
Spectral Methods

Sébastien Boisgérault, Mines ParisTech

1 June, 2015

Contents
Signal, Spectrum, Filters 2

Convolution and Filters . 6
Convolution . 6
Filters . 7

Finite Signals 8
Design of Low-Pass Filters . 8
Spectrum Computation . 9

Multirate Signal Processing 15
Decimation and Expansion . 15

Decimation . 15
Expansion . 18

Downsampling and Upsampling . 20
Ideal Filter Banks and Perfect Reconstruction 21
Filter Banks and Perfect Reconstruction 22
Cosine Modulated Filter Banks . 22
Polyphase Representation of Filters Banks 24

Analysis Filter Bank . 25
Synthesis Filter Bank . 27

Psychoacoustics - Perceptual Models 30
Acoustics - Physical Values . 30
Threshold in Quiet . 31
Simultaneous Masking . 33
Spreading Functions . 34
Implementation - Bit Allocation Strategies 37

Uniform Quantizers . 37
Optimal Quantizers. 38

In the context of audio signal processing, spectral methods refer to algorithms
that rely on the representation of signals as superposition of sinusoids. Such
a decomposition – the spectrum of the signal – is obtained with the Fourier

1

Sebastien.Boisgerault@mines-paristech.fr
http://www.mines-paristech.fr/

transform ; efficient computations of the spectrum are possible with the fast
Fourier transform algorithms.

Spectral methods are crucial in the study of filters such as the finite impulse
response filters or autoregressive filters and more generally to understand any
transformation based on a convolution ; they are also key in multirate systems
that achieve compression through data rate reduction.

Signal, Spectrum, Filters

A discrete-time signal x with sample time ∆t is a function defined on

Z∆t = {k∆t, k ∈ Z}.

This definition is nothing but a convenient packaging of the sequence of values
(xn), n ∈ Z, with the sample time ∆t into a unique mathematical object.

We investigate in this section the representation of a discrete-time signal as a
superposition of sinusoids. Let’s start the search for such a spectral representa-
tion with a real-valued discrete-time signal x. Given a non-negative frequency
f , a sinusoid is determined uniquely by its amplitude a(f) ≥ 0 and – provided
that a(f) ̸= 0 – its phase ϕ(f) ∈ [−π, π). We therefore search for a pair of
functions a and ϕ – subject to the above constraints – such that

∀ t ∈ Z∆t, x(t) =
∫ +∞

0
a(f) cos(2πft + ϕ(f)) df

Alternatively, we may use complex exponentials instead of sinusoids: decompose
the cos in the previous equation and set

x(f) =
∣∣∣∣ 1/2 × a(f)eiϕ(f) if f ≥ 0

1/2 × a(−f)e−iϕ(−f) otherwise. , or equivalently a(f) = 2|x(f)|
ϕ(f) = ∠x(f)

The equation () becomes

x(t) =
∫ +∞

−∞
x(f) exp(i2πft) df

and the only constraint that holds on the complex-valued function x(f), defined
for any real frequency f , is the symmetry constraint

x(−f) = x(f)

This relation specifically ensures that the complex exponentials in () always
combine to produce a real-valued signal x(t), so that the values of x(f) for
negative frequency hold not extra information and are merely an artifact of the
complex exponential representation.

2

However we can drop this symmetry constraint if we allow complex-valued sig-
nals x(t) in the first place and then these negative frequencies values are no
longer redundant. At the same time, we notice that () still makes sense if we
consider vector-valued signals x(t) ∈ Cp, so given this higher generality, and
also the better mathematical tractability of (), we will stick to this formulation
of the problem.

At this stage we clearly search for summable functions – that is x(f) ∈ L1(R,Cp)
– so that the right-hand side of the equation makes sense. Still, the problem of
finding a solution x(f) to () is not well posed: let ∆f be the signal sampling
frequency, defined by

∆f × ∆t = 1.

If x(f) is a solution to the equation, so is f 7→ x(f − k∆f) for any k ∈ Z1:
the spectral content of x(t) is only determined up to frequency shifts that are
multiples of the sampling frequency ∆f .

0.0000 0.0005 0.0010 0.0015 0.0020
-1

0

1

Figure 1:

A way to remove this ambiguity in x(f) is to reassign to any spectral com-
ponent at the frequency f the smallest frequency f − k∆t that is the nearest
from 0 among any possible values of k ∈ Z – that frequency has to be in
[−∆f/2, +∆f/2]. In other words, for any spectral component
of the signal, we make a low-frequency interpretation. Mathematically, that

1Indeed, we have∫ +∞

−∞
x(f + k∆f) exp(i2πft) df =

∫ +∞

−∞
x(f) exp(i2π(f − k∆f)t) df

=
∫ +∞

−∞
x(f) exp(i2πft) exp(−i2πkt∆f) df

As t = n∆t for a n ∈ Z, exp(−i2πkt∆f) = exp(−i2πkn) = 1 and consequently∫ +∞

−∞
x(f + k∆f) exp(i2πft) df =

∫ +∞

−∞
x(f) exp(i2πft) df

3

0.0000 0.0005 0.0010 0.0015 0.0020
-1

0

1

Figure 2:

0.0000 0.0005 0.0010 0.0015 0.0020
-1

0

1

Figure 3: A signal sampled at 8khz (top) and two valid interpretation of its
spectral content : either a pure 2 kHz sine (mid) or 10 kHz sine (bottom).

means that we replace x(f) with2

x(f) → x′(f) =

∣∣∣∣∣∣
∑
k∈Z

x(f − k/∆t) if f ∈ [−∆f/2, +∆f/2],

0 otherwise.

and therefore if we rename x(f) this particular solution x′(f), we end up with
the search for an integrable function x(f) : [−∆f/2, +∆f/2] → Cp solution of
the equation

∀ t ∈ Z∆t, x(t) =
∫ +∆f/2

−∆f/2
x(f) exp(i2πft) df

The highest frequency value in the integration interval, ∆f/2 is called the
Nyquist frequency associated to the sample time ∆t.

We notice at this stage that equation () defines x(n∆t) as the n-th Fourier
coefficient of the Fourier serie associated to x(f). As a consequence, if we make

2this is legitimate because for any t ∈ Z∆t∫ +∞

−∞
x(f) exp(i2πft) df =

∫ +∆f/2

−∆f/2

[∑
k∈Z

x(f − k/∆t)

]
exp(i2πft) df

4

the assumption that the signal x(t) is of finite energy, that is mathematically
x(t) ∈ L2(Z∆t,Cp) or ∑

n∈Z∆t

|x(t)|2 < +∞

then the function x(f) is uniquely defined (almost everywhere). It also belongs
to L2([−∆f/2, +∆f/2],Cn)∫ ∆f/2

−∆f/2
|x(f)|2 df < +∞

and satisfies3

x(f) = ∆t
∑

n∈Z∆t

x(t) exp(−2iπtf)

The transform – denoted F – that maps a signal time-domain representation x(t)
to its frequency-domain representation or spectrum x(f) is (discrete-time)
Fourier transform (DTFT).

Parseval’s theorem also yields∫ +∆f/2

−∆f/2
|x(f)|2 df = ∆t

∑
t∈Z∆t

|x(t)|2

which means that we may measure the energy of the signal by summing either
the energy of each sample in the time domain, or the energy density of all signal
spectral components.

The category of finite energy signals is sufficient most of the time but still does
not encompass every signal we’d like to consider … and to begin with, pure tones!
To perform the spectral decomposition of signals that have an infinite energy, we
need to go beyond ∆f -periodic (locally) integrable functions of the frequency f
and consider instead ∆f -periodic (vector-valued complex) measures. For such
a measure x(f), x(t) is represented by the integral

∀ t ∈ Z∆t, x(t) =
∫ (+∆f/2)−

(−∆f/2)−
exp(i2πft) dx(f)

In practice, we don’t need measures with singular parts which means that every
measure spectra we need to consider has on the interval [−∆f/2, +∆f/2) the
form

x(f) = x1(f) +
∑

i

aiδ(f − fi) where
∣∣∣∣ x1(f) ∈ L1([−∆f/2, ∆f/2),Cn)∑

i |ai| < +∞

3as a limit in L2([−∆f/2, +∆f/2],Cn) or pointwise but only almost anywhere (Carleson).
Stronger convergence (such as uniform convergence) may be obtained under the assumption
that x(f) is continuously differentiable.

5

And then, every dirac component in the frequency domain represents a pure
tone as ∫ (+∆f/2)−

(−∆f/2)−
exp(i2πft) dδ(f − fi) = exp(i2πfit)

Therefore the equation (??) reduces to

x(t) = x1(t) +
∑

i

ai exp(i2πfit)

Convolution and Filters

Convolution

Consider two scalar discrete-time signals x and y with a common sample time ∆t.
We assume for convenience that there is a t0 ∈ Z∆t such that x(t) = y(t) = 0
for any t ≤ t0. We define the convolution between x and y as the discrete-time
signal x ∗ y with sample time ∆t such that

(x ∗ y)(t) = ∆t
∑

t′∈Z∆t

x(t′)y(t − t′)

The assumptions made on the signals x and y ensure that for every value of t,
the sum in the right-hand side of () has only a finite number of non-zero values.
These assumptions may be relaxed in several ways ; for example we may assume
that x and y belong to L2(Z∆t,C) and define x ∗ y as a bounded signal.

We notice that the convolution is an associative and commutative operation.
Moreover, the spectrum of the convolution between two signals is the product
of the signal spectra:

(x ∗ y)(f) = x(f)y(f)

Proof. The discrete-time Fourier transform of x ∗ y satisfies

(x ∗ y)(f) = ∆t
∑

t∈Z∆t

[
∆t

∑
t′∈Z∆t

x(t′)y(t − t′)

]
exp(−2iπft)

Notice that exp(−2iπft) = exp(−2iπt′f) exp(−2iπf(t − t′)), set τ = t − t′ and
conclude with

(x ∗ y)(f) =

[
∆t

∑
t′∈Z∆t

x(t′) exp(−2iπft′)

][
∆t

∑
τ∈Z∆t

y(τ) exp(−2iπfτ)

]

■

6

Filters

A filter is a convolution operator u 7→ y with kernel h:

u 7→ y = h ∗ u

or equivalently in the frequency domain:

y(f) = h(f)u(f)

The function h(f) is the frequency response of the filter. We define the
(unit) impulse as the signal δ : Z∆t → C:

δ(t) =
∣∣∣∣ 1/∆t if t = 0

0 otherwise

The (unit) impulse is a unit – in the algebraic sense – for the convolution op-
erator : for any signal x, x ∗ δ = δ ∗ x = x. For this reason, when u = δ, the
output of the filter () is y = h and h is called the filter impulse response.

Convolution operators are a very general class of signal transformations. Con-
sider an operator L that maps any finite discrete-time signal u with sample
time ∆t to a signal with the same sample time and such that for any finite
input signals u and v:

∀ λ, µ ∈ C, L(λu + µv) = λL(u) + µL(v)

∀ T ∈ Z∆t, L(t 7→ u(t − T)) = t 7→ L(u)(t − T)
Such a linear and time-invariant(LTI) operator is a convolution operator.
Indeed, we have:

L(u) = L

(∑
t′∈∆tZ

u(t′)δ(t − t′)

)
=

∑
t′∈∆tZ

u(t′)L(δ)(t − t′) = u ∗ L(δ)

As a consequence, a finite response impulse filter (FIR) is a convolution operator:
the definition equation

y(t) =
N−1∑
n=0

anu(t − n∆t)

corresponds to y = h ∗ u with

h(t) =
∣∣∣∣ at/∆t/∆t if t ∈ {0, · · · (N − 1)∆t},

0 otherwise.

Similarly, an autoregressive system whose evolution is given by

y(t) =
N−1∑
n=0

any(t − (n − 1)∆t) + u(t)

is a convolution operator but whose impulse response is not finite.

7

Finite Signals

Concrete digital signals are finite because only a finite number of samples may
be stored in a finite memory. We usually represent a finite sequence of values x0,
. . ., xN−1) and a reference step time ∆t, with a finite causal signal x : Z∆t 7→ C
where the missing values are replaced with 0:

x(t) =
∣∣∣∣ xt/∆t if t ∈ {0, ∆t, . . . , (n − 1)∆t},

0 otherwise.

This signal is said to be causal because x(t) = 0 whenever t < 0 and finite
because it has only a finite number of non-zero values.

If the two finite causal signals x and y correspond to the finite sequences
x0, . . . , xN−1 and y0, . . . , yM−1 their convolution z = x ∗ y is also a finite causal
signal and corresponds to the sequence (z0, . . . , zM+N−2) where

zk = ∆t
∑

(i,j)∈Sk

xiyj with Sk = {(i, j) ∈ {0, . . . , m−1}×{0, . . . , n−1}, i+j = k}

The NumPy implementation of the operation is the function convolve and it
assumes that ∆t = 1. For example

>>> x = array([0.5, 0.5])
>>> y = array([0.0, 1.0, 2.0, 3.0, 4.0])
>>> z = convolve(x, y)
>>> z
array([0. , 0.5, 1.5, 2.5, 3.5, 2.])

Now, this approach gives us a practical method to implement filters as long as
their impulse response h is finite and causal – that is when filters have a finite
impulse response (FIR). If h corresponds to the finite sequence h0, . . . , hM−1
and the filter is to be applied to the finite signal u, then the output y corresponds
to

>>> y = dt * convolve(h, u)

Design of Low-Pass Filters

Let fc ∈ (0, ∆f/2) be the cutoff frequency of our lowpass filter. What it
means is that we want is a filter that generates from a signal u an output signal
y such that

y(f) =
∣∣∣∣ x(f) if f ∈ (0, fc)

0 if f ∈ (fc, ∆f/2)
As the filter operation y = h ∗ u translates into y(f) = h(f)u(f) in the Fourier
domain (see equation ()), the frequency response of the filter shall satisfy

h(f) =
∣∣∣∣ 1 if f ∈ (0, fc)

0 if f ∈ (fc, ∆f/2)

8

and because h is a real signal, h(f) = h(−f) = h(−f) if f ∈ (−∆f/2, 0). As a
consequence, the inverse DTFT formula () provides

h(t) =
∫ +∆f/2

−∆f/2
h(f) exp(2iπft) df =

∫ fc

−fc

exp(2iπft) df, t ∈ Z∆t

and after straightforward computations, with the sine cardinal sinc
defined as

sinc x = sin πx

πx
if x ̸= 0 and sinc 0 = 1

we end up with
h(t) = 2fcsinc 2fct, t ∈ Z∆t.

An concrete implementation of such a filter has to overcome several issues. First
of all, an implementation as a FIR requires a finite number of non-zero values
of h(t) only. We therefore typically replace h(t) with an impulse response that
is equal to h(t) for |t| ≤ N and 0 for |t| > N and end up with a 2N +1-tap filter.
Then, the implementation has to be causal: the 2N + 1 coefficients are shifted
to correspond to the indices 0, 1, · · ·, 2N which effectively induces a delay of
N samples during the filtering (see fig. ??, bottom figure). The generation of
such low-pass filters may be implemented as

def low_pass(fc, dt=1.0, window=ones):
def h(n):

t = arange(-0.5 * (n-1), 0.5 * (n-1) + 1) * dt
return 2 * fc * mathrm{sinc} \,(2 * fc * t) * window(n)

return h

and used as follows to perform for example a 31-tap low-pass filtering of a 44100
Hz at the cutoff frequency of 8000 Hz:

>>> N = 15
>>> h = low_pass(fc=8000.0, dt=1.0/44100.0)(2*N+1)
>>> y = dt * convolve(h, u)

Note that len(y) is equal to len(u) + 2*N. A restriction of the output that
compensates for the induced delay and has the same size as the original signal
is obtained as y[N:-N].

The optional window argument (that defaults to a rectangular window) is use-
ful to reduce the Gibbs phenomenon that we may observe in the frequency
response of the filter (see fig. ??): an oscillation of the frequency response
that may result in overshoots in the filter outputs. Windows such as hanning,
bartlett, blackman, etc. are available in NumPy.

Spectrum Computation

Given a finite causal signal x with sample time ∆t and possibly non-zero values
x0 = x(0), x1 = x(∆t), …, xN−1 = x((N − 1)∆t), the spectrum Fx of x is given

9

0 5 10 15 20 25 30
n

0

10000

h31
n = 1.6× 104 sinc 1.6× 104(n− 15), n ∈ {0, · · · , 31}

Figure 4:

0 5000 10000 15000 20000

0.0

0.5

1.0

f (Hz)

|F(h31)(f)|

Figure 5:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t (ms)

−1

0

1

Figure 6: top : impulse response of a 31-tap low-pass filter with a cutoff fre-
quency of fc = 8000 Hz. Middle : frequency response (gain) of this filter.
Bottom : a signal before (dots) and after (plus signs) low-pass filtering.

10

by the formula:

Fx(f) = ∆t

N−1∑
n=0

xn exp(−i2πfn∆t)

The signal x being represented as the NumPy array x and the sample time ∆t
as a the float dt, a simple representation Fx of the spectrum Fx – as a function
taking arrays of frequencies as arguments – is given by:

nx = len(x)
n = reshape(arange(nx), (nx, 1))
def Fx(f):

f = ravel(f)
f = reshape(f, (1, len(f)))
return dt * dot(x, exp(-1j * 2 * pi * dt * n * f))

The high-order programming support in Python actually allow us to automate
the definition of this function and to represent the Fourier transform itself as a
function F, that takes x and dt as arguments and returns the spectrum function
Fx.

def F(x, dt=1.0):
nx = len(x)
n = reshape(arange(nx), (nx, 1))
def Fx(f):

f = ravel(f)
f = reshape(f, (1, len(f)))
return dt * dot(x, exp(-1j * 2 * pi * dt * n * f))

return Fx

The main issue with this computation of the spectrum is performance: assume
that you intend to compute N values of the spectrum, that is, as many values
as there are in the signal. Then the number of sums and product needed to
compute F(x)(f) is O(N2).

An alternate idea is to compute enough spectrum values and then to use inter-
polation to build an approximation of the spectrum anywhere. If we decide to
use N distinct spectrum values, it makes sense to compute regularly sampled
values of Fx(f) on the interval [0, ∆f) – the spectrum being ∆f−periodic, there
is no point going beyond this interval. We are therefore interested only in the
frequencies

fk = k

N
∆f, k = 0, · · · , N − 1

and in the values x̂k = Fx(fk) given by:

x̂k =
N−1∑
n=0

xn exp
(

−i2π
kn

N

)
, k = 0, · · · , N − 1.

11

The transformation from the vector (x0, · · · , xN−1) to the vector (x̂0, · · · , x̂N−1)
is called the discrete Fourier transform (DFT):

DFT
[

CN → CN

(x0, · · · , xN−1) 7→ (x̂, · · · , x̂N−1)

]

0.00000 0.00025 0.00050 0.00075 0.00100

0.0

0.1

0.2

0.3

0.4

0.5

xn

∆t

t (s)

Figure 7:

-4000 0 4000 8000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

|F(x)(f)|

f (Hz)

f = ∆f
∆t× |x̂k|

Figure 8: temporal and spectral representation of a 10-sample 8kHz signal x(t).
The 10-point DFT data are displayed as dots, whereas the 16-point DFT from
the zero-padedd signal are displayed as crosses.

As we noted before, the straightforward implementation of the DFT has a
O(N2) complexity. Fortunately there is a family of algorithms called fast
Fourier transforms (FFT) that achieve O(N log N) performance instead. In
NumPy, a fast Fourier transform is available as the fft function in the module
numpy.fft4. With the help of this function, we may implement an alternative
Fourier transform F, based on the discrete Fourier transform data and 0-order
interpolation.

def F(x, dt=1.0):
nx = len(x)

4The NumPy implementation is a transcription in C of the Fortran-77 ‘fftpack‘
(<http://www.netlib.org/fftpack/>)

12

fft_x = fft(x)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

We can actually compare the performance of the two approaches by measuring
the time needed to compute the values x(fk), k = 0, · · · , N − 1, for a signal x
of length N . The results are displayed in figure ?? in a log-log scale.

100 101 102 103 104 105

signal length

10−5

10−4

10−3

10−2

10−1

100

co
m

pu
ta

ti
on

ti
m

e
t

in
se

co
nd

s

Figure 9: spectrum computation performance: computation time of
F(x)(f) as a function of nx = len(x) with f = arange(0, dt, dt/nx) for
a straightforward implementation (dashed curve) and a FFT-based one (solid
curve) ; dots correspond to power-of-two signal length data. Reference platform:
Intel i7 Q820 1.73GHz CPU, 6GiB memory.

The results for the straightforward computation method (dashed curve) are
consistent with the O(N2) bound as the curve exhibit an asymptotic slope
of 2. For the FFT-based computation, the situation is more complex as the
computation times varies strongly with respect to the signal length. The lower
envelope of the curve is given by data points that correspond to signals whose
length is a power of two (dotted data). For those signals, the asymptotic slope
is 1, consistent with the O(N log N) estimate. However, the performance may
be far worse for arbitrary length, the upper enveloppe being O(N2) again and is
obtained for signal whose length is a prime number. This is a common artifact
of many FFT algorithms: they behave well when the signal length has an integer
decomposition that consists of many small primes numbers, the best case being

13

a power of two and the worst, a large prime number5.

To cope with this fact, we may introduce zero-padding of the original signal: we
append as many 0 values as necessary to the original vector so that its length
is a power of two. We still compute data on the original signal spectrum as
the signals values were 0 anyway. Note that NumPy fft implements 0-padding
when it is given as a second argument a desired length for the fft vector larger
than the signal length. As a consequence, we can support a power-of-two version
of the spectrum computation with the following code.

def F(x, dt=1.0):
nx = int(2**ceil(log2(len(x))))
fft_x = fft(x, nx)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

Obviously, zero-padding may also be used to obtain a larger power of 2 in order
to get more spectrum data. An additional parameter n may be given to define
the minimum length of the DFT.

def F(x, dt=1.0, n=0):
nx = len(x)
nx = max(n, nx)
nx = int(2**ceil(log2(nx)))
fft_x = fft(x, nx)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

The signal we want to analyze has often more values than the ones contained
in x. It may for example be – at least conceptually – be infinite, for example
if it is a pure tone. The FFT-based spectral analysis is therefore based on a
window of the original signal ; the most common choice is a rectangular window
where we select some of the valued of the signal (multiply by 1) and implicitly
consider that all other values are 0 (multiply by 0). Using a multiplication by
a window function whose behavior is smoother on the window boundary is a
classical method to improve the resolution of harmonics in the spectrum. Refer
for example to [?] for a discussion on this subject and a comparison of the usual
windows (such as bartlett, hamming, hanning, etc.). A version of the spectrum
that support windows is given by

def F(x, dt=1.0, n=0, window=ones):
5This is explained by the fact that those algorithms use a divide-and-conquer approach to

solve the problem. However, there are algorithms that may achieve an asymptotic O(N log N)
performance, even for signals of length a prime number, see for example [?].

14

nx = len(x)
x = window(nx) * x
nx = max(n, nx)
nx = int(2**ceil(log2(nx)))
fft_x = fft(x, nx)
def Fx(f):

k = (round_((ravel(f) * nx * dt)) % nx).astype(uint64)
return dt * fft_x[k]

return Fx

Multirate Signal Processing

Signal processing systems are multirate when they manage signals with differ-
ent sample times. Filters, introduced in the previous sections, do not alter the
sample time of the signals they are applied to, but decimators and expanders
do; they are the new building blocks that allows us to downsample – decrease
of the data rate – and upsample – increase in the data rate, while controlling
the impact of these operations on the signal spectral content. A downsampling
of a factor 5 for example may be used to get a 44.1 kHz signal down to a 8.82
kHz rate – which is still satisfactory for voice signals – and upsampling can be
used to go back to the original data rate.

Decimation and Expansion

Decimation

The decimation of a factor M of a discrete signal x with a sampling time of
∆t is the signal with a sampling time of M∆t denoted x ↓ M and defined by:

x ↓ M)(t) = x(t), t ∈ ZM∆t.

If x is a finite causal signal represented by the NumPy array x, the implemen-
tation of decimation of a factor M is straightforward with the slicing mechanism
of arrays:

def decimate(x, M=2):
return x[::M].copy()

Note that the length of decimate(x,M) is len(x)/M – the quotient of the integer
len(x) by the integer M – if len(x) is a multiple of M but len(x)/M + 1 oth-
erwise. The copy may be necessary in some use cases and is therefore included
to be safe. Indeed, the slicing operation has a pass-by-reference semantics in

15

0 1 2
time t (ms)

-1

0

1

x(t)

Figure 10:

0 1 2

time t (ms)

−1

0

1

(x ↓ 2)(t)

Figure 11: Decimation, Temporal View: a 44.1 kHz sampled signal x(t)
and its decimated version (by a factor of 2).

16

NumPy: x[::M] is not a copy of the content of x but merely a view into it,
therefore a change in the values of x would also change the sliced data6

Decimation has a arguably strange – but well-defined – effect on the spectrum
of a signal. Consider for example the decimation of factor 2 on the signal x with
a sampling time of ∆t:

(x ↓ 2)(f) = 2∆t
∑

t∈Z2∆t

(x ↓ 2)(t) exp(−2iπft)

= 2∆t
∑

t∈Z2∆t

x(t) exp(−2iπft)

= ∆t
∑

t∈Z∆t

x(t) exp(−2iπft) + ∆t
∑

t∈Z∆t

(−1)t/∆tx(t) exp(−2iπft)

As we have
(−1)t/∆t = exp(−iπ)t/∆t = exp(−2iπt/2∆t)

we end up with

(x ↓ 2)(f) = ∆t
∑

t∈Z∆t

x(t) exp(−2iπft) + ∆t
∑

t∈Z∆t

x(t) exp(−2iπ(f + 1/2∆t)t)

and therefore
(x ↓ 2)(f) = x(f) + x(f + ∆f/2)

110250 11025 22050

frequency f (Hz)

0.00

0.25

0.50

am
pl

it
ud

e
×1

0
3

|x(f)|

∆f/2

Figure 12:

For a decimation of factor M , we obtain by similar computations

(x ↓ M)(f) =
M−1∑
k=0

x(f + k∆f/M)

6see http://www.scipy.org/NumPy_for_Matlab_Users.

17

http://www.scipy.org/NumPy_for_Matlab_Users

110250 11025 22050

frequency f (Hz)

0.00

0.25

0.50

am
pl

it
ud

e
×1

0
3

|(x ↓ 2)(f)|

(∆f/2)/2

Figure 13: Decimation and Spectrum: spectra of a 44.1 kHz sampled signal,
before and after a decimation of factor 2 (temporal view: fig. ??). Doubling the
sample rate ∆t effectively halves ∆f and therefore halves the frequency range
where the spectral content is significant.

What this formula means is that after decimation of a factor M , the spectral
content of the signal at frequency f ∈ [0, ∆f/M) is a mix of the spectral content
of the original signal at the frequencies

f, f + ∆f/M, f + 2∆f/M, · · · nf + (M − 1)∆f/M.

This phenomenon is called (spectral) folding. As every frequency in the
original signals has generated copies of itself at new frequencies, the phenomenon
is also called (spectral) aliasing.

Expansion

The expansion of factor M applies to a discrete signal x with a time step ∆t
and creates a signal with a time step ∆t/M denoted x ↑ M and defined by:

(x ↑ M)(t) =
∣∣∣∣ x(t) if t ∈ Z∆t

0 otherwise.

Again, the implementation in NumPy for finite causal signals is straightforward:

def expand(x, M=2):
output = zeros(M * len(x))
output[::M] = x
return output

The length of expand(x, M) is M * len(x). It could be reduced to {(M - 1) *
len(x) + 1} without any information loss as the last M - 1 values of output
are zeros, but it is often convenient to obtain a signal whose length is a multiple

18

of the expansion factor. This operation does not alter the shape of the spectral
content of the signal:

(x ↑ M)(f) = (∆t/M)
∑

t∈Z∆t/M

(x ↑ M)(t) exp(−2iπtf)

= (∆t/M)
∑

t∈Z∆t

x(t) exp(−2iπtf)

and therefore
(x ↑ M)(f) = 1

M
x(f)

0 1 2

time t (ms)

−1

0

1

((x ↓ 2) ↑ 2)(t)

Figure 14:

110250 11025 22050

frequency f (Hz)

0.00

0.25

0.50

am
pl

it
ud

e
×1

0
3

|((x ↓ 2) ↑ 2)(t)(f)|

∆f/2

Figure 15: Expansion : temporal and spectral views of the signal x of figure
?? after downsampling then upsampling, both of a factor 2.

19

Downsampling and Upsampling

Decimation is the basic operation to reduce the data rate of a signal and there-
fore compress it. However, this operation creates aliases in the spectral content
of the signal where high and low-frequency are mixed and cannot be separated
one from the other anymore. We can however decide to get rid in a controlled
manner of some spectral content of the signal to keep the rest intact.

Note that if the spectral content of a signal before decimation of factor M is
entirely into the (−∆f/2M, ∆f/2M) band, aliasing does not happen as we have

(x ↓ M)(f) = x(f) if f ∈ (−∆f/2M, ∆f/2M)

This can be achieved if we filter the original signal with a perfect low-pass filter of
cutoff frequency fc = ∆f/2M . We then lose signal information in all frequency
bands but the one of lowest frequency, but at least, this one is perfectly preserved
by decimation. We call this combination of low-pass filtering and decimation
downsampling.

low-pass

low-pass

Figure 16: downsampling and upsampling diagrams

Reconstruction of the (low-frequency content of) original signal is then just a
matter of getting back the the original rate, by expansion and apply a gain
of M to the result. That leads to exactly the right spectrum in the band
(−∆f/2M, ∆f/2M) but not in the rest of (−∆f/2, ∆f/2) as the spectrum is
∆f/2M -perodic. To get rid of the high frequency content, we simply apply the
perfect low-pass filter with cutoff frequency fc = ∆f/2M . The combination of
(zero-)expansion, gain and filtering is called upsampling.

Let’s summarize this: a downsampling of order M allows to reduce the data
rate by a factor of M and keeps information one M -th of the spectral range –
the lowest frequency part. Upsampling may be used to reconstruct a signal at
the original rate whose content is the low-frequency content of the original one
and has no higher spectral components.

20

Ideal Filter Banks and Perfect Reconstruction

In the previous section we have explained how we could divide the signal rate
by a factor of M by keeping only one M -th of its spectral content and throwing
away everything else. We now consider the steps leading to a more flexible
approach: we split the data signal into M frequency bands and we will later
design methods to allocate bits to such or such a band depending on the spectral
content of the signal.

In order to split the signal into M uniformly spaced spectral bands, we introduce
an analysis filter bank: a set of M filters ai, i = 0, · · · , M − 1 with

ai
n = ai(n∆t), n ∈ Z

that we all apply to the original signal. All the filters all band-pass, with low
frequency i∆f/M and high-frequency limit (i + 1)∆f/M . We then decimate
the signal on all branches, so that the original data rate can be kept. We know
what is the spectral content of the signal after decimation on the branch i = 0,
but what is going on with the other branches ? Let x be the original signal and
xi is the signal filtered by the i-th filter. The content of xi is entirely in the i-th
frequency band, that is (i∆f/M, (i+1)∆f/M) (and the corresponding negative
frequency band), so after decimation, the spectral content is

M−1∑
k=0

x(f − k∆f/M) = xi(f + i∆f/M) if f ∈ (−∆f/2M, ∆f/2M)

So again, in each branch, decimation has kept the relevant information. Given
those M spectral components, are we able to reconstruct the original signal ?
In order to get the contribution from the i-th band in the right place, we can
first expand the signal and multiply by M : that shifts the subband content to
build a ∆f/M -periodic spectral content. To get this content only in the i�th
band, we apply a perfect pass-band that corresponds to the i-th subband. Then
we sum all these contributions.

Figure 17: Analysis and synthesis filter banks diagrams

21

Filter Banks and Perfect Reconstruction

One issue with the previous scheme is that perfect band-pass filters cannot be
implemented. We’d like as to replace them by some finite impulse response
filters approximations, study if perfect reconstruction is still possible and if it
can’t be achieved, measure the error we are introducingg.

Consider the diagram in figure (??) where the ai and si are the impulse response
of the analysis and synthesis filter banks. The formulas {(??) and (??)} yield
the following expression for the output z of the analysis + synthesis process
from the input signal x:

z(f) =
M−1∑
k=0

[
M−1∑
i=0

si(f)ai(f + k∆f/M)

]
x(f + k∆f/M)

which means that the diagram will achieve perfect reconstruction if we have

M−1∑
i=0

si(f)ai(f + k∆f/M) =
∣∣∣∣ 1 if k = 0,

0 if k = 1, · · · M − 1.
,

or in other words, if all the distorsion functions Dk(f), k = 0, ·, M −1, defined
by

D0(f) =
M−1∑
i=0

si(f)ai(f) − 1,

Dk(f) =
M−1∑
i=0

si(f)ai(f + k∆f/M), k = 1, · · · M − 1

are identically zero.

Cosine Modulated Filter Banks

We build in this section a family of pass-band filters with impulse responses
ai(t), i = 0, · · · , M − 1, whose pass-band is (i∆f/M, (i + 1)∆f/M), and based
on a single prototype filter. The prototype is selected as a low-pass filter with
cutoff frequency fc = ∆f/4M ; the perfect prototype filter impulse response is
(see (??)):

h(n∆t) = ∆f

2M
sinc ∆f

2M
n∆t = ∆f

2M
sinc n

2M

To generate the i-th pass-band filter, all we have to do it to shift the spectrum
by (i + 0.5)∆f/2M to the right, that is, multiply h(n∆t) by

exp(i2π(i + 0.5)(∆f/2M)(n∆t)) = exp(iπ(i + 0.5)n/M).

22

But then the filter impulse response would no longer be real, so we also perform
the the opposite frequency shift : we multiply h(n∆t) by exp(−iπ(i + 0.5)n/M)
and add up both contributions ; we end up with

ai(n∆t) = 2h(n∆t) × cos (π(i + 0.5)n/M)

that is, a cosine modulated filter bank. The figure (??) displays the filters
frequency responses where the prototype filter has been approximated by a FIR.

0 22050
Frequency f (Hz)

0

1

F
ilt

er
G

ai
n

|h(f)| |a3(f)||a2(f)||a1(f)||a0(f)|

Figure 18: Cosine Modulated Filter Banks: gain of the components of a
cosine modulated filter bank as a function of the frequency f . The sampling
time ∆t is 44.1 kHz, there are M = 4 filters and the prototype filter h – whose
spectrum gain is dotted – has been truncated by the application of a Hanning
window if length N = 64. The phase of such filter is not displayed as it is flat
because the filters impulses responses are symmetrical – or linear as a function
of f in a causal implementation.

If we selecting as synthesis filters the same pass-band filters used for the analysis
– si(t) = ai(t) – we maye compute the distorsions induced by the analysis-
synthesis process ; the results, displayed in figure (??), clearly points out that the
basic approach we have adopted so far does not provide a good approximation
to a perfect reconstruction.

0 22050
0

1

|T0(f)|
f (Hz)

Figure 19:

Pseudo-QMF (for pseudo - quadrature mirror filters) may be introduced
to obtain sufficiently small distorsion functions ; they are successfully used in
layer I and II of MPEG-Audio for example. Their design relied on two modifi-
cations with respect to our approach so far. First, we introduce phase factors

23

0 22050
0

1

|T1(f)|
f (Hz)

Figure 20:

0 22050
0

1

|T2(f)|
f (Hz)

Figure 21:

ϕi in the definition of ai and si

ai(n∆t) = 2h(n∆t) × cos (π(i + 0.5)n/M + ϕi)
si(n∆t) = 2h(n∆t) × cos (π(i + 0.5)n/M − ϕi)

in order to cancel significant aliasing terms and ensure a relatively flat overall
magnitude distorsion (see [?, ?]). Among several options, we select

ϕi = π

2

(
N − 1

M
− 1
)

(i + 0.5)

where N is the filter length and M the number of sub-bands.

Then the selection of the prototype filter does not rely on the expression of the
perfect low-pass filter but is optimized to reduce distorsion. The MPEG-Audio
standard selection for this filter is displayed in figure ??.

Polyphase Representation of Filters Banks

Polyphase representation is an alternate description of filter banks that is suited
to a real-time implementation. Unlike convolution-based implementation that
require the full input values to be available to produce output values, polyphase

0 22050
0

1

|T3(f)|
f (Hz)

Figure 22: {cosine modulated filter banks: distortions}

24

0 100 200 300 400 500
−0.01

0.00

0.01

0.02

0.03

0.04

Figure 23: MPEG-Audio Layer I and II prototype 513-tap prototype filter

representation of analysis and synthesis filter banks are amenable to matrix
implementation that work frame by frame: they consume chunks of M samples
to produce the same amount of output values.

Analysis Filter Bank

Consider the analysis filter bank depicted on the left of figure ??. Gather the
output yi(t) of the i-th subbands into the vector signal y(t) ∈ RM , t ∈ ZM∆t.
This output vector is related to the input x(t) ∈ R, t ∈ Z∆t by the formula:

yi(t) = ∆t
∑

t′∈Z∆t

ai(t′)x(t − t′), t ∈ ZM∆t

Let yi
n = yi(nM∆t), xi

n = xi(n∆t), ai
n = ai(n∆t). This relationship takes the

form

yi
j = ∆t

N−1∑
n=0

ai
nxMj−n,

which can be considered as a simple matrix multiplication:

yn = A

xMn

xMn−1
...

xMn−N+1

 with A ∈ RM×N , Aij = ∆t · ai
j .

25

Alternatively, this form may be turned into an alternate block-diagram
displayed in figure ?? that is the polyphase representation of the analysis filter
bank:

Figure 24: analysis filter bank: polyphase representation

assume that N is a multiple of M and that we intend to apply the analysis filter
bank to a finite causal signal x represented by the NumPy array x. We notice
that the vector in right-hand side of the equation () acts as a buffer: every new
value of n shifts the oldest values of x towards the bottom of the vector by M
slots – effectively forgetting M of the oldest values – and introduces M new
values of x at the top, so the signal x is used in frames of M samples. We also
notice that y0 does not depend of a whole x frame, only of x0. To simplify this
matter, we assume that x0 = 0 and won’t compute y0. Effectively, we implement
a process that with respect to the theoretical one delays the input by one step –
so that x1 is the first non-zero value, not x0 – and advances the output by one
step – the first output we’ll effectively compute is truly y1, not y0.

These computations may be carried by an instance of the Analysis class:

class Analysis(object):

26

def __init__(self, a, dt=1.0):
self.M, self.N = shape(a)
self.A = a * dt
self.buffer = zeros(self.N)

def __call__(self, frame):
frame = array(frame, copy=False)
assert shape(frame) == (self.M,)
self.buffer[self.M:] = self.buffer[:-self.M]
self.buffer[:self.M] = frame[::-1]
return dot(self.A, self.buffer)

The argument a in the Analysis constructor is meant to be a the 2-dim. array
such that a[i,:] represent the i-th analysis filter impulse response. In order
to use the instance analysis = Analysis(a, dt), the array x has to be split
in frames of length M.

In the implementation of the analysis filter banks for the MPEG PQMF, the
pass-band filters are implemented as causal filters, introducing an extra delay
of MPEG.N / 2 = 256 samples. Given the the implementation delays already
considered, the total delay induced by the implementation with respect to the
original filter banks is MPEG.N / 2 + 1 - MPEG.M.

To make sure that the analysis filter banks has produced all its non zero-values,
we feed the system extra zero frames. If the input data is available from the
start in the array x, the corresponding output y may therefore be obtained as:

from filters import MPEG
from frames import split

x = r_[x, zeros(MPEG.N)]
frames = split(x, MPEG.M, zero_pad=True)
y = []
for frame in frames:

y.extend(analysis(frame))
y = array(y)

Synthesis Filter Bank

Consider the synthesis filter bank depicted on the right of the diagram ??. The
output vector z(t) ∈ R, t ∈ Z∆t, is related to the input y(t) ∈ RM , t ∈ ZM∆t,
by the formula:

z(t) = M

M−1∑
i=0

∆t
∑

t′∈Z∆t

si(t′)(yi ↑ M)(t − t′)

27

or – using integer indices – by

zn = M
M−1∑
i=0

∆t
N−1∑
j=0

si
j(yi ↑ M)n−j .

With
S =

[
M∆tsi

j

]
i,j

we may turn this equation into

zn =
N−1∑
j=0

[St(y ↑ M)n−j]j .

Now consider the polyphase synthesis diagram ??, dual of the analysis diagram
??, where P is an unknown N × M matrix. Its output is related to its input by

zn =
N−1∑
j=0

[P(y ↑ M)n−j]N−1−j .

So if we set P = JSt, where J is the M × M matrix such as Ji,j = 1 if
i − j = M − 1 and 0 otherwise, the diagram outputs the same thing as (), only
delayed by N − 1 samples.

Let wn = Styn. A careful examination of the polyphase representation of the
synthesis filter banks show that the computation may be performed in frames
of M values. Indeed, the output zn is given by z0 = wN−1

0 , · · ·, zM−1 = wN−M
0 ,

then zM = wN−M−1
0 + wN−1

1 , zM+1 = wN−M−2
0 + wN−2

1 , etc.

Here is a possible implementation:

class Synthesis(object):
def __init__(self, s, dt=1.0):

self.M, self.N = shape(s)
self.P = transpose(self.M * dt * s)[::-1,:]
self.buffer = zeros(self.N)

def __call__(self, frame):
frame = array(frame, copy=False)
assert shape(frame) == (self.M,)
self.buffer += dot(self.P, frame)
output = self.buffer[-self.M:][::-1].copy()
self.buffer[self.M:] = self.buffer[:-self.M]
self.buffer[:self.M] = zeros(self.M)
return output

Again, the input vector y can be extended with as many zeros as necessary to
get all non-zero output values extracted from the buffer.

28

Figure 25: Synthesis filter bank: polyphase representation

29

Psychoacoustics - Perceptual Models

Acoustics - Physical Values

Audio signal values represent a variation of the sound pressure with respect to
the atmospheric pressure. The standard unit used to measure such pressure
is the pascal (Pa), a unit that corresponds to N/m2 ; while atmospheric pres-
sure is around 100 Pa – the standard atmosphere (atm), an alternative unit, is
equivalent to 101.325 Pa – variations of the pressure in the audio context typi-
cally range from 10−5 Pa (absolute threshold of hearing) to 102 Pa (threshold
of pain).

In order to measure the sound pressure level (SPL) denoted L, we focus
on the difference p(t) between the actual pressure and the atmospheric pressure
and compute its quadratic mean:

P 2 =
⟨
p2⟩

where ⟨·⟩ denotes, depending on the context, either a temporal mean or a prob-
abilistic one. We then normalize this value with respect to P0 = 20 µPa and
measure the ratio in a logarithmic scale

L = 20 log10
P

P0

The sound pressure level unit is the decibel (dB). When the sound is a plane
travelling wave, the normalized sound intensity I is related to p by

I

I0
= P 2

P 2
0

with I0 = 10−12 N/m2

so that
L = 10 log10

I

I0
.

Now, sound pressure level may be computed according to the spectral content
of the signal: if p(f) denotes the spectrum of the signal p(t), a finite causal
signal of length N with T = N∆t, we have by Parseval’s formula (cf. formula
())

P = 1
T

∆t
N−1∑
n=0

p(t)2 = 1
T

∫ ∆f/2

−∆f/2
|p(f)|2 df

as we end up with

L = 10 log10
2
T

∫ ∆f/2

0

|p(f)|2

P 2
0

df

This result is usually presented in terms of sound (intensity) density also
commonly called sound power density, a value measured in dB that we denote
ℓ(f) and define as

ℓ(f) = 10 log10
2
T

|p(f)|2

P 2
0

30

so that
L = 10 log10

∫ ∆f/2

0
10ℓ(f)/10 df.

For example, if a sound has a constant power density ℓ in a frequency range of
width ∆F and no power outside this range, its sound pressure level is

L = ℓ + 10 log10 ∆F

Digital audio signal being scaled to fit the range of their quantizer, we need to
normalize somehow the signal before getting into the SPL computation. For
16-bit linearly quantized signals normalization takes place in the following way:
first, scale to fit into [−1.0, 1.0], then a quadratic mean of N signal values

X2 =
⟨
x2⟩ = 1

T
∆t

(N−1)∑
n=0

|x(n∆t)|2

is mapped to SPL with the formula

L = 10 log10
⟨
x2⟩+ 96 dB

or equivalently
P = 104.8P0 × X

or even
ℓ(f) = 10 log10

(
2
T

|x(f)|2
)

+ 96

and

L = 10 log10

(
2
T

109.6
∫ ∆f/2

0
|x(f)|2 df

)

Threshold in Quiet

To understand why the normalization in the previous section actually makes
sense, we need to know more about the human hearing range. The absolute
threshold of hearing (ATH) or threshold in quiet is a function of the
frequency f such that a pure tone with a frequency f will be noticed if and only
if its SPL is above the ATH at this frequency. An approximate analytical model
for the threshold of hearing – as a function of the frequency f in kHz – is:

Ta(f) = 3.64f−0.8 − 6.5 exp(−0.6 (f − 3.3)2) + 10−3f4

Now consider the values of a uniform 16-bit quantizer on [−1.0, 1.0]. Given that
the maximum possible value of

⟨
x2⟩ is 1.0, the maximum value of the right-

hand side of the equation () is 96 dB. For a pure tone, before normalization, the

31

maximum value of
⟨
x2⟩ is 1/

√
2, and therefore the maximum sound pressure

level is ≈ 93 dB.

Now, even if there is no minimum value per se, a good reference is the quan-
tization noise energy. For a 16-bit linear quantization on (−1.0, 1.0), the step
size ∆ is uniform with a value of 2.0/216 = 2−15. In the context of the high
resolution hypothesis, the equation (??) provides the estimate E[b2] = ∆2/12
for the noise power and therefore the normalized noise pressure level is

10 log10
(
2−30/12

)
+ 96 ≈ −5.1 dB

So with the normalization of the previous section, the practical range in terms
of sound pressure level of the 16-bit linear quantizer is [−5.1, 93] dB, that is ap-
proximately a 100 dB range. Compared to the reference curve for the absolute
threshold of hearing (see fig. ??), we notice that this region covers essentially
all of the frequency range from 20 Hz to 20 kHz and that the low bound closely
matches the minimal value of the ATH. So this scaling by 96 dB would corre-
spond to a kind of optimal amplification configuration of the loudspeakers, one
that would allow to get into large audible value of the SPL without saturation
of the signal and also to allow proper perception of the lowest sounds that the
ear can actually detect.

101 102 103 104

frequency f (Hz)

-20

0

20

40

60

80

100

120

SP
L
L

(d
B

)

Ta(f) = 3.64
f

1000

−0.8

− 6.5 exp

(
−0.6

(
f

1000
− 3.3

)2
)

+ 10
−3 f

1000

4

Absolute Threshold of Hearing (ATH)

Figure 26: Absolute Threshold of Hearing. The grey region denotes the
SPL range covered by a 16-bit linear quantization.

32

Simultaneous Masking

Beyond the model of the absolute threshold of hearing, the main characteris-
tic of the psychoacoustic system that perceptual model used in technologies
such as MP3, Ogg/Vorbis, AAC, etc. rely on is {simultaneous masking}.
Basically, a loud sound whose energy is located in a given narrow
frequency range is going to make every other signal located in the
same frequency neighbouhood harder to detect.

A simple first computational model for this type of masking relies
on Fletcher’s critical band concept. Fletcher considers the possible
masking of a pure tone with frequency f by a signal whose energy is
located in the [f − ∆F/2, f + ∆F/2] range and makes the assumption
that there exist a critical bandwidth ∆Fc – or a critical band [f −
∆Fc/2, f + ∆Fc/2] – such that:

1. the distribution of the intensity of the masker within the critical
band does not influence the outcome of the masking experiment,
only the total SPL for the critical band matters,

2. no amount of intensity outside of the critical band may change
the outcome of the experiment,

3. masking occurs when the intensity of the masker in the critical
band exceeds the intensity of the test tone.

In a few words, the critical band is the largest region around the
test tone where the power density of masker signals consistently in-
creases the masking effect. This set of assumption has a number of
shortcomings: the distribution of intensity nearby the test tone does
matter, but not so much as long as the distribution is quite uniform
(say a band-limited noise or a combination of 5 pure tones uniformly
gathered won’t make much of a difference), the influence of the distri-
bution of energy does not have a drop from 100% to 0% at a limit but
is smoother and finally, the masker needs from 2 to 4 more intensity
than the test tone to properly mask it.

Despite all these shortcomings, Fletcher’s model of critical bands is
important and estimates of the critical bandwidth as a function of
the frequency center frequency f may be derived from simple exper-
imental protocols. An approximate analytical formula for the critical
bandwith in Hz – as a function of the center frequency f in Hz is:

∆Fc = 25 + 75(1 + 1.4(f/1000.0)2)0.69

it also accepts the following piecewise linear approximation:

∆Fc = 100 Hz if f ≤ 500Hz and ∆Fc = 0.2 × f beyond.

33

102 103 104

frequency f (Hz)

101

102

103

∆
F
c

(H
z)

∆Fc = 25 + 75(1 + 1.4(f/1000.0)2)0.69

Critical Bandwidth

Figure 27: Critical Bandwidth. The dashed lined represent the simpler piece-
wise linear estimate.

The critical band concept is used in many model beyond masking ;
for convenience, a unit is introduced to measure frequencies in the
critical band rate scale : it is named the Bark. By convention, f = 0
Bark corresponds to f = 0 Hz. Then the right end of the critical
band that starts at 0 Bark corresponds to 1 Bark, the right end of
the critical band that starts at 1 Bark corresponds to 2 Bark, and so
on and so forth. A convenient analytical approximation of the Hz to
Bark conversion is given by:

f [Bark] = 13.0 arctan(0.76f/1000.0) + 3.5 arctan(f/1000.0/7.5)2

Spreading Functions

Let’s consider for a moment the masks yielded by Fletcher’s set of
assumption, that is the audibility threshold of pure tones as a function
of their frequency f . We may consider as maskers either pure tones
or band-limited white noises. The graphs in figure ?? is an example
of the masks levels that can be derived from Fletcher’s model of
masking.

If we assume that elementary maskers combine into a global one by
addition of intensity – and take into account the absolute threshold
of hearing as yet another mask, we end up with the kind of masking
curves displayed in figure ??.

34

200 400 1000
frequency f (Hz)

25

50

M
as

k
L

ev
el

(d
B

) dB ∆f = 20.0 Hz

f (Hz)

Figure 28:

200 400 1000

frequency f (Hz)

25

50

M
as

k
L

ev
el

(d
B

) dB ∆f = 100.0 Hz

f (Hz)

Figure 29:

200 400 1000

frequency f (Hz)

25

50

M
as

k
L

ev
el

(d
B

) dB ∆f = 400.0 Hz

f (Hz)

Figure 30:

200 400 1000

frequency f (Hz)

25

50

M
as

k
L

ev
el

(d
B

) dB ∆f = 800.0 Hz

f (Hz)

Figure 31: Fletcher’s Model – Band-Limited Noise Masking Curves.
The four maskers share a common SPL of L = 50 dB and center frequency of
fc = 400 Hz while their bandwidth increases from ∆f = 20.0 Hz to 800 Hz.}

35

5000 10000 15000 20000

frequency f (Hz), linear scale

0

50

100

M
as

k
L

ev
el

(d
B

)

Figure 32:

102 103 104

frequency f (Hz), logarithmic scale

0

50

100

M
as

k
L

ev
el

(d
B

)

Figure 33:

0 5 10 15 20 25

frequency f (bark), bark scale

0

50

100

M
as

k
L

ev
el

(d
B

)

Figure 34: Fletcher’s Model – Pure Tones Masking Curves. The masker
is a combination of 8 pure tones of level 100 dB whose frequencies start with 110
Hz and double for each new tone. Frequencies are displayed in linear, logarithmic
and bark scales.

36

Implementation - Bit Allocation Strategies

Consider a random signal X split into M subband signals Xk. Assume
that in every subband an estimate Pm(k) of the masking level intensity
is available. Given a selection of quantizers [·]k, if we have

∀ k ∈ {0, · · · , M − 1}, E[(Xk − [Xk]k)2] ≤ Pm(k)

then in every channel, the quantization noise is masked by the sig-
nal itself. These conditions () may be satisfied by a variable bitrate
algorithm, but it is more likely that we have a total budget of bits
to allocate per frame and that we are merely trying to spread the
quantization noise above the masking levels among all subbands. We
may achieve this by solving

min
M−1∑
k=0

E[(Xk − [Xk]k)2]
Pm(k)

or, under the high resolution assumption, if ∆fk
denotes the quantizer

step size of [·]k, as we have E[(Xk − [Xk]k)2] = (1/12)E[∆fk
(Xk)2], by

solving

min
M−1∑
k=0

E[∆fk
(Xk)2]

Pm(k)

Uniform Quantizers

Assume that every quantizer [·]k is a uniform quantizer on (−1, 1)
with step size ∆k. In every subband, the number of bits bk is related
to the step size by ∆k = 2/2bk . The availability of a constant number
of bits per frame therefore leads to

M−1∑
k=0

log ∆k = const.

The constrained optimization problem () + () may be solved by la-
grangian methods: we introduce ∆ = (∆0, · · · , ∆M−1),

L(λ, ∆) =
M−1∑
k=0

∆2
k

Pm(k)
+ λ

M−1∑
k=0

log ∆k

and solve the equation ∇∆L(λ, ∆) = 0. As for any k,
∂L

∂∆k
= 2 ∆k

Pm(k)
+ λ

∆k
,

the optimal set of step size satisfies
∆2

k ∝ Pm(k)

the proportionaly constant being adjusted to match the bit budget.

37

Optimal Quantizers.

Instead of using uniform quantizers in every subbands, we may at-
tempt to minimize every quantizer signal-to-noise ratio for a yet un-
know number of bits, then consider the optimal allocation of bts.
We assume that the characteristic function fk used to implement [·]k
maps the real numbers into [−1.0, +1.0] and hence that∫ +∞

−∞
f ′

k(x) dx = 2

Note that if a uniform quantization applied on [−1, 1] and has a budget
of bk bits,the corresponding constant step size is ∆k = 2/2bk . As we
have ∆fk

(x) = ∆k/f ′
k(x), the equation () yields∫ +∞

−∞

1
∆fk

(x)
dx = 2

∆k

If the signal Xk has a density pk, the step size ∆fk
that is optimal

with respect to the quantization signal-to-noise ratio satisfies ∆fk
(x) ∝

p
−1/3
k (x). Combined with (), this equation yields

∆fk
(x) = ∆k

2

[∫ +∞

−∞
p

1/3
k (y) dy

]
p

−1/3
k (x)

and therefore

E[∆fk
(Xk)2] = ∆2

k

4

[∫ +∞

−∞
p

1/3
k (x) dx

]3

Now, for common probability distributions pk such as normal distri-
butions or Laplace distributions, we have∫ +∞

−∞
p

1/3
k (x) dx ∝ E[X2

k]1/3

and hence
E[∆fk

(Xk)2] ∝ ∆2
k × E[X2

k]

The new minimization problem is therefore

min
M−1∑
k=0

∆2
k

E[X2
k]

Pm(k)

under
M−1∑
k=0

log ∆k = const.

38

If we introduce the signal-to-mask (SMR) ratio in the band k, defined
by

SMR2
k = E[X2

k]
Pm(k)

the solution to this optimization problem is given by

∆k ∝ SMR−1
k

39

	Signal, Spectrum, Filters
	Convolution and Filters
	Convolution
	Filters

	Finite Signals
	Design of Low-Pass Filters
	Spectrum Computation

	Multirate Signal Processing
	Decimation and Expansion
	Decimation
	Expansion

	Downsampling and Upsampling
	Ideal Filter Banks and Perfect Reconstruction
	Filter Banks and Perfect Reconstruction
	Cosine Modulated Filter Banks
	Polyphase Representation of Filters Banks
	Analysis Filter Bank
	Synthesis Filter Bank

	Psychoacoustics - Perceptual Models
	Acoustics - Physical Values
	Threshold in Quiet
	Simultaneous Masking
	Spreading Functions
	Implementation - Bit Allocation Strategies
	Uniform Quantizers
	Optimal Quantizers.

