and
therefore

un = A/2 · eiφ(ei2πf∆t)n +A/2e−iφ · (e−i2πf∆t)n.
By the definition of the transfer function, we have the corresponding output yn:

yn = A/2 · eiφH(2πf∆t)(ei2πf∆t)n +A/2 · e−iφH(−2πf∆t)(e−i2πf∆t)n

= <
[
H(2πf∆t)Aeiφei2πf∆tn+φ

]

56 CHAPTER 3. LINEAR PREDICTION

So if we consider the polar decomposition

H(2πf∆t)Aeiφ = A′eiφ
′

then the cosine output of the filter is

yn = A′ cos 2πfn∆t+ φ′

e function
f 7→ H(2πf∆t) (3.20)

that relates input and ouput amplitude and phase at the frequency f is called the filter
frequency response. We oen consider separately

|H(2πf∆t)| and ∠H(2πf∆t),

the frequency response gain and phase.
e implementation of transfer functions for FIR and AR filters relies on the com-

putation of signal spectrum or Fourier transform, provided by the function F of the
spectrum module, see section 4.2.2.

from spectrum import F

class FIR(Filter):
...
def __F__(self, **kwargs):

dt = kwargs.get(”dt”) or 1.0
return F(self.a / dt, dt=dt)

class AR(Filter):
...
def __F__(self, **kwargs):

dt = kwargs.get(”dt”) or 1.0
FIR_spectrum = F(FIR(a=r_[1.0, -self.a]), dt=dt)
def AR_spectrum(f):

return 1.0 / FIR_spectrum(f)
return AR_spectrum

e function F is generally used to get the frequential representation of and object,
signal or filter, or something else. Apart from signals, for which we directly compute
the spectrum, the objects are supposed to know what their spectral representation is
and encode this information in the special method __F__ ; for filters, we return the
frequency response. ose methods being defined for FIR and AR filters, we may use
them like that:

>>> ma = FIR([0.5, 0.5])
>>> tf = F(ma, dt=1.0)
>>> tf([0.0, 0.1, 0.2, 0.3, 0.4, 0.5])
array([1.0000000 +0.00000000e+00j, 0.9045085 -2.93892626e-01j,

0.6545085 -4.75528258e-01j, 0.3454915 -4.75528258e-01j,
0.0954915 -2.93892626e-01j, 0.0000000 -6.12303177e-17j])

3.2 Voice Analysis and Synthesis

3.2.1 e TIMIT corpus

e TIMIT corpus is a collection of read speech data that includes for each uerance
16-bit 16 kHz waveforms as well as time-aligned orthographic, phonetic and word

3.2. VOICE ANALYSIS AND SYNTHESIS 57

transcriptions. It was designed – as a joint effort among the Massachuses Institute
of Technology (MIT), SRI International (SRI) and Texas Instruments, Inc. (TI) – for
acoustic-phonetic studies and for the development and evaluation of automatic speech
recognition systems.

0 10000 20000 30000 40000 50000
sample index

0

sh
e

ha
d

yo
ur

da
rk

su
it

in

gr
ea

sy

w
as

h

w
at

er

al
l

ye
ar

Figure 3.1: Waveform of the TIMIT uerance ’dr1-fvmh0/sa1’ and display of its
segmentation into words.

e P library NLTK – for Natural Language Toolkit – is an open source
collection of modules that provides linguistic data and documentation for research
and development in natural language processing and text analytics (http://www.nltk.
org/). As a part of the distribution, is a small sample of the TIMIT corpus is made
available.

e samples fromTIMIT are designated by idswhose list is given by the utteranceids
method:

>>> import nltk
>>> timit = nltk.corpus.timit
>>> timit.utteranceids()
[’dr1-fvmh0/sa1’, ’dr1-fvmh0/sa2’, ’dr1-fvmh0/si1466’, ’dr1-fvmh0/si2096’,
...
’dr8-mbcg0/sx237’, ’dr8-mbcg0/sx327’, ’dr8-mbcg0/sx417’, ’dr8-mbcg0/sx57’]
>>> uid = timit.utteranceids()[0]
’dr1-fvmh0/sa1’

e corpus provides a detailled decomposition of the uerances in words as well as
phones1 – speech segments that have distinct properties. ose decompositions are
timed, the numbers being sample indices.

>>> timit.words(uid)
[’she’, ’had’, ’your’, ’dark’, ’suit’, ’in’, ’greasy’, ’wash’, ’water’, ’all’, ’year’]
>>> timit.word_times(uid)
[(’she’, 7812, 10610), (’had’, 10610, 14496), (’your’, 14496, 15791),
(’dark’, 15791, 20720), (’suit’, 20720, 25647), (’in’, 25647, 26906),
(’greasy’, 26906, 32668), (’wash’, 32668, 37890), (’water’, 38531, 42417),
(’all’, 43091, 46052), (’year’, 46052, 50522)]
>>> timit.transcription_dict()[”she”]
[’sh’, ’iy1’]
>>> timit.phones(uid)
[’h#’, ’sh’, ’iy’, ’hv’, ’ae’, ’dcl’, ’y’, ’ix’, ’dcl’, ’d’, ’aa’, ’kcl’, ’s’,

1not to be confused with phonemes, set of phones that are cognitively equivalent (http://en.wikipedia.
org/wiki/Phoneme).

http://www.nltk.org/
http://www.nltk.org/
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Phoneme

58 CHAPTER 3. LINEAR PREDICTION

’ux’, ’tcl’, ’en’, ’gcl’, ’g’, ’r’, ’iy’, ’s’, ’iy’, ’w’, ’aa’, ’sh’, ’epi’,
’w’, ’aa’, ’dx’, ’ax’, ’q’, ’ao’, ’l’, ’y’, ’ih’, ’ax’, ’h#’]
>>> timit.phone_times(uid)
[(’h#’, 0, 7812), (’sh’, 7812, 9507), (’iy’, 9507, 10610), (’hv’, 10610, 11697),
...
(’ih’, 47848, 49561), (’ax’, 49561, 50522), (’h#’, 50522, 54682)]

e audiodata method, combined with the bitstream module, provide the waveform as
a single-dimensional NP array data:

>>> str_data = timit.audiodata(uid)
>>> data = BitStream(str_data).read(int16, inf).newbyteorder()

3.2.2 Voice Analysis and Compression

eknowledge that the audio data that we are willing to compress is a voice signal can
go a long way in the reduction of bit rate. Consider for example the G.711 PCM speech
codec: defined in 1972, it is based on a 8 kHz sampling time and a quite generic method
of non-linear quantization (8-bit µ-law orA-law). It achieves a data rate of 64 kb/s. A
more specific technology developed in the early 90’s, and based on linear prediction,
the full-rate GSM, has a 13 kbps bit rate. More recent efforts in this direction have
achieved a quality similar to the G.711 codec at 6.4 kbps, or with a lesser quality go
as low 2.4 kbps (see [HSW01]).

In the sequel, we’ll assume that the data we consider is sampled at 8 khz ; this is a
standard assumption in fixed telephony that takes into account the fact thatmost voice
audio content is in the 300-3400 Hz band. Applications that require more accurate
descriptions of voice data may use wideband and use a 16 kHz sampling instead for
a higher accuracy – all the audio data in the TIMIT data base uses this sampling
frequency for example.

Short-Term Prediction

Beyond the selection of an appropriate sampling rate, the key to achieve significant
compression rate is to recognize that voice has a local – say on a 20 ms frame –
stationary structure that can therefore be described by a small numbers of parameters.
is property is clearly visible in the figure 3.2.

e figure 3.3 displays two 20-ms voice fragments sampled at 8 kHz and the cor-
responding residuals aer a prediction of order . e first one clearly has achived its
goal: the residual appears to be le without structure and is a good approximation
of a white noise. For those kind of data, the short-term prediction provides a simple
production model: an AR synthesis filter whose input is a white noise. For the second
type of signals, for which the residual is clearly not random, we need a more com-
plex production model that complements the short-term prediction with a long term
prediction (see sections 3.2.2 and 3.2.2).

Spectral Analysis

e spectrum of a voice segment x(t) may be estimated classically, with the formula

x(f) = ∆t
∑
t∈Z∆t

x(t) exp(−i2πft),

3.2. VOICE ANALYSIS AND SYNTHESIS 59

0 5000 10000 15000 20000
sample index

-0.4

-0.2

0.0

0.2

0.4

sa
m

pl
e

va
lu

e
in

[−
1
,+

1
]

2500 3000 3500 4000 4500 5000

sample index

−0.4

−0.2

0.0

0.2

0.4

sa
m

pl
e

va
lu

e
in

[−
1
,+

1
]

4400 4420 4440 4460 4480 4500 4520 4540

sample index

−0.4

−0.2

0.0

0.2

0.4

sa
m

pl
e

va
lu

e
in

[−
1
,+

1
]

Figure 3.2: Voice patterns. A voice signal sampled at 8 kHz displays complex and
non-stationary paerns on a scale of 2.5 s (top). When we zoom to a 300 ms scale
(middle), and then further to a 20 ms scale (boom), we see that locally, the signal
appears to be almost periodic.

but there is another way: if we have performed a successful predicton of the data
that leads to a synthesis filter with frequency response 1

1−A(f) , the prediction error
should be almost white and its spectrum e(f) should be approximately constant. As
the signal data x(t) is related to e(t) by

x(f) =
1

1−A(f)
e(f),

60 CHAPTER 3. LINEAR PREDICTION

0 20 40 60 80 100 120 140

sample index

−0.2

−0.1

0.0

0.1

0.2

sa
m

pl
e

va
lu

e

0 20 40 60 80 100 120 140
sample index

-0.2

-0.1

0.0

0.1

0.2

sa
m

pl
e

va
lu

e

Figure 3.3: short-term prediction error. top: a frame of 160 samples within a 8 kHz
signal (grey) and the corresponding prediction error (black) for a linear prediction of
order 16 (covariance method). e residual show lile remaining structure. boom:
the prediction error (black) of the voice signal (grey) still exhibits a periodic structure,
made of regularly spaced spikes, characteristic of voiced segments.

the frequency response of the synthesis filter provides a (parametric) estimate of the
signal spectrum. Both kind of methods are illustrated in figure 3.2.2.

Models of the Vocal Tract

Continuous Modelling. A simple model of vocal tract is the horn: a tube whose
cross-sectional area A is a function of the position x in the tube. Let φ denote the air
flow, positive by convention if the are travel towards the right, p the pressure, ρ the
air density andK its bulk modulus. Newton’s second law of motion yields

d

dt
ρφ = −dpA

dx
.

We approximate this equation by:

ρ
∂φ

∂t
= −A∂p

∂x
(3.21)

On the other hand, as the bulk modulus relates changes in the pressure p and in the
volume byKdv + vdp = 0, we also have

K
∂φ

∂x
= −A∂p

∂t
(3.22)

3.2. VOICE ANALYSIS AND SYNTHESIS 61

0 500 1000 1500 2000 2500 3000 3500 4000

frequency f (Hz)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

sp
ec

tr
um

am
pl

it
ud

e

Figure 3.4: Spectral View. spectrum of the signal of the figure 3.3, estimated by non-
parametric () method and by the frequency response of the synthesis filter. e
spectrum of the prediction error is also displayed.

Figure 3.5: the vocal tract: horn model.

e combination of equations (3.21) and (3.22) yield Webster’s Equation

1

c2
∂2p

∂t2
− 1

A

dA

dx

∂p

∂x
− ∂2p

∂x2
= 0 (3.23)

where c, the wave velocity in the media is given by:

c =

√
K

ρ
(3.24)

Discrete Modelling. An common simplification of the horn model is to trade the
continuous change in the cross-sectional areaA(x) for a tube made of a finite number
of cylindrical sections of equal length L whose cross-sectional area Ak is a function
of the section index k. Consider the pressure pk in the section k as the superposition
of right and le-travelling waves pk(t, x) = p+k (x − ct) − p−k (x + ct). Stating that
the pressure is continuous at the section boundary x leads to the system of equations

p+k+1(x− ct) = (1− r+k)p
+
k (x− ct) + r−k+1p

−
k+1(x+ ct)

p−k (x+ ct) = (1− r−k+1)p
−
k+1(x+ ct) + r+k p

+
k (x− ct)

(3.25)

62 CHAPTER 3. LINEAR PREDICTION

Figure 3.6: the vocal tract: discrete tube model.

where r+k and r−k+1 are reflection coefficients. e air flow φk(t, x) = φ+k (x− ct)−
φ−k (x + ct) is also continuous at the section boundary. A Fourier decomposition of
the waves and the use of equation (3.21) show that it is related to the pressure by

p±k
φ±k

= ±Zk

where Zk is the impedance, given in each section by

Zk =
cρ

Ak
=

√
Kρ

Ak
(3.26)

e continuity of the air flow at the position x provides for all time the equations

Akp
+
k (x− ct) +Akp

−
k (x+ ct) = Ak+1p

+
k+1(x− ct) +Ak+1p

−
k+1(x+ ct)

which, coupled with the system of equations (3.25) leads to

r+k = −r−k+1 =
Ak+1 −Ak
Ak+1 +Ak

. (3.27)

Ladder and Lattice Filters. In a given tube section, the pressure waves travel un-
changed at the speed c. Given that the tube section is of length L, the time needed
to go from one boundary of the section to the other is L/c. As a consequence, the
transformation between the values of p+ and p− from the le of one section boundary
to the le of the next section boundary on the right may be modelled as the junction
depicted on the le of figure 3.2.2.

Now, if want to follow what happens to the pressure wave p+ travelling to the
right, we may introduce a variable p̃+ that compensates for the delay in the wave
propagation as well as the aenuation (or amplification) at the sections boundary.
We apply the same treatment to p̃− so that

p̃±k+1(t) =
1

1− rk
p±k+1(t+ L/c) (3.28)

Straightforward computations show that the equations satisfied by the corresponding
variables are described by the laice junction depicted on the right of the figure 3.2.2.

3.2. VOICE ANALYSIS AND SYNTHESIS 63

Figure 3.7: Kelly-Lochbaum junction: ladder form (le) and laice form (right)

Lattice Filters in Linear Predictive Coding. When it comes to the implementation
of synthesis filters that model the vocal tract, laice filters – implemented as a serial
connexions of laice junctions – are oen preferred to classic (register-based) imple-
mentations of the autoregressive filters. eir parameters – the reflection coefficients
– are easy to interpret and also, when the synthesis filter is determined by the auto-
correlation method, the Levison-Durbin or Sur algorithm may be used to compute
them directly instead of the linear regression coefficients ai. Moreover, these algo-
rithms are recursive and have a O(m2) complexity where m is the predicton order,
beer than the typical O(m3) of the least-square resolution needed to compute the
ai.

Finally, laice filters are stable as long as the reflexion coefficients are between−1
and 1. As a consequence, we can easily perform a quantization of these coefficients
that will preserve the stability of the synthesis filter. A classic choice is the logarithmic
quantization of the area-ratio Ak+1/Ak , that is, because of the equation (3.27), the
uniform quantization of

LARk = log
1 + r+k
1− r+k

. (3.29)

Pit Analysis

e prediction error of the voice fragment displayed at the boom of figure 3.3 still
displays some structure : a white noise plus a quasi-periodic sequence of impulses.
As the short-term prediction has inverted the vocal tract filter, what we are looking
at is actually the sequence of glottal pulses. e duration between two pulses is
the voice pit period, ts inverse is the speech fundamental frequency. When this
periodic structure is present aer short-term predicton, the speech fragment is said
to be voiced and when it’s not, it is unvoiced.

e simplest kind voiced/unvoiced classifier is based on the autocorrelation of
the short-term prediction error (see for example [Mar72]). In a given data frame, we
select a subframe, typically at the end, and compare it with all the subframes of equal
size within the frame by computing the normalized scalar product between the two
vectors. Values of (themodulus o) the correlation near 1 correspond to two subframes
that are – up to a gain – almost equal.

def ACF(data, frame_length):
frame = data[-frame_length:]
frame = frame / norm(frame)
past_length = len(data) - frame_length
correl = zeros(past_length + 1)
for offset, _ in enumerate(correl):

past_frame = data[past_length-offset:past_length-offset+frame_length]
past_frame = past_frame / norm(past_frame)

64 CHAPTER 3. LINEAR PREDICTION

correl[offset] = dot(past_frame, frame)
return correl

0 20 40 60 80 100 120

offset

0.0

0.5

1.0
co

rr
el

at
io

n

0 20 40 60 80 100 120

offset

0.0

0.5

1.0

co
rr

el
at

io
n

Figure 3.8: normalized autocorrelation of the prediction errors for the speech frag-
ment of figure 3.3 with a reference window of 32 samples. e top graph corresponds
to an unvoiced signal and the boom one to a voiced signal with a pitch period of 36
samples.

ese kind ofmethodwill therefore rely on the selection of autocorrelation thresh-
old to distinguish between voiced and unvoiced signals and localization of autocorre-
lationmaxima to estimate the pitch period. Care must be taken not to select a multiple
of the pitch period instead.

Long-Term Prediction

Given a reference subframe y and a subframe x offseed by the pitch period pwe can
compute the best linear approximation of y in terms of x, that is, the gain k, solution
of k = argminκ ‖y − κx‖2. It is given by

k =
xty

‖x‖2
(3.30)

Once again, what we have done is a prediction, but a long-term prediction, applied
to the residual of the short-term prediction. If xn denotes the error of the short-term
prediction, the error en aer the additional long-term prediction is given by

xn = kxn−p + en (3.31)

3.2. VOICE ANALYSIS AND SYNTHESIS 65

is equation models an auto-regressive synthesis filter whose diagram is given in
figure 3.2.2

Figure 3.9: LTP synthesis filter

3.2.3 Linear Prediction Coding

parameter estimation

stp ltp
Analysis Filter

stpltp
Synthesis Filter

Figure 3.10: LPC analysis and synthesis filters diagram

e use of short-term and long-term linear prediction method may be used in
several ways to compress voice information. e algorithms that follow this path
are generally referred to as Linear Predictive Coding (LPC). “Pure” LPC algorithms
encode the prediction parameters and the residual power but do not keep any extra in-
formation on the prediction residual ; this approach is consistent with the belief that a
good prediction produces a residual which is a white noise. e voice is reconstructed
by the injection of a synthetic white noise into the synthesis filter.

Adaptative Predictive Coding (APC) is also called Residual-Excited Linear Pre-
diction (RELP) : in order to have a reconstructed voice with a higher quality, the
residual information is not discarded but quantized and transmied along with the
prediction parameters.

is kind of approach has amajor drawback: the quantization typically aims at the
minimization of the quantization error of the residual, a quantity that has lile to do
with the error induced on the voice itself. eCode-Excited Linear Prediction (CELP)

66 CHAPTER 3. LINEAR PREDICTION

Analysis power

white
noise Synthesis

Figure 3.11: “Pure” LPC analysis and synthesis diagrams

Analysis

Synthesis

Figure 3.12: APC/REPL analysis and synthesis diagrams

approach solves that issue by discarding the residual entirely and by trying instead
several excitation signals among a finite codebook, apply to them the synthesis filter,
and look for the output that matches the more closely the voice data.

Analysis Synthesis

codebook

match

Synthesiscodebook

Figure 3.13: APC/REPL analysis and synthesis diagrams

Chapter 4

Spectral Methods

In the context of audio signal processing, spectral methods refer to algorithms that
rely on the representation of signals as superposition of sinusoids. Such a decompo-
sition – the spectrum of the signal – is obtained with the Fourier transform ; efficient
computations of the spectrum are possible with the fast Fourier transform algorithms.

Spectral methods are crucial in the study of filters such as the finite impulse re-
sponse filters or autoregressive filters and more generally to understand any transfor-
mation based on a convolution ; they are also key in multirate systems that achieve
compression through data rate reduction.

4.1 Signal, Spectrum, Filters
A discrete-time signal x with sample time ∆t is a function defined on

Z∆t = {k∆t, k ∈ Z}. (4.1)

is definition is nothing but a convenient packaging of the sequence of values (xn),
n ∈ Z, with the sample time ∆t into a unique mathematical object.

We investigate in this section the representation of a discrete-time signal as a su-
perposition of sinusoids. Let’s start the search for such a spectral representation with
a real-valued discrete-time signal x. Given a non-negative frequency f , a sinusoid is
determined uniquely by its amplitude a(f) ≥ 0 and – provided that a(f) 6= 0 – its
phase φ(f) ∈ [−π, π). We therefore search for a pair of functions a and φ – subject
to the above constraints – such that

∀ t ∈ Z∆t, x(t) =
∫ +∞

0

a(f) cos(2πft+ φ(f)) df (4.2)

Alternatively, we may use complex exponentials instead of sinusoids: decompose the
cos in the previous equation and set

x(f) =

∣∣∣∣ 1/2× a(f)eiφ(f) if f ≥ 0
1/2× a(−f)e−iφ(−f) otherwise.

, or equivalently
a(f) = 2|x(f)|
φ(f) = ∠x(f)

e equation (4.2) becomes

x(t) =

∫ +∞

−∞
x(f) exp(i2πft) df (4.3)

67

68 CHAPTER 4. SPECTRAL METHODS

and the only constraint that holds on the complex-valued function x(f), defined for
any real frequency f , is the symmetry constraint

x(−f) = x(f) (4.4)

is relation specifically ensures that the complex exponentials in (4.3) always com-
bine to produce a real-valued signal x(t), so that the values of x(f) for negative fre-
quency hold not extra information and are merely an artifact of the complex expo-
nential representation.

However we can drop this symmetry constraint if we allow complex-valued sig-
nals x(t) in the first place and then these negative frequencies values are no longer
redundant. At the same time, we notice that (4.3) still makes sense if we consider
vector-valued signals x(t) ∈ Cp, so given this higher generality, and also the beer
mathematical tractability of (4.3), we will stick to this formulation of the problem.

At this stage we clearly search for summable functions – that is x(f) ∈ L1(R,Cp)
– so that the right-hand side of the equation makes sense. Still, the problem of finding
a solution x(f) to (4.3) is not well posed: let ∆f be the signal sampling frequency,
defined by

∆f ×∆t = 1. (4.5)

If x(f) is a solution to the equation, so is f 7→ x(f − k∆f) for any k ∈ Z1: the
spectral content of x(t) is only determined up to frequency shis that are multiples
of the sampling frequency∆f . A way to remove this ambiguity in x(f) is to reassign
to any spectral component at the frequency f the smallest frequency f − k∆t that
is the nearest from 0 among any possible values of k ∈ Z – that frequency has to
be in [−∆f/2,+∆f/2]. In other words, for any spectral component of the signal,
we make a low-frequency interpretation. Mathematically, that means that we replace
x(f) with2

x(f) → x′(f) =

∣∣∣∣∣∣
∑
k∈Z

x(f − k/∆t) if f ∈ [−∆f/2,+∆f/2],

0 otherwise.

and therefore if we rename x(f) this particular solution x′(f), we end up with the
search for an integrable function x(f) : [−∆f/2,+∆f/2] → Cp solution of the

1Indeed, we have∫ +∞

−∞
x(f + k∆f) exp(i2πft) df =

∫ +∞

−∞
x(f) exp(i2π(f − k∆f)t) df

=

∫ +∞

−∞
x(f) exp(i2πft) exp(−i2πkt∆f) df

As t = n∆t for a n ∈ Z, exp(−i2πkt∆f) = exp(−i2πkn) = 1 and consequently∫ +∞

−∞
x(f + k∆f) exp(i2πft) df =

∫ +∞

−∞
x(f) exp(i2πft) df

2this is legitimate because for any t ∈ Z∆t

∫ +∞

−∞
x(f) exp(i2πft) df =

∫ +∆f/2

−∆f/2

∑
k∈Z

x(f − k/∆t)

 exp(i2πft) df

4.1. SIGNAL, SPECTRUM, FILTERS 69

0.0000 0.0005 0.0010 0.0015 0.0020
-1

0

1

0.0000 0.0005 0.0010 0.0015 0.0020
-1

0

1

0.0000 0.0005 0.0010 0.0015 0.0020
-1

0

1

Figure 4.1: A signal sampled at 8khz (top) and two valid interpretation of its spectral
content : either a pure 2 kHz sine (mid) or 10 kHz sine (boom).

equation

∀ t ∈ Z∆t, x(t) =
∫ +∆f/2

−∆f/2

x(f) exp(i2πft) df (4.6)

e highest frequency value in the integration interval, ∆f/2 is called the Nyquist
frequency associated to the sample time ∆t.

We notice at this stage that equation (4.6) defines x(n∆t) as the n-th Fourier
coefficient of the Fourier serie associated to x(f). As a consequence, if we make
the assumption that the signal x(t) is of finite energy, that is mathematically x(t) ∈
L2(Z∆t,Cp) or ∑

n∈Z∆t

|x(t)|2 < +∞

then the function x(f) is uniquely defined (almost everywhere). It also belongs to
L2([−∆f/2,+∆f/2],Cn)

∫ ∆f/2

−∆f/2

|x(f)|2 df < +∞

70 CHAPTER 4. SPECTRAL METHODS

and satisfies3

x(f) = ∆t
∑
n∈Z∆t

x(t) exp(−2iπtf) (4.7)

e transform – denoted F – that maps a signal time-domain representation x(t)
to its frequency-domain representation or spectrum x(f) is (discrete-time) Fourier
transform (DTFT).

Parseval’s theorem also yields

∫ +∆f/2

−∆f/2

|x(f)|2 df = ∆t
∑
t∈Z∆t

|x(t)|2 (4.8)

which means that we may measure the energy of the signal by summing either the
energy of each sample in the time domain, or the energy density of all signal spectral
components.

e category of finite energy signals is sufficient most of the time but still does
not encompass every signal we’d like to consider … and to begin with, pure tones!
To perform the spectral decomposition of signals that have an infinite energy, we
need to go beyond ∆f -periodic (locally) integrable functions of the frequency f and
consider instead ∆f -periodic (vector-valued complex) measures. For such a measure
x(f), x(t) is represented by the integral

∀ t ∈ Z∆t, x(t) =
∫ (+∆f/2)−

(−∆f/2)−
exp(i2πft) dx(f) (4.9)

In practice, we don’t need measures with singular parts which means that every mea-
sure spectra we need to consider has on the interval [−∆f/2,+∆f/2) the form

x(f) = x1(f) +
∑
i

aiδ(f − fi) where

∣∣∣∣ x1(f) ∈ L1([−∆f/2,∆f/2),Cn)∑
i |ai| < +∞

And then, every dirac component in the frequency domain represents a pure tone as∫ (+∆f/2)−

(−∆f/2)−
exp(i2πft) dδ(f − fi) = exp(i2πfit)

erefore the equation (4.9) reduces to

x(t) = x1(t) +
∑
i

ai exp(i2πfit)

4.1.1 Convolution and Filters

Consider two scalar discrete-time signals x and y with a common sample time ∆t.
We assume for convenience that there is a t0 ∈ Z∆t such that x(t) = y(t) = 0 for

3as a limit in L2([−∆f/2,+∆f/2],Cn) or pointwise but only almost anywhere (Carleson). Stronger
convergence (such as uniform convergence) may be obtained under the assumption that x(f) is continu-
ously differentiable.

4.1. SIGNAL, SPECTRUM, FILTERS 71

any t ≤ t0. We define the convolution between x and y as the discrete-time signal
x ∗ y with sample time ∆t such that

(x ∗ y)(t) = ∆t
∑

t′∈Z∆t
x(t′)y(t− t′) (4.10)

e assumptions made on the signals x and y ensure that for every value of t, the sum
in the right-hand side of (4.10) has only a finite number of non-zero values. ese
assumptions may be relaxed in several ways ; for example we may assume that x and
y belong to L2(Z∆t,C) and define x ∗ y as a bounded signal.

We notice that the convolution is an associative and commutative operation. More-
over, the spectrum of the convolution between two signals is the product of the signal
spectra:

(x ∗ y)(f) = x(f)y(f) (4.11)

Proof. e discrete-time Fourier transform of x ∗ y satisfies

(x ∗ y)(f) = ∆t
∑
t∈Z∆t

[
∆t

∑
t′∈Z∆t

x(t′)y(t− t′)

]
exp(−2iπft)

Notice that exp(−2iπft) = exp(−2iπt′f) exp(−2iπf(t − t′)), set τ = t − t′ and
conclude with

(x ∗ y)(f) =

[
∆t

∑
t′∈Z∆t

x(t′) exp(−2iπft′)

][
∆t

∑
τ∈Z∆t

y(τ) exp(−2iπfτ)

]

A filter is a convolution operator u 7→ y with kernel h:

u 7→ y = h ∗ u (4.12)

or equivalently in the frequency domain:

y(f) = h(f)u(f) (4.13)

e function h(f) is the frequency response of the filter. We define the (unit) impulse
as the signal δ : Z∆t→ C:

δ(t) =

∣∣∣∣ 1/∆t if t = 0
0 otherwise

(4.14)

e (unit) impulse is a unit – in the algebraic sense – for the convolution operator :
for any signal x, x ∗ δ = δ ∗ x = x. For this reason, when u = δ, the output of the
filter (4.12) is y = h and h is called the filter impulse response.

Convolution operators are a very general class of signal transformations. Consider
an operator L that maps any finite discrete-time signal u with sample time ∆t to a
signal with the same sample time and such that for any finite input signals u and v:

∀λ, µ ∈ C, L(λu+ µv) = λL(u) + µL(v) (4.15)

72 CHAPTER 4. SPECTRAL METHODS

∀T ∈ Z∆t, L(t 7→ u(t− T)) = t 7→ L(u)(t− T) (4.16)

Such a linear and time-invariant(LTI) operator is a convolution operator. Indeed, we
have:

L(u) = L

(∑
t′∈∆tZ

u(t′)δ(t− t′)

)
=

∑
t′∈∆tZ

u(t′)L(δ)(t− t′) = u ∗ L(δ)

As a consequence, a finite response impulse filter (FIR) is a convolution operator: the
definition equation

y(t) =
N−1∑
n=0

anu(t− n∆t)

corresponds to y = h ∗ u with

h(t) =

∣∣∣∣ at/∆t/∆t if t ∈ {0, · · · (N − 1)∆t},
0 otherwise.

Similarly, an autoregressive system whose evolution is given by

y(t) =
N−1∑
n=0

any(t− (n− 1)∆t) + u(t)

is a convolution operator but whose impulse response is not finite.

4.2 Finite Signals
Concrete digital signals are finite because only a finite number of samples may be
stored in a finite memory. We usually represent a finite sequence of values x0, . . .,
xN−1) and a reference step time ∆t, with a finite causal signal x : Z∆t 7→ C where
the missing values are replaced with 0:

x(t) =

∣∣∣∣ xt/∆t if t ∈ {0,∆t, . . . , (n− 1)∆t},
0 otherwise.

(4.17)

is signal is said to be causal because x(t) = 0 whenever t < 0 and finite because
it has only a finite number of non-zero values.

If the two finite causal signalsx and y correspond to the finite sequencesx0, . . . , xN−1

and y0, . . . , yM−1 their convolution z = x ∗ y is also a finite causal signal and corre-
sponds to the sequence (z0, . . . , zM+N−2) where

zk = ∆t
∑

(i,j)∈Sk

xiyj with Sk = {(i, j) ∈ {0, . . . ,m−1}×{0, . . . , n−1}, i+j = k}

(4.18)
e NP implementation of the operation is the function convolve and it assumes
that ∆t = 1. For example

>>> x = array([0.5, 0.5])
>>> y = array([0.0, 1.0, 2.0, 3.0, 4.0])
>>> z = convolve(x, y)
>>> z
array([0. , 0.5, 1.5, 2.5, 3.5, 2.])

4.2. FINITE SIGNALS 73

Now, this approach gives us a practical method to implement filters as long as
their impulse response h is finite and causal – that is when filters have a finite impulse
response (FIR). If h corresponds to the finite sequence h0, . . . , hM−1 and the filter is
to be applied to the finite signal u, then the output y corresponds to

>>> y = dt * convolve(h, u)

4.2.1 Design of Low-Pass Filters

Let fc ∈ (0,∆f/2) be the cutoff frequency of our lowpass filter. What it means is
that we want is a filter that generates from a signal u an output signal y such that

y(f) =

∣∣∣∣ x(f) if f ∈ (0, fc)
0 if f ∈ (fc,∆f/2)

As the filter operation y = h ∗ u translates into y(f) = h(f)u(f) in the Fourier
domain (see equation (4.11)), the frequency response of the filter shall satisfy

h(f) =

∣∣∣∣ 1 if f ∈ (0, fc)
0 if f ∈ (fc,∆f/2)

and because h is a real signal, h(f) = h(−f) = h(−f) if f ∈ (−∆f/2, 0). As a
consequence, the inverse DTFT formula (4.6) provides

h(t) =

∫ +∆f/2

−∆f/2

h(f) exp(2iπft) df =

∫ fc

−fc
exp(2iπft) df, t ∈ Z∆t

and aer straightforward computations, with the sine cardinal sinc defined as

sincx =
sinπx
πx

if x 6= 0 and sinc 0 = 1 (4.19)

we end up with
h(t) = 2fc sinc 2fct, t ∈ Z∆t. (4.20)

An concrete implementation of such a filter has to overcome several issues. First
of all, an implementation as a FIR requires a finite number of non-zero values of h(t)
only. We therefore typically replace h(t) with an impulse response that is equal to
h(t) for |t| ≤ N and 0 for |t| > N and end up with a 2N + 1-tap filter. en, the
implementation has to be causal: the 2N +1 coefficients are shied to correspond to
the indices 0, 1, · · · , 2N which effectively induces a delay of N samples during the
filtering (see fig. 4.2, boom figure). e generation of such low-pass filters may be
implemented as

def low_pass(fc, dt=1.0, window=ones):
def h(n):

t = arange(-0.5 * (n-1), 0.5 * (n-1) + 1) * dt
return 2 * fc * sinc(2 * fc * t) * window(n)

return h

and used as follows to perform for example a 31-tap low-pass filtering of a 44100 Hz
at the cutoff frequency of 8000 Hz:

>>> N = 15
>>> h = low_pass(fc=8000.0, dt=1.0/44100.0)(2*N+1)
>>> y = dt * convolve(h, u)

74 CHAPTER 4. SPECTRAL METHODS

Note that len(y) is equal to len(u) + 2*N. A restriction of the output that compensates
for the induced delay and has the same size as the original signal is obtained as y[N:-N].

0 5 10 15 20 25 30
n

0

10000

h31
n = 1.6× 104 sinc 1.6× 104(n− 15), n ∈ {0, · · · , 31}

0 5000 10000 15000 20000

0.0

0.5

1.0

f (Hz)

|F(h31)(f)|

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t (ms)

−1

0

1

Figure 4.2: top : impulse response of a 31-tap low-pass filter with a cutoff frequency
of fc = 8000 Hz. Middle : frequency response (gain) of this filter. Boom : a signal
before (dots) and aer (plus signs) low-pass filtering.

e optional window argument (that defaults to a rectangular window) is useful to
reduce the Gibbs phenomenon that we may observe in the frequency response of
the filter (see fig. 4.2): an oscillation of the frequency response that may result in
overshoots in the filter outputs. Windows such as hanning, bartlett, blackman, etc. are
available in NP.

4.2.2 Spectrum Computation

Given a finite causal signal xwith sample time∆t and possibly non-zero values x0 =
x(0), x1 = x(∆t), . . . , xN−1 = x((N − 1)∆t), the spectrum Fx of x is given by the

4.2. FINITE SIGNALS 75

formula:

Fx(f) = ∆t
N−1∑
n=0

xn exp(−i2πfn∆t) (4.21)

e signal x being represented as the NP array x and the sample time∆t as a the
float dt, a simple representation Fx of the spectrum Fx – as a function taking arrays
of frequencies as arguments – is given by:

nx = len(x)
n = reshape(arange(nx), (nx, 1))
def Fx(f):

f = ravel(f)
f = reshape(f, (1, len(f)))
return dt * dot(x, exp(-1j * 2 * pi * dt * n * f))

e high-order programming support in P actually allow us to automate the
definition of this function and to represent the Fourier transform itself as a function
F, that takes x and dt as arguments and returns the spectrum function Fx.

Fourier transform - straightforward implementation
def F(x, dt=1.0):

nx = len(x)
n = reshape(arange(nx), (nx, 1))
def Fx(f):

f = ravel(f)
f = reshape(f, (1, len(f)))
return dt * dot(x, exp(-1j * 2 * pi * dt * n * f))

return Fx

e main issue with this computation of the spectrum is performance: assume that
you intend to compute N values of the spectrum, that is, as many values as there are
in the signal. en the number of sums and product needed to compute F(x)(f) is
O(N2).

An alternate idea is to compute enough spectrum values and then to use inter-
polation to build an approximation of the spectrum anywhere. If we decide to use
N distinct spectrum values, it makes sense to compute regularly sampled values of
Fx(f) on the interval [0,∆f) – the spectrum being ∆f−periodic, there is no point
going beyond this interval. We are therefore interested only in the frequencies

fk =
k

N
∆f, k = 0, · · · , N − 1 (4.22)

and in the values x̂k = Fx(fk) given by:

x̂k =
N−1∑
n=0

xn exp
(
−i2πkn

N

)
, k = 0, · · · , N − 1. (4.23)

e transformation from the vector (x0, · · · , xN−1) to the vector (x̂0, · · · , x̂N−1) is
called the discrete Fourier transform (DFT):

DFT
[

CN → CN
(x0, · · · , xN−1) 7→ (x̂, · · · , x̂N−1)

]
(4.24)

As we noted before, the straightforward implementation of the DFT has a O(N2)
complexity. Fortunately there is a family of algorithms called fast Fourier trans-
forms (FFT) that achieve O(N logN) performance instead. In NP a fast Fourier

76 CHAPTER 4. SPECTRAL METHODS

0.00000 0.00025 0.00050 0.00075 0.00100

0.0

0.1

0.2

0.3

0.4

0.5

xn

∆t

t (s)

-4000 0 4000 8000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

|F(x)(f)|

f (Hz)

f = ∆f
∆t× |x̂k|

Figure 4.3: temporal and spectral representation of a 10-sample 8kHz signal x(t).
e 10-point DFT data are displayed as dots, whereas the 16-point DFT from the
zero-padedd signal are displayed as crosses.

transform is available as the fft function in the module numpy.fft4. With the help
of this function, we may implement an alternative Fourier transform F, based on the
discrete Fourier transform data and 0-order interpolation.

Fourier transform - FFT-based implementation
def F(x, dt=1.0):

nx = len(x)
fft_x = fft(x)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

We can actually compare the performance of the two approaches by measuring the
time needed to compute the values x(fk), k = 0, · · · , N − 1, for a signal x of length
N . e results are displayed in figure 4.4 in a log-log scale. e results for the straight-
forward computation method (dashed curve) are consistent with the O(N2) bound
as the curve exhibit an asymptotic slope of 2. For the FFT-based computation, the sit-
uation is more complex as the computation times varies strongly with respect to the
signal length. e lower envelope of the curve is given by data points that correspond
to signals whose length is a power of two (doed data). For those signals, the asymp-
totic slope is 1, consistent with the O(N logN) estimate. However, the performance
may be far worse for arbitrary length, the upper enveloppe being O(N2) again and
is obtained for signal whose length is a prime number. is is a common artifact of

4e NP implementation is a transcription in C of the Fortran-77 fftpack (http://www.netlib.org/
fftpack/)

http://www.netlib.org/fftpack/
http://www.netlib.org/fftpack/

4.2. FINITE SIGNALS 77

100 101 102 103 104 105

signal length

10−5

10−4

10−3

10−2

10−1

100

co
m

pu
ta

ti
on

ti
m

e
t

in
se

co
nd

s

Figure 4.4: spectrum computation performance: computation time of F(x)(f) as
a function of nx = len(x) with f = arange(0, dt, dt/nx) for a straightforward
implementation (dashed curve) and a FFT-based one (solid curve) ; dots correspond
to power-of-two signal length data. Reference platform: Intel i7 Q820 1.73GHz CPU,
6GiB memory.

many FFT algorithms: they behave well when the signal length has an integer decom-
position that consists of many small primes numbers, the best case being a power of
two and the worst, a large prime number5.

To cope with this fact, we may introduce zero-padding of the original signal: we
append as many 0 values as necessary to the original vector so that its length is a
power of two. We still compute data on the original signal spectrum as the signals
values were 0 anyway. Note that NP fft implements 0-paddingwhen it is given as
a second argument a desired length for the vector larger than the signal length. As
a consequence, we can support a power-of-two version of the spectrum computation
with the following code.

Fourier transform - FFT-based, power-of-two.
def F(x, dt=1.0):

nx = int(2**ceil(log2(len(x))))
fft_x = fft(x, nx)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

Obviously, zero-padding may also be used to obtain a larger power of 2 in order to get
more spectrum data. An additional parameter may be given to define the minimum
length of the DFT.

5is is explained by the fact that those algorithms use a divide-and-conquer approach to solve the
problem. However, there are algorithms that may achieve an asymptotic O(N logN) performance, even
for signals of length a prime number, see for example [FJ05].

78 CHAPTER 4. SPECTRAL METHODS

Fourier transform - FFT-based, power-of-two, arbitrary length.
def F(x, dt=1.0, n=0):

nx = len(x)
nx = max(n, nx)
nx = int(2**ceil(log2(nx)))
fft_x = fft(x, nx)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

e signal we want to analyze has oen more values than the ones contained in x.
It may for example be – at least conceptually – be infinite, for example if it is a pure
tone. e FFT-based spectral analysis is therefore based on a window of the original
signal ; the most common choice is a rectangular window where we select some of
the valued of the signal (multiply by 1) and implicitly consider that all other values
are 0 (multiply by 0). Using a multiplication by a window function whose behavior
is smoother on the window boundary is a classical method to improve the resolution
of harmonics in the spectrum. Refer for example to [Har78] for a discussion on this
subject and a comparison of the usual windows (such as bartlett, hamming, hanning,
etc.). A version of the spectrum that support windows is given by;

Fourier transform - FFT-based, zero-padded, windowed.
def F(x, dt=1.0, n=0, window=ones):

nx = len(x)
x = window(nx) * x
nx = max(n, nx)
nx = int(2**ceil(log2(nx)))
fft_x = fft(x, nx)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

4.3 Multirate Signal Processing

Signal processing systems are multirate when they manage signals with different
sample times. Filters, introduced in the previous sections, do not alter the sample
time of the signals they are applied to, but decimators and expanders do; they are the
new building blocks that allows us to downsample – decrease of the data rate – and
upsample – increase in the data rate, while controlling the impact of these operations
on the signal spectral content. A downsampling of a factor 5 for example may be used
to get a 44.1 kHz signal down to a 8.82 kHz rate – which is still satisfactory for voice
signals – and upsampling can be used to go back to the original data rate.

4.3.1 Decimation and Expansion

Decimation.

e decimation of a factorM of a discrete signal x with a sampling time of ∆t is the
signal with a sampling time ofM∆t denoted x ↓M and defined by:

(x ↓M)(t) = x(t), t ∈ ZM∆t. (4.25)

4.3. MULTIRATE SIGNAL PROCESSING 79

0 1 2
time t (ms)

-1

0

1

x(t)

0 1 2

time t (ms)

−1

0

1

(x ↓ 2)(t)

Figure 4.5: Decimation, Temporal View: a 44.1 kHz sampled signal x(t) and its
decimated version (by a factor of 2).

If x is a finite causal signal represented by the NP array x, the implementation
of decimation of a factor M is straightforward with the slicing mechanism of arrays:

def decimate(x, M=2):
return x[::M].copy()

Note that the length of decimate(x,M) is len(x)/M – the quotient of the integer len(x)
by the integer M – if len(x) is a multiple of M but len(x)/M + 1 otherwise. e copy
may be necessary in some use cases and is therefore included to be safe. Indeed, the
slicing operation has a pass-by-reference semantics in NP x[::M] is not a copy of
the content of x but merely a view into it, therefore a change in the values of x would
also change the sliced data6.

Decimation has a arguably strange – but well-defined – effect on the spectrum
of a signal. Consider for example the decimation of factor 2 on the signal x with a

6see http://www.scipy.org/NumPy_for_Matlab_Users.

http://www.scipy.org/NumPy_for_Matlab_Users

80 CHAPTER 4. SPECTRAL METHODS

sampling time of ∆t:

(x ↓ 2)(f) = 2∆t
∑

t∈Z2∆t

(x ↓ 2)(t) exp(−2iπft)

= 2∆t
∑

t∈Z2∆t
x(t) exp(−2iπft)

= ∆t
∑
t∈Z∆t

x(t) exp(−2iπft) + ∆t
∑
t∈Z∆t

(−1)t/∆tx(t) exp(−2iπft)

As we have (−1)t/∆t = exp(−iπ)t/∆t = exp(−2iπt/2∆t) we end up with (x ↓
2)(f) = ∆t

∑
t∈Z∆t x(t) exp(−2iπft) + ∆t

∑
t∈Z∆t x(t) exp(−2iπ(f + 1/2∆t)t)

and therefore
(x ↓ 2)(f) = x(f) + x(f +∆f/2) (4.26)

110250 11025 22050

frequency f (Hz)

0.00

0.25

0.50

am
pl

it
ud

e
×1

0
3

|x(f)|

∆f/2

110250 11025 22050

frequency f (Hz)

0.00

0.25

0.50

am
pl

it
ud

e
×1

0
3

|(x ↓ 2)(f)|

(∆f/2)/2

Figure 4.6: Decimation and Spectrum: spectra of a 44.1 kHz sampled signal, before
and aer a decimation of factor 2 (temporal view: fig. 4.3.1). Doubling the sample
rate ∆t effectively halves ∆f and therefore halves the frequency range where the
spectral content is significant.

For a decimation of factorM , we obtain by similar computations

(x ↓M)(f) =
M−1∑
k=0

x(f + k∆f/M) (4.27)

4.3. MULTIRATE SIGNAL PROCESSING 81

What this formula means is that aer decimation of a factorM , the spectral content of
the signal at frequency f ∈ [0,∆f/M) is a mix of the spectral content of the original
signal at the frequencies

f, f +∆f/M, f + 2∆f/M, · · · nf + (M − 1)∆f/M.

is phenomenon is called (spectral) folding. As every frequency in the original sig-
nals has generated copies of itself at new frequencies, the phenomenon is also called
(spectral) aliasing.

Expansion.

e expansion of factor M applies to a discrete signal x with a time step ∆t and
creates a signal with a time step ∆t/M denoted x ↑M and defined by:

(x ↑M)(t) =

∣∣∣∣ x(t) if t ∈ Z∆t
0 otherwise.

(4.28)

Again, the implementation in NP for finite causal signals is straightforward:

def expand(x, M=2):
output = zeros(M * len(x))
output[::M] = x
return output

e length of expand(x, M) is M * len(x). It could be reduced to (M - 1) * len(x)

+ 1 without any information loss as the last M - 1 values of output are zeros, but it is
oen convenient to obtain a signal whose length is a multiple of the expansion factor.
is operation does not alter the shape of the spectral content of the signal:

(x ↑M)(f) = (∆t/M)
∑

t∈Z∆t/M

(x ↑M)(t) exp(−2iπtf)

= (∆t/M)
∑
t∈Z∆t

x(t) exp(−2iπtf)

and therefore

(x ↑M)(f) =
1

M
x(f) (4.29)

4.3.2 Downsampling and Upsampling

Decimation is the basic operation to reduce the data rate of a signal and therefore
compress it. However, this operation creates aliases in the spectral content of the
signal where high and low-frequency are mixed and cannot be separated one from
the other anymore. We can however decide to get rid in a controlled manner of some
spectral content of the signal to keep the rest intact.

Note that if the spectral content of a signal before decimation of factor M is en-
tirely into the (−∆f/2M,∆f/2M) band, aliasing does not happen as we have

(x ↓M)(f) = x(f) if f ∈ (−∆f/2M,∆f/2M)

82 CHAPTER 4. SPECTRAL METHODS

0 1 2

time t (ms)

−1

0

1

((x ↓ 2) ↑ 2)(t)

110250 11025 22050

frequency f (Hz)

0.00

0.25

0.50

am
pl

it
ud

e
×1

0
3

|((x ↓ 2) ↑ 2)(t)(f)|

∆f/2

Figure 4.7: Expansion : temporal and spectral views of the signal x of figure 4.3.1
aer downsampling then upsampling, both of a factor 2.

is can be achieved if we filter the original signal with a perfect low-pass filter of
cutoff frequency fc = ∆f/2M . We then lose signal information in all frequency
bands but the one of lowest frequency, but at least, this one is perfectly preserved by
decimation. We call this combination of low-pass filtering and decimation downsam-
pling.

Reconstruction of the (low-frequency content o) original signal is then just a
maer of geing back the the original rate, by expansion and apply a gain of M to
the result. at leads to exactly the right spectrum in the band (−∆f/2M,∆f/2M)
but not in the rest of (−∆f/2,∆f/2) as the spectrum is∆f/2M -perodic. To get rid
of the high frequency content, we simply apply the perfect low-pass filter with cutoff
frequency fc = ∆f/2M . e combination of (zero-)expansion, gain and filtering is
called upsampling.

Let’s summarize this: a downsampling of orderM allows to reduce the data rate
by a factor ofM and keeps information oneM -th of the spectral range – the lowest
frequency part. Upsampling may be used to reconstruct a signal at the original rate
whose content is the low-frequency content of the original one and has no higher
spectral components.

4.3. MULTIRATE SIGNAL PROCESSING 83

low-pass

low-pass

Figure 4.8: downsampling and upsampling diagrams

4.3.3 Ideal Filter Banks and Perfect Reconstruction

In the previous section we have explained how we could divide the signal rate by a
factor of M by keeping only one M -th of its spectral content and throwing away
everything else. We now consider the steps leading to a more flexible approach: we
split the data signal into M frequency bands and we will later design methods to
allocate bits to such or such a band depending on the spectral content of the signal.

In order to split the signal into M uniformly spaced spectral bands, we intro-
duce an analysis filter bank: a set of M filters ai, i = 0, · · · ,M − 1 with ain =
ai(n∆t), n ∈ Z that we all apply to the original signal. All the filters all band-pass,
with low frequency i∆f/M and high-frequency limit (i+ 1)∆f/M . We then deci-
mate the signal on all branches, so that the original data rate can be kept. We know
what is the spectral content of the signal aer decimation on the branch i = 0, but
what is going on with the other branches ? Let x be the original signal and xi is the
signal filtered by the i-th filter. e content of xi is entirely in the i-th frequency band,
that is (i∆f/M, (i+1)∆f/M) (and the corresponding negative frequency band), so
aer decimation, the spectral content is

M−1∑
k=0

x(f − k∆f/M) = xi(f + i∆f/M) if f ∈ (−∆f/2M,∆f/2M)

So again, in each branch, decimation has kept the relevant information. Given those
M spectral components, are we able to reconstruct the original signal ? In order to
get the contribution from the i-th band in the right place, we can first expand the
signal and multiply byM : that shis the subband content to build a ∆f/M -periodic
spectral content. To get this content only in the i⁻th band, we apply a perfect pass-
band that corresponds to the i-th subband. en we sum all these contributions.

Figure 4.9: analysis and synthesis filter banks diagrams

84 CHAPTER 4. SPECTRAL METHODS

4.3.4 Filter Banks and Perfect Reconstruction

One issue with the previous scheme is that perfect band-pass filters cannot be imple-
mented. We’d like as to replace them by some finite impulse response filters approx-
imations, study if perfect reconstruction is still possible and if it can’t be achieved,
measure the error we are introducingg.

Consider the diagram in figure (4.9) where the ai and si are the impulse response
of the analysis and synthesis filter banks. e formulas (4.27) and (4.29) yield the
following expression for the output z of the analysis + synthesis process from the
input signal x:

z(f) =

M−1∑
k=0

[
M−1∑
i=0

si(f)ai(f + k∆f/M)

]
x(f + k∆f/M)

which means that the diagram will achieve perfect reconstruction if we have

M−1∑
i=0

si(f)ai(f + k∆f/M) =

∣∣∣∣ 1 if k = 0,
0 if k = 1, · · ·M − 1.

, (4.30)

or in other words, if all the distorsion functions Dk(f), k = 0, ·,M − 1, defined by

D0(f) =
M−1∑
i=0

si(f)ai(f)− 1,

Dk(f) =

M−1∑
i=0

si(f)ai(f + k∆f/M), k = 1, · · ·M − 1

(4.31)

are identically zero.

4.3.5 Cosine Modulated Filter Banks

We build in this section a family of pass-band filters with impulse responses ai(t),
i = 0, · · · ,M−1, whose pass-band is (i∆f/M, (i+1)∆f/M), and based on a single
prototype filter. e prototype is selected as a low-pass filter with cutoff frequency
fc = ∆f/4M ; the perfect prototype filter impulse response is (see (4.20)):

h(n∆t) =
∆f

2M
sinc

∆f

2M
n∆t =

∆f

2M
sinc

n

2M

To generate the i-th pass-band filter, all we have to do it to shi the spectrum by
(i+ 0.5)∆f/2M to the right, that is, multiply h(n∆t) by

exp(i2π(i+ 0.5)(∆f/2M)(n∆t)) = exp(iπ(i+ 0.5)n/M).

But then the filter impulse response would no longer be real, so we also perform the
the opposite frequency shi : we multiply h(n∆t) by exp(−iπ(i+0.5)n/M) and add
up both contributions ; we end up with

ai(n∆t) = 2h(n∆t)× cos (π(i+ 0.5)n/M) (4.32)

that is, a cosine modulated filter bank. e figure (4.10) displays the filters frequency
responses where the prototype filter has been approximated by a FIR. If we selecting

4.3. MULTIRATE SIGNAL PROCESSING 85

0 22050
Frequency f (Hz)

0

1

F
ilt

er
G

ai
n

|h(f)| |a3(f)||a2(f)||a1(f)||a0(f)|

Figure 4.10: Cosine Modulated Filter Banks: gain of the components of a cosine
modulated filter bank as a function of the frequency f . e sampling time∆t is 44.1
kHz, there are M = 4 filters and the prototype filter h – whose spectrum gain is
doed – has been truncated by the application of a Hanning window if length N =
64. e phase of such filter is not displayed as it is flat because the filters impulses
responses are symmetrical – or linear as a function of f in a causal implementation.

as synthesis filters the same pass-band filters used for the analysis – si(t) = ai(t)
– we maye compute the distorsions induced by the analysis-synthesis process ; the
results, displayed in figure (4.11), clearly points out that the basic approach we have
adopted so far does not provide a good approximation to a perfect reconstruction.
Pseudo-QMF (for pseudo - quadrature mirror filters) may be introduced to obtain
sufficiently small distorsion functions ; they are successfully used in layer I and II of
MPEG-Audio for example. eir design relied on two modifications with respect to
our approach so far. First, we introduce phase factors φi in the definition of ai and si

ai(n∆t) = 2h(n∆t)× cos (π(i+ 0.5)n/M + φi)
si(n∆t) = 2h(n∆t)× cos (π(i+ 0.5)n/M − φi)

(4.33)

in order to cancel significant aliasing terms and ensure a relatively flat overall mag-
nitude distorsion (see [NE94, MB03]). Among several options, we select

φi =
π

2

(
N − 1

M
− 1

)
(i+ 0.5) (4.34)

where N is the filter length andM the number of sub-bands.
en the selection of the prototype filter does not rely on the expression of the

perfect low-pass filter but is optimized to reduce distorsion. e MPEG-Audio stan-
dard selection for this filter is displayed in figure 4.12.

4.3.6 Polyphase Representation of Filters Banks

Polyphase representation is an alternate description of filter banks that is suited to a
real-time implementation. Unlike convolution-based implementation that require the
full input values to be available to produce output values, polyphase representation of
analysis and synthesis filter banks are amenable to matrix implementation that work
frame by frame: they consume chunks ofM samples to produce the same amount of
output values.

86 CHAPTER 4. SPECTRAL METHODS

0 22050
0

1

|T0(f)|
f (Hz)

0 22050
0

1

|T1(f)|
f (Hz)

0 22050
0

1

|T2(f)|
f (Hz)

0 22050
0

1

|T3(f)|
f (Hz)

Figure 4.11: cosine modulated filter banks: distortions

Analysis Filter Bank

Consider the analysis filter bank depicted on the le of figure 4.9. Gather the output
yi(t) of the i-th subbands into the vector signal y(t) ∈ RM , t ∈ ZM∆t. is output
vector is related to the input x(t) ∈ R, t ∈ Z∆t by the formula:

yi(t) = ∆t
∑

t′∈Z∆t

ai(t′)x(t− t′), t ∈ ZM∆t (4.35)

Let yin = yi(nM∆t), xin = xi(n∆t), ain = ai(n∆t). is relationship takes the form
yij = ∆t

∑N−1
n=0 a

i
nxMj−n,which can be considered as a simplematrix multiplication:

yn = A

xMn

xMn−1

...
xMn−N+1

 with A ∈ RM×N , Aij = ∆t · aij . (4.36)

Alternatively, this form may be turned into an alternate block-diagram displayed in
figure 4.13 that is the polyphase representation of the analysis filter bank : assume
that N is a multiple of M and that we intend to apply the analysis filter bank to a
finite causal signal x represented by the NP array x. We notice that the vector in
right-hand side of the equation (4.36) acts as a buffer: every new value of n shis the
oldest values of x towards the boom of the vector byM slots – effectively forgeing
M of the oldest values – and introducesM new values of x at the top, so the signal x
is used in frames ofM samples. We also notice that y0 does not depend of a whole x
frame, only of x0. To simplify this maer, we assume that x0 = 0 and won’t compute
y0. Effectively, we implement a process that with respect to the theoretical one delays

4.3. MULTIRATE SIGNAL PROCESSING 87

0 100 200 300 400 500
−0.01

0.00

0.01

0.02

0.03

0.04

Figure 4.12: MPEG-Audio Layer I and II prototype 513-tap prototype filter

the input by one step – so that x1 is the first non-zero value, not x0 – and advances
the output by one step – the first output we’ll effectively compute is truly y1, not y0.

ese computations may be carried by an instance of the Analysis class:

class Analysis(object):
def __init__(self, a, dt=1.0):

self.M, self.N = shape(a)
self.A = a * dt
self.buffer = zeros(self.N)

def __call__(self, frame):
frame = array(frame, copy=False)
assert shape(frame) == (self.M,)
self.buffer[self.M:] = self.buffer[:-self.M]
self.buffer[:self.M] = frame[::-1]
return dot(self.A, self.buffer)

e argument a in the Analysis constructor is meant to be a the 2-dim. array such
that a[i,:] represent the i-th analysis filter impulse response. In order to use the
instance analysis = Analysis(a, dt), the array x has to be split in frames of length M.

In the implementation of the analysis filter banks for the MPEG PQMF, the pass-
band filters are implemented as causal filters, introducing an extra delay of MPEG.N / 2 = 256

samples. Given the the implementation delays already considered, the total delay in-
duced by the implementationwith respect to the original filter banks is MPEG.N / 2 + 1 - MPEG.M.

To make sure that the analysis filter banks has produced all its non zero-values,
we feed the system extra zero frames. If the input data is available from the start in
the array x, the corresponding output y may therefore be obtained as:

from filters import MPEG
from frames import split

x = r_[x, zeros(MPEG.N)]
frames = split(x, MPEG.M, zero_pad=True)
y = []

88 CHAPTER 4. SPECTRAL METHODS

Figure 4.13: analysis filter bank: polyphase representation

for frame in frames:
y.extend(analysis(frame))

y = array(y)

Synthesis Filter Bank

Consider the synthesis filter bank depicted on the right of the diagram 4.9. e output
vector z(t) ∈ R, t ∈ Z∆t, is related to the input y(t) ∈ RM , t ∈ ZM∆t, by the
formula:

z(t) =M

M−1∑
i=0

∆t
∑

t′∈Z∆t
si(t′)(yi ↑M)(t− t′) (4.37)

or – using integer indices – by zn =M
∑M−1
i=0 ∆t

∑N−1
j=0 sij(y

i ↑M)n−j .With

S =
[
M∆tsij

]
i,j

(4.38)

we may turn this equation into

zn =
N−1∑
j=0

[St(y ↑M)n−j]j . (4.39)

Now consider the polyphase synthesis diagram 4.14, dual of the analysis diagram 4.13,
where P is an unknown N ×M matrix. Its output is related to its input by

zn =
N−1∑
j=0

[P(y ↑M)n−j]N−1−j .

4.3. MULTIRATE SIGNAL PROCESSING 89

So if we set P = JSt, where J is theM×M matrix such as Ji,j = 1 if i−j =M−1
and 0 otherwise, the diagram outputs the same thing as (4.39), only delayed byN − 1
samples.

Let wn = Styn. A careful examination of the polyphase representation of the
synthesis filter banks show that the computation may be performed in frames of M
values. Indeed, the output zn is given by z0 = wN−1

0 , · · · , zM−1 = wN−M
0 , then

zM = wN−M−1
0 +wN−1

1 , zM+1 = wN−M−2
0 +wN−2

1 , etc. Here is a possible imple-

Figure 4.14: synthesis filter bank: polyphase representation

mentation:

class Synthesis(object):
def __init__(self, s, dt=1.0):

self.M, self.N = shape(s)
self.P = transpose(self.M * dt * s)[::-1,:]
self.buffer = zeros(self.N)

def __call__(self, frame):
frame = array(frame, copy=False)
assert shape(frame) == (self.M,)
self.buffer += dot(self.P, frame)
output = self.buffer[-self.M:][::-1].copy()
self.buffer[self.M:] = self.buffer[:-self.M]
self.buffer[:self.M] = zeros(self.M)
return output

Again, the input vector y can be extended with as many zeros as necessary to get all
non-zero output values extracted from the buffer.

90 CHAPTER 4. SPECTRAL METHODS

4.4 Psyoacoustics - Perceptual Models

4.4.1 Acoustics - Physical Values

Audio signal values represent a variation of the sound pressure with respect to the
atmospheric pressure. e standard unit used to measure such pressure is the pascal
(Pa), a unit that corresponds to N/m2 ; while atmospheric pressure is around 100 Pa
– the standard atmosphere (atm), an alternative unit, is equivalent to 101.325 Pa –
variations of the pressure in the audio context typically range from 10−5 Pa (absolute
threshold of hearing) to 102 Pa (threshold of pain).

In order to measure the sound pressure level (SPL) denoted L, we focus on the
difference p(t) between the actual pressure and the atmospheric pressure and compute
its quadratic mean:

P 2 =
〈
p2
〉

where 〈·〉 denotes, depending on the context, either a temporal mean or a probabilistic
one. We then normalize this value with respect to P0 = 20 µPa and measure the ratio
in a logarithmic scale

L = 20 log10
P

P0
(4.40)

e sound pressure level unit is the decibel (dB). When the sound is a plane travelling
wave, the normalized sound intensity I is related to p by

I

I0
=
P 2

P 2
0

with I0 = 10−12 N/m2

so that

L = 10 log10
I

I0
. (4.41)

Now, sound pressure level may be computed according to the spectral content of the
signal: if p(f) denotes the spectrum of the signal p(t), a finite causal signal of length
N with T = N∆t, we have by Parseval’s formula (cf. formula (4.8))

P =
1

T
∆t

N−1∑
n=0

p(t)2 =
1

T

∫ ∆f/2

−∆f/2

|p(f)|2 df

as we end up with

L = 10 log10
2

T

∫ ∆f/2

0

|p(f)|2

P 2
0

df

is result is usually presented in terms of sound (intensity) density also commonly
called sound power density, a value measured in dB that we denote `(f) and define
as

`(f) = 10 log10
2

T

|p(f)|2

P 2
0

(4.42)

so that

L = 10 log10

∫ ∆f/2

0

10`(f)/10 df. (4.43)

4.4. PSYCHOACOUSTICS - PERCEPTUAL MODELS 91

For example, if a sound has a constant power density ` in a frequency range of width
∆F and no power outside this range, its sound pressure level is

L = `+ 10 log10 ∆F

Digital audio signal being scaled to fit the range of their quantizer, we need to normal-
ize somehow the signal before geing into the SPL computation. For 16-bit linearly
quantized signals normalization takes place in the following way: first, scale to fit
into [−1.0, 1.0], then a quadratic mean of N signal values

X2 =
〈
x2
〉
=

1

T
∆t

(N−1)∑
n=0

|x(n∆t)|2

is mapped to SPL with the formula

L = 10 log10
〈
x2
〉
+ 96 dB (4.44)

or equivalently
P = 104.8P0 ×X (4.45)

or even

`(f) = 10 log10

(
2

T
|x(f)|2

)
+ 96 (4.46)

and

L = 10 log10

(
2

T
109.6

∫ ∆f/2

0

|x(f)|2 df

)
(4.47)

4.4.2 reshold in iet

To understand why the normalization in the previous section actually makes sense,
we need to know more about the human hearing range. e absolute threshold of
hearing (ATH) or threshold in quiet is a function of the frequency f such that a pure
tone with a frequency f will be noticed if and only if its SPL is above the ATH at
this frequency. An approximate analytical model for the threshold of hearing – as a
function of the frequency f in kHz – is:

Ta(f) = 3.64f−0.8 − 6.5 exp(−0.6 (f − 3.3)
2
) + 10−3f4 (4.48)

Now consider the values of a uniform 16-bit quantizer on [−1.0, 1.0]. Given that
the maximum possible value of

〈
x2
〉
is 1.0, the maximum value of the right-hand side

of the equation (4.44) is 96 dB. For a pure tone, before normalization, the maximum
value of

〈
x2
〉
is 1/

√
2, and therefore the maximum sound pressure level is ≈ 93 dB.

Now, even if there is nominimum value per se, a good reference is the quantization
noise energy. For a 16-bit linear quantization on (−1.0, 1.0), the step size∆ is uniform
with a value of 2.0/216 = 2−15. In the context of the high resolution hypothesis,
the equation (2.27) provides the estimate E[b2] = ∆2/12 for the noise power and
therefore the normalized noise pressure level is

10 log10
(
2−30/12

)
+ 96 ≈ −5.1 dB

92 CHAPTER 4. SPECTRAL METHODS

So with the normalization of the previous section, the practical range in terms of
sound pressure level of the 16-bit linear quantizer is [−5.1, 93] dB, that is approxi-
mately a 100 dB range. Compared to the reference curve for the absolute threshold of
hearing (see fig. 4.16), we notice that this region covers essentially all of the frequency
range from 20Hz to 20 kHz and that the low bound closely matches the minimal value
of the ATH. So this scaling by 96 dB would correspond to a kind of optimal amplifica-
tion configuration of the loudspeakers, one that would allow to get into large audible
value of the SPL without saturation of the signal and also to allow proper perception
of the lowest sounds that the ear can actually detect.

101 102 103 104

frequency f (Hz)

-20

0

20

40

60

80

100

120

SP
L
L

(d
B

)

Ta(f) = 3.64
f

1000

−0.8

− 6.5 exp

(
−0.6

(
f

1000
− 3.3

)2
)

+ 10
−3 f

1000

4

Absolute Threshold of Hearing (ATH)

Figure 4.15: Absolute reshold of Hearing. e grey region denotes the SPL range
covered by a 16-bit linear quantization.

4.4.3 Simultaneous Masking

Beyond the model of the absolute threshold of hearing, the main characteristic of
the psychoacoustic system that perceptual model used in technologies such as MP3,
Ogg/Vorbis, AAC, etc. rely on is simultaneous masking. Basically, a loud sound
whose energy is located in a given narrow frequency range is going to make every
other signal located in the same frequency neighbouhood harder to detect.

A simple first computational model for this type of masking relies on Fletcher’s
critical band concept. Fletcher considers the possible masking of a pure tone with
frequency f by a signal whose energy is located in the [f −∆F/2, f +∆F/2] range
and makes the assumption that there exist a critical bandwidth ∆Fc – or a critical
band [f −∆Fc/2, f +∆Fc/2] – such that:

1. the distribution of the intensity of the masker within the critical band does not
influence the outcome of the masking experiment, only the total SPL for the
critical band maers,

4.4. PSYCHOACOUSTICS - PERCEPTUAL MODELS 93

2. no amount of intensity outside of the critical band may change the outcome of
the experiment,

3. masking occurs when the intensity of the masker in the critical band exceeds
the intensity of the test tone.

In a few words, the critical band is the largest region around the test tone where the
power density of masker signals consistently increases the masking effect. is set of
assumption has a number of shortcomings: the distribution of intensity nearby the
test tone doesmaer, but not so much as long as the distribution is quite uniform (say
a band-limited noise or a combination of 5 pure tones uniformly gathered won’t make
much of a difference), the influence of the distribution of energy does not have a drop
from 100% to 0% at a limit but is smoother and finally, the masker needs from 2 to 4
more intensity than the test tone to properly mask it.

102 103 104

frequency f (Hz)

101

102

103

∆
F
c

(H
z)

∆Fc = 25 + 75(1 + 1.4(f/1000.0)2)0.69

Critical Bandwidth

Figure 4.16: Critical Bandwidth. e dashed lined represent the simpler piecewise
linear estimate.

Despite all these shortcomings, Fletcher’s model of critical bands is important and
estimates of the critical bandwidth as a function of the frequency center frequency
f may be derived from simple experimental protocols. An approximate analytical
formula for the critical bandwith in Hz – as a function of the center frequency f in
Hz is:

∆Fc = 25 + 75(1 + 1.4(f/1000.0)2)0.69 (4.49)

it also accepts the following piecewise linear approximation:

∆Fc = 100 Hz if f ≤ 500Hz and ∆Fc = 0.2× f beyond. (4.50)

e critical band concept is used in many model beyond masking ; for conve-
nience, a unit is introduced to measure frequencies in the critical band rate scale : it
is named the Bark. By convention, f = 0 Bark corresponds to f = 0 Hz. en the

94 CHAPTER 4. SPECTRAL METHODS

right end of the critical band that starts at 0 Bark corresponds to 1 Bark, the right end
of the critical band that starts at 1 Bark corresponds to 2 Bark, and so on and so forth.
A convenient analytical approximation of the Hz to Bark conversion is given by:

f [Bark] = 13.0 arctan(0.76f/1000.0) + 3.5 arctan(f/1000.0/7.5)2 (4.51)

4.4.4 Spreading Functions

Let’s consider for a moment the masks yielded by Fletcher’s set of assumption, that
is the audibility threshold of pure tones as a function of their frequency f . We may
consider as maskers either pure tones or band-limited white noises. e graphs in
figure 4.4.4 is an example of themasks levels that can be derived from Fletcher’s model
of masking. If we assume that elementary maskers combine into a global one by

200 400 1000
frequency f (Hz)

25

50

M
as

k
L

ev
el

(d
B

) dB ∆f = 20.0 Hz

f (Hz)
200 400 1000

frequency f (Hz)

25

50
M

as
k

L
ev

el
(d

B
) dB ∆f = 100.0 Hz

f (Hz)

200 400 1000

frequency f (Hz)

25

50

M
as

k
L

ev
el

(d
B

) dB ∆f = 400.0 Hz

f (Hz)
200 400 1000

frequency f (Hz)

25

50

M
as

k
L

ev
el

(d
B

) dB ∆f = 800.0 Hz

f (Hz)

Figure 4.17: Fleter’s Model – Band-Limited Noise Masking Curves. e four
maskers share a common SPL of L = 50 dB and center frequency of fc = 400 Hz
while their bandwidth increases from ∆f = 20.0 Hz to 800 Hz.

addition of intensity – and take into account the absolute threshold of hearing as yet
another mask, we end up with the kind of masking curves displayed in figure 4.4.4.

4.4.5 Implementation - Bit Allocation Strategies

Consider a random signal X split into M subband signals Xk . Assume that in ev-
ery subband an estimate Pm(k) of the masking level intensity is available. Given a
selection of quantizers [·]k , if we have

∀ k ∈ {0, · · · ,M − 1}, E[(Xk − [Xk]k)
2] ≤ Pm(k) (4.52)

then in every channel, the quantization noise is masked by the signal itself. ese
conditions (4.52) may be satisfied by a variable bitrate algorithm, but it is more likely

4.4. PSYCHOACOUSTICS - PERCEPTUAL MODELS 95

5000 10000 15000 20000

frequency f (Hz), linear scale

0

50

100

M
as

k
L

ev
el

(d
B

)

102 103 104

frequency f (Hz), logarithmic scale

0

50

100

M
as

k
L

ev
el

(d
B

)

0 5 10 15 20 25

frequency f (bark), bark scale

0

50

100

M
as

k
L

ev
el

(d
B

)

Figure 4.18: Fleter’s Model – Pure Tones Masking Curves. e masker is a com-
bination of 8 pure tones of level 100 dB whose frequencies start with 110 Hz and
double for each new tone. Frequencies are displayed in linear, logarithmic and bark
scales.

that we have a total budget of bits to allocate per frame and that we are merely trying
to spread the quantization noise above the masking levels among all subbands. We
may achieve this by solving

min
M−1∑
k=0

E[(Xk − [Xk]k)
2]

Pm(k)
(4.53)

or, under the high resolution assumption, if ∆fk denotes the quantizer step size of
[·]k , as we have E[(Xk − [Xk]k)

2] = (1/12)E[∆fk(Xk)
2], by solving

min
M−1∑
k=0

E[∆fk(Xk)
2]

Pm(k)
(4.54)

Uniform antizers

Assume that every quantizer [·]k is a uniform quantizer on (−1, 1)with step size∆k .
In every subband, the number of bits bk is related to the step size by∆k = 2/2bk . e
availability of a constant number of bits per frame therefore leads to

M−1∑
k=0

log∆k = const. (4.55)

96 CHAPTER 4. SPECTRAL METHODS

e constrained optimization problem (4.54) + (4.55) may be solved by lagrangian
methods: we introduce ∆ = (∆0, · · · ,∆M−1),

L(λ,∆) =

M−1∑
k=0

∆2
k

Pm(k)
+ λ

M−1∑
k=0

log∆k

and solve the equation ∇∆L(λ,∆) = 0. As for any k, ∂L
∂∆k

= 2 ∆k

Pm(k) + λ
∆k

, the
optimal set of step size satisfies

∆2
k ∝ Pm(k) (4.56)

the proportionaly constant being adjusted to match the bit budget.

Optimal antizers.

Instead of using uniform quantizers in every subbands, we may aempt to minimize
every quantizer signal-to-noise ratio for a yet unknow number of bits, then consider
the optimal allocation of bts. We assume that the characteristic function fk used to
implement [·]k maps the real numbers into [−1.0,+1.0] and hence that∫ +∞

−∞
f ′k(x) dx = 2 (4.57)

Note that if a uniform quantization applied on [−1, 1] and has a budget of bk bits,the
corresponding constant step size is ∆k = 2/2bk . As we have ∆fk(x) = ∆k/f

′
k(x),

the equation (4.57) yields ∫ +∞

−∞

1

∆fk(x)
dx =

2

∆k
(4.58)

If the signal Xk has a density pk , the step size ∆fk that is optimal with respect to

the quantization signal-to-noise ratio satisfies ∆fk(x) ∝ p
−1/3
k (x). Combined with

(4.58), this equation yields

∆fk(x) =
∆k

2

[∫ +∞

−∞
p
1/3
k (y) dy

]
p
−1/3
k (x)

and therefore

E[∆fk(Xk)
2] =

∆2
k

4

[∫ +∞

−∞
p
1/3
k (x) dx

]3
Now, for common probability distributions pk such as normal distributions or Laplace
distributions, we have ∫ +∞

−∞
p
1/3
k (x) dx ∝ E[X2

k]
1/3

and hence
E[∆fk(Xk)

2] ∝ ∆2
k × E[X2

k] (4.59)

e new minimization problem is therefore

min
M−1∑
k=0

∆2
k

E[X2
k]

Pm(k)
(4.60)

4.4. PSYCHOACOUSTICS - PERCEPTUAL MODELS 97

under
M−1∑
k=0

log∆k = const. (4.61)

If we introduce the signal-to-mask (SMR) ratio in the band k, defined by

SMR2
k =

E[X2
k]

Pm(k)
(4.62)

the solution to this optimization problem is given by

∆k ∝ SMR−1
k (4.63)

98 CHAPTER 4. SPECTRAL METHODS

Bibliography

[FJ05] Maeo Frigo and Steven G. Johnson. e design and implementation of
w3. In Proceedings of the IEEE, pages 216–231, 2005.

[GvV75] R. Gallager and D. van Voorhis. Optimal source codes for geometrically
distributed integer alphabets (corresp.). Information eory, IEEE Transac-
tions on, 21(2):228 – 230, mar 1975.

[Har78] F. J. Harris. On the use of windows for harmonic analysis with the discrete
fourier transform. 1978.

[HSW01] L. Hanzo, F.C.A. Somerville, and J.P.Woodard. Voice Compression and Com-
munications: Principles and Applications for Fixes and Wireless Channels.
IEEE Press-John Wiley & Sons, February 2001.

[Kie04] Aaron B. Kiely. Selecting the golomb parameter in rice coding. IPN Progress
Report, Vol. 42-159, nov 2004.

[Mar72] J. Markel. e si algorithm for fundamental frequency estimation. Audio
and Electroacoustics, IEEE Transactions on, 20(5):367 – 377, dec 1972.

[MB03] Richard E. GoldbergMarina Bosi. Introduction to Digital Coding Audio Stan-
dards. 2003.

[MSW00] N. Merhav, G. Seroussi, and M.J. Weinberger. Optimal prefix codes for
sources with two-sided geometric distributions. Information eory, IEEE
Transactions on, 46(1):121 –135, jan 2000.

[NE94] Truong Q. Nguyen and Member Eee. Near-perfect-reconstruction pseudo-
qmf. IEEE Trans. Signal Processing, 42:65–76, 1994.

99

	Coding
	Binary Data
	Bits
	Bytes and Words
	Integers

	Information Theory and Variable-Length Codes
	Entropy from first principles.
	Alphabets, Symbol Codes, Stream Codes
	Optimal Length Coding
	Golomb-Rice Coding

	Quantization
	Principles of Scalar Quantization
	Quantizers
	Uniform Quantization
	Quantization of Random Variables
	Implementation of Non-Uniform Quantizers

	Logarithmic Quantization
	The -law Quantizer.
	IEEE754 Floating-Point Numbers and A-law

	Signal-to-Noise Ratio

	Linear Prediction
	Prediction Principles
	Polynomial Prediction
	Optimal Linear Prediction
	Finite Impulse Response (FIR) Filters
	Auto-Regressive (AR) Filters
	Transfer Function, Stability and Frequency Response

	Voice Analysis and Synthesis
	The TIMIT corpus
	Voice Analysis and Compression
	Linear Prediction Coding

	Spectral Methods
	Signal, Spectrum, Filters
	Convolution and Filters

	Finite Signals
	Design of Low-Pass Filters
	Spectrum Computation

	Multirate Signal Processing
	Decimation and Expansion
	Downsampling and Upsampling
	Ideal Filter Banks and Perfect Reconstruction
	Filter Banks and Perfect Reconstruction
	Cosine Modulated Filter Banks
	Polyphase Representation of Filters Banks

	Psychoacoustics - Perceptual Models
	Acoustics - Physical Values
	Threshold in Quiet
	Simultaneous Masking
	Spreading Functions
	Implementation - Bit Allocation Strategies

